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Abstract13

The 2019 Ridgecrest, California, earthquake sequence represents a complex pattern of14

seismicity that is characterized by the occurrence of a well defined foreshock sequence15

followed by a mainshock and subsequent aftershocks. In this work, a detailed statisti-16

cal analysis of the sequence is performed. Particularly, the parametric modelling of the17

frequency-magnitude statistics and the earthquake occurrence rate is carried out. It is18

shown that the clustering of earthquakes plays an important role during the evolution19

of this sequence. In addition, the problem of constraining the magnitude of the largest20

expected aftershocks to occur during the evolution of the sequence is addressed. In or-21

der to do this, two approaches are considered. The first one is based on the extreme value22

theory, whereas the second one uses the Bayesian predictive framework. The latter ap-23

proach has allowed to incorporate the complex earthquake clustering through the Epi-24

demic Type Aftershock Sequence (ETAS) process and the uncertainties associated with25

the model parameters into the computation of the corresponding probabilities. The re-26

sults indicate that the inclusion of the foreshock sequence into the analysis produces higher27

probabilities for the occurrence of the largest expected aftershocks after the M7.1 main-28

shock compared to the approach based on the extreme value distribution combined with29

the Omori-Utsu formula for the earthquake rate. Several statistical tests are applied to30

verify the forecast.31

Plain Language Summary32

Strong earthquakes typically trigger the subsequent sequence of events known as33

aftershocks. Among those, the largest aftershocks can pose significant hazard and result34

in additional damage to already weakened by the mainshock infrastructure. Therefore,35

the estimation of the magnitude of the largