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Key Points: 18 

• Global response to climate-sensitive diseases has been slow and like the "COVID-19" 19 

pandemic, understanding future vulnerabilities is key. 20 

• There is need for new forms of research questions to analyze the anthropocentric and 21 

geopolitical context of health concerns. 22 

• Pluralist dynamics of health systems management beyond the "One health" approach will 23 

help capture the role of Earth systems. 24 
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Abstract 26 

Lessons from the strong global response to the coronavirus disease 2019 (COVID-19) pandemic 27 

and a renewed call for “One health” approach to health systems management in “The Lancet” 28 

parallel climate change emergencies. The weakened health – climate change nexus, perceived 29 

largely within public health need to engage how the Earth system (i.e. relationships between air, 30 

land, life and water on earth) in shaping the etiologies, incidences and transmission dynamics of 31 

diseases. The question “What are the drivers of the drivers of diseases?” using the context of 32 

diarrheal diseases is posed. Subsequently, we need to understand how (i) climatic risks drive 33 

biological health hazards, (ii) shifts in disease control services of ecosystems regulate diseases, 34 

(iii) climate change within Earth systems modify disease pathogens and species hosts 35 

relationships. Hence, safeguarding Earth system-related disease dynamics would inform 36 

pluralistic approaches beyond “One health”. 37 

Plain Language Summary 38 

Threats posed by climate change to human health have been described as the greatest in the 21st 39 

century. Yet research to understand the influences of climate change on specific processes 40 

occurring between air, land, life and water on earth that affect diseases and transmission is still 41 

emerging. This is because such modifications are resulting in new forms of diseases. The 42 

understanding of which will help design strategies that bring together other disciplines and 43 

sectors that affect health because the issues are interdependent, in a holistic approach to health 44 

systems management. 45 

 46 

1. Introduction  47 

1.1. Disease emergence and case management  48 

There is a renewed call for “One Health” approach to global health management amidst the 49 

Coronavirus Disease 2019 (COVID-19) pandemic in “The Lancet”, to prevent, detect, and 50 

control disease outbreaks especially emerging infectious diseases (Jacobsen, 2020). The Lancet 51 

comment, “Will COVID-19 generate global preparedness?”, argued that health systems be 52 

understood and managed across different sectors, similar to the Ecohealth approach of Butler & 53 

Friel (2006) over a decade earlier). The comment, grounded in social-demography, population 54 

health, and epidemiology, however, marginalized the role played by the Earth system, yet 55 

relevant for the current analysis. The “Earth system" represents the interactions of the earth´s 56 

physical, chemical, and biological processes, including natural cycles and deep Earth processes 57 

which provide the conditions necessary for life (Steffen et al., 2004) (Figure 1). The reasoning 58 

that the bio-geophysical environment contributes immensely to disease origin, incidence and 59 

spread, beyond the “One health” approach, evokes relevance of the “Ecohealth and Planetary 60 

health” approaches which define interactions resulting from shifts in ecosystems and social-61 

ecological linkages (Lerner & Berg, 2017; Roger et al., 2016), of which climate change 62 

constitutes a proximate global disease burden. Combining the three aforementioned approaches 63 

conciliates ecological, socioeconomic, and political space in health (Jacobsen, 2020; Lerner & 64 

Berg, 2017; Roger et al., 2016), from which the concept of this paper is derived. Ecosystems are 65 

part of the Earth system (Figure 1), defined in the Millennium Ecosystem Assessment report as 66 

“a dynamic complex of plant, animal, and microorganism communities and the nonliving 67 

environment, interacting as a functional unit. Humans being an integral part of the ecosystems” 68 

(Leemans et al., 2003). The use of COVID-19 as an antecedent of the paper emphasizes the role 69 

of global response to potential climate change related disease pandemics. The SARS group of 70 
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emerging diseases linked to changes to biodiversity-pathogens interactions and climate change 71 

(Keesing et al., 2010), is immensely overlooked of which COVID-19 is part.  72 

 73 

1.2. Earth system and drivers of emerging diseases  74 

Globally, land use change has been found to contribute most and close to half of emerging 75 

diseases underlain by human production practices, climate and weather factors (Keesing et al., 76 

2010). Thus, climate-change-induced shifts are changing ecosystems and altering ecosystem 77 

functioning, implied in future vulnerabilities that define uncertainties (Grimm et al., 2013; 78 

Schirpke et al., 2017; Wardekker et al., 2012). Therefore, in exploring the link between climate 79 

change and ecosystem modification, and links to disease occurrence and transmission, we ask the 80 

question “what are the drivers of the drivers of diseases?” Subsequently, the goal of this paper is 81 

to frame how climate change modifies ecosystem service and implications for disease etiology, 82 

incidence, and transmission. Ecosystem services are “Benefits people obtain from ecosystems. 83 

These include provisioning services such as food and water; regulating services such as flood 84 

and disease control; cultural services such as spiritual, recreational, and cultural benefits; and 85 

supporting services, such as nutrient cycling, that maintain the conditions for life on Earth” 86 

(Leemans et al., 2003). Declines and extinctions in biodiversity, caused by changes to 87 

ecosystems dependent multiple stressors and climate change (Figure 1), affect the risk of 88 

infectious disease exposures (Côté et al., 2016, Keesing et al., 2010; Schirpke et al., 2017). The 89 

Lancet and University College of London Institute for Global Health Commission in 2009 90 

concluded that “Climate change is the biggest global health threat of the 21st century”, citing 91 

heatstroke, extreme weather events, and links to disease outbreaks globally (Costello et al., 92 

2009). Ten years on, policy actions of over 100 countries globally to incorporate climate change 93 

into disease monitoring and surveillance has been slow and inconclusive (World Health 94 

Organization (WHO), 2019). 95 

 96 
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Figure 1. Schematic representation of the nexus between health, climate change and Earth 97 

systems processes and interactions (Source: adopted and modified from Leemans et al. (2003) 98 

and McMichael et al. (2006). 99 

 100 

1.3. Interdependence of health system management  101 

Lessons from the global resource mobilization response to the COVID-19 pandemic in 102 

the face of uncertainties, and recommendations of “One health” system approach provide a 103 

wakeup call to totally embrace the Paris climate agreement (PaCA). Because of COVID-19, 104 

uncertainties of climatic risks in disease patterns and mortality have come under sharp scrutiny 105 

(Liu et al., 2020; Mohammad et al., 2020), as United Nations Secretary-General recently linked 106 

climate change’s unknown tipping point to COVID-19 107 

(https://www.un.org/press/en/2020/sgsm20051.doc.htm). We focus on diarrheal diseases in this 108 

paper which has high temperatures, flooding and windstorms as prevailing drivers of the Earth 109 

system that make it climate-sensitive. The unpredictable effects of climate change on the 110 

interactions of species and their related functions represent one of the largest forecasting 111 

uncertainties (Pecl et al., 2017; Winder & Schindler, 2004). Unfortunately, many years of 112 

research in biodiversity and ecosystem functioning, and multispecies predator–prey interactions 113 

that rarely intersected (Ives et al., 2005), has hardly gone beyond conservative Earth systems 114 

research to impact health and diseases. Hence, using past, current, and accurate and reliable 115 

Earth systems data which capture meteorological and climatic information on ecosystem change 116 

provide evidence for viewing health responses to climate change challenges across multiple 117 

disciplines and uncertainty (Dovie et al., 2017; Jacobsen, 2020; Lerner & Berg, 2017; Yokohata 118 

et al., 2019). Subsequently, positioning ecosystem and health-related concepts in disease case 119 

prediction and response is relevant to the complex health – climate change - ecosystems nexus 120 

(Charron, 2012; Lerner & Berg, 2017; Leung et al., 2012; Rapport & Singh, 2006). Recent 121 

evidence shows that ecosystems do shift to new states, thereby imposing change on species 122 

interactions (Deyle et al., 2016; Kandziora et al., 2013; Pecl et al., 2017), which tend to drive 123 

emerging disease events in the presence of climatic elements, and speculate for COVID-19 (e.g. 124 

Ma et al., 2020; Şahin, 2020; Sajadi et al., 2020). However, it is the cascading impacts of climate 125 

change on the earth’s energy on ecosystem functions and services rather than the first level 126 

(proximate) impacts and links to diseases which is yet to receive attention. In this paper, we use 127 

diarrheal diseases to recommend the combined “One Health, Ecohealth, and Planetary health” 128 

approach for health system management. 129 

 130 

2. The health - climate change – ecosystem service nexus   131 

 132 

The millennium ecosystem assessment (MEA) concludes that ecosystems play an important role 133 

in regulating the transmission of many infectious diseases (Patz et al., 2005). The report asserts 134 

that altered habitat, and resultant changes in vector breeding characteristics including sites or 135 

reservoir host distribution; niche invasions or interspecies host transfers; and changes in 136 

biodiversity (including loss of predator species and changes in host population density); 137 

constitute main biological mechanisms that have altered the incidence of many infectious 138 

diseases (Table 1). Climate change is modulating the ability of ecosystems to perform their 139 

functions and services across ecosystems (Bangash et al., 2013; Grimm et al., 2013; Kardol et 140 

al., 2010; Montoya & Raffaelli, 2010; Pedrono et al., 2016; Scheffers et al., 2016; Schirpke et al., 141 

2017). This is further driven  by “tertiary” health effects of climate change which are major 142 

https://www.un.org/press/en/2020/sgsm20051.doc.htm
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human dimension issues of migration, conflict and hunger (Bowles et al., 2014). Uncertainties in 143 

magnitude of biophysical, demographic, geomorphic functions, etc., constitute confounding 144 

factors of health that tend to complicate health governance systems (Ogashawara et al., 2019; 145 

Parkes et al., 2010)). Land use change with its resultant ecosystems degradation is resulting in 146 

increasing emotional and mental illness (Rapport and Singh, 2006; Sandifer et al., 2017). 147 

Therefore, a considerable link established between climate change and health would complicate 148 

disease case management (Smith et al., 2014). Using medical, social, or public health 149 

instruments to address health solely as a policy problem or concern will not achieve the desired 150 

outcomes unless it was viewed from an Earth system perspective. Thus, Parkes et al. (2010) and 151 

Sorensen et al. (2017), analyze how modifications and the interactions within the Earth system to 152 

balance upstream social and ecosystem change foster health, sustainability and social–ecological 153 

resilience. 154 

 155 

Table 1. Mechanisms of Disease Emergence and Examples of Diseases across Ecosystems 156 

(Source: Patz et al., 2005). 157 

 158 
 159 

COVID-19 lockdowns and face masks, were respectively likened to decarbonization 160 

(mitigation), and adaptation, for climate change, shedding light on how coordinated response 161 

promote healthy behaviors. There is little to report on how infectious diseases result from 162 

changing conditions of species when it is about the health sector, even in the developed world 163 

(Lesnikowski et al., 2011). Severe climate change and impacts on health is known to result 164 

typically from three basic pathways. These are (i) the direct impacts relating primarily to extreme 165 

weather including heat waves, droughts, and heavy rain, (ii) the effects mediated through natural 166 

systems, and (iii) systemically mediated by human systems including conflicts, economic 167 

instability and environmental decline (Kjellstrom & McMichael, 2013; McMichael, 2013; Smith 168 

et al., 2014). The effects of global change on the structure and function of terrestrial ecosystems 169 

are regulated from interactions across the Earth system (Bardgett & Wardle, 2010; Grimm et al., 170 

2013; Kandziora et al., 2013). Thus, the changing state of ecosystems impact disease-causing 171 

organisms as spatiotemporal dynamics of microbial communities hugely affecting the behavior 172 

of those organisms, exhibit interspecies exchange of metabolites in ecosystems (Harcombe et al., 173 

2014). Similarly, the role of aerosols of biological origin in the Earth system, are essential for the 174 
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reproduction and spread of organisms across various ecosystems (Fröhlich-Nowoisky et al., 175 

2016), and documenting such interactions and shifts would transform understanding of patterns 176 

in the occurrence of disease vectors and alteration in spatial and temporal transmission 177 

(Bezirtzoglou et al., 2011; Haines, 2012; Haines et al., 2006; IPCC, 2007, 2014; Jankowska et al 178 

2012; Kovats, 2010; Maibach et al., 2008; McMichael et al., 2006; Patz et al., 2008).  179 

  180 

3. The case of diarrheal diseases  181 

3.1. Earth systems linkages  182 

Climate change acts to exacerbate existing patterns of ill health by modifying underlying 183 

vulnerabilities of environment and socio-demographic origin (Smith et al., 2014). Studies 184 

suggest that women, children, young people, and the elderly are at greater risk of climate related 185 

illness, with adverse effects of malaria, diarrhea, and under-nutrition concentrated among 186 

children (Michon et al., 2007; Perera, 2008; Xu et al., 2013). Thus these vulnerable groups have 187 

higher exposures meaning they are disproportionally affected by climate change related health 188 

concerns including diarrheal diseases because of variable underlying pressures (e.g. poverty and 189 

gender inequality). Therefore, given differences in the impacts of climate change on different 190 

ecosystems already having species undergoing change, the expected incidence, distribution and 191 

transmission of diarrhea would potentially differ. This is because trophic interactions across 192 

ecosystem boundaries determine how ecosystems affect each other and the species and type of 193 

influence on the interaction (Grimm et al., 2013; Romero & Srivastava, 2010). Diarrheal diseases 194 

have since 1990 remained one of the top ten major causes of death globally and mostly ranked in 195 

the top four (Karuga, 2018). The incidence of diarrhea has been associated with high 196 

temperatures, flooding and windstorms that adversely affect health (Carlton et al., 2014; 197 

Jakubicka et al., 2010; Kolstad & Johansson 2011; Schnitzler et al., 2007). Mostly however, 198 

neither the specific causes of the diarrheal illness nor, the mechanism for the association with 199 

climatic factors are known although Salmonella and Campylobacter bacterial pathogens do show 200 

distinct seasonality in infection and higher disease rates at warmer temperatures (Lake, 2009). 201 

Alexander et al. (2013), predicts amplified diarrheal disease in the peak of the dry season, and 202 

decline in the incidence in the wet season. This means that the “behavior” of elements within the 203 

Earth system in “driving the drivers” of diseases amplify the concept of interconnectedness 204 

across sectors within different climatic risks (Yokohata et al., 2019). The case of diarrheal 205 

diseases attributed to climate change impacts globally is established (McMichael et al., 2004), 206 

and of the 3.6 million annual childhood deaths in Africa, 11% was due to diarrheal diseases (Liu 207 

et al., 2012). Kolstad and Johansson (2011), projected an increase of 8 to 11% in the risk of 208 

diarrhea in the tropics and subtropics by 2039, omitting key variables of socioeconomic change 209 

and shifts in ecosystems including the geographies. Altering ecosystem services in any form, 210 

shifts ecosystems significantly especially warming in excess of 2°C (IPCC, 2014). 211 

Consequentially, from the theoretical model (Figure 2), it will be expected that diarrheal 212 

incidence (DI) and subsequent transmission will be different for ecosystem type A (ECOTYPE 213 

A), type B (ECOTYPE B) and type C (ECOTYPE C) due to differential impacts of climate 214 

change. The impacts would then change intra-ecosystems interactions supporting the disease 215 

regulation and control services of the differently linked ecosystem types in character and species 216 

shift (Figure 2). Thus, “DI” in Figure 2 will be different for the ecotypes and that DI-A, DI-B 217 

and DI-C will be heterogeneous and representing differences in disease detection and case 218 

management including surveillance, early warning, and treatment. However, due to the effect of 219 
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confounding factors within the Earth system (Figure 2), DI-A would potentially be similar to DI-220 

B or DI-C or DI-B to DI-C (Figure 2).  221 

 222 
Figure 2.  A framework establishing the linkages between diarrheal disease incidence (DI) and 223 

different ecosystem types (Ecotype). Where:  Ecotype A – ecosystem type A; Ecotype B- 224 

ecosystem type B; Ecotype C- ecosystem type C; (DI-A) -diarrheal incidence on ecosystem type 225 

A; (DI-B)- diarrheal incidence on ecosystem type B: (DI-C)- diarrheal incidence on ecosystem 226 

type C.  227 

 228 

3.2. Emerging questions  229 

Given the multiple Earth system dynamics, climate change and the combined health system 230 

approach, three questions emerge: 231 

 232 

(a) Question 1: What thresholds of the impacts of climate change will cause the disease 233 

regulation and control services of ecosystems to behave in a manner that affect the total 234 

expression of diarrheal diseases?  235 

 236 

A number of studies have shown that outcomes of large-scale environmental changes 237 

which involve biodiversity loss and ecosystem degradation impinge on population and 238 

human health simultaneously and often interactively (Haines, 2012; Houghton et al., 239 
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2012; Rapport & Singh, 2006; Zell, 2004). The nature of interactions among species 240 

driven by climate change have unexpected consequences which impact the unique 241 

responses of species (Winder & Schindler, 2004). Therefore, energy levels in 242 

ecosystems, transfer of resources and interactions among species, similarly, observed 243 

for predator–prey interactions, and biodiversity and ecosystem functioning affect 244 

disease-causing organisms (Bardgett & Wardle, 2010; Ives et al., 2005; Kandziora et 245 

al., 2013). Thus, a diarrhea incidence expresses differently in different ecosystem types 246 

including severity (Figure 2). Climatic risks intersect with mechanics of multiple sectors 247 

and having linkages  to the built environment, food systems, zoonotic disease 248 

transmission, migration, human security, ecosystem change (Charron, 2012; Bowles et 249 

al., 2014; Leung et al., 2012; Rapport & Singh, 2006; Yokohata et al., 2019). Sorensen 250 

et al. (2017) observed that a trigger in natural disasters under irregular climatic 251 

conditions force-multiplied the Zika Virus. The application of earth observation systems 252 

(EOS) approach to health surveillance (Houghton et al., 2012), the extension of which 253 

would give meaning to disease dynamics as health promotion has largely ignored many 254 

aspects of the disproportionate disruption of the earth’s resources (Butler & Friel 2006; 255 

Wu et al., 2016).  256 

    257 

(b) Question 2: What attributes of diarrheal diseases related to host – pathogen relationship 258 

would be driven potentially by the alteration in the disease control services of ecosystems, 259 

and how would this differ for incidence of diarrheal diseases for different ecosystem types? 260 

 261 

Biodiversity loss frequently increased the rate of transmission for pathogens and found 262 

to be associated with over 300 emerging disease events in humans around the world 263 

between 1940 and 2004, with climate change as one of the drivers (Jones et al., 2008; 264 

Keesing et al., 2010). The severe acute respiratory syndrome or SARS, and the West 265 

Nile virus in the Americas were cited, and that outbreaks of infectious diseases, was 266 

changing with warming (WHO 2004), and now potentially implicating COVID-19. 267 

Arguably so, there are calls to improve understanding of how spatial–temporal 268 

processes of climate change and shifts in infectious diseases are predicted (Pecl et al., 269 

2017; Wu et al., 2016). 270 

 271 

(c) Question 3: What sector-interdependent determinants or classifications within the Earth 272 

system at scale (e.g. primary, secondary, tertiary, quaternary) link climate change, 273 

ecosystems and health in understanding the etiology, incidence and transmission of diarrheal 274 

diseases, surveillance, case management and health planning? 275 

 276 

This question suggests the need to establish measurable indicators at the interface of 277 

climatic factors and their influences on ecosystems and links to temporal trends in the 278 

cumulative incidence of diarrheal diseases. The effects of confounding factors within 279 

the Earth system and common to all ecosystem types, which potentially outweigh  280 

climate change effects on different ecosystems will not alter diarrheal incidence – 281 

“congruent diarrheal incidence (CDI)” (Figure 2). The understanding and analysis of 282 

this becomes vital when key elements of the Earth system are accounted for (e.g. land-283 

cover change and land use dynamics, effects of changing hydrology, impacts of 284 

geological process) and across social-ecological linkages in defining health outcomes. 285 
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The principle of sector interdependency in responding to impacts of climate change 286 

(Yokohata et al., 2019), similarly will intensify understanding of the health - climate 287 

change nexus beyond the current analysis undermining efforts at multi-sector 288 

integration (Bezirtzoglou et al., 2011; Keune et al., 2012; Lesnikowski et al., 2013; 289 

Stern et al., 2013).  290 

 291 

4. Conclusion  292 

Observations in this paper suggest that climate-sensitive diseases (including diarrhea) face shifts 293 

to host – pathogen relationships within changing ecosystems, requiring explanations of climate-294 

dependent biological hazards which the health sector adopts for case detection and management 295 

such that no single sector offers total solution to human health issues. The nexus “One health-296 

Ecohealth-Planetary health” is at crossroads of climate change challenges to health using Earth 297 

system perspective to also include health disaster risk reduction which brings relevance to the 298 

Sendai Disaster Risk Reduction Framework (SDRRF). The need for the health sector to do more 299 

to adopt indicators beyond the routine health determinants and disease case management has 300 

been recommended in earlier studies (Dovie et al., 2017; Lesnikowski et al., 2011). Earth 301 

systems research under different climate scenarios and links to disease host-pathogen 302 

relationships and exposure to infectious diseases require strong scientific response using new 303 

explanations (Wu et al., 2016), towards planning for future vulnerabilities associated with 304 

climate change (Wardekker et al., 2012, Lesnikowski et al., 2013). In conclusion, the 305 

understanding of the effects of ecosystem shifts in different anthropocentric and geopolitical 306 

contexts offer opportunities for enhanced pluralistic approach to health interventions research 307 

that coevolve new instruments to address medical, social, and public health concerns. 308 
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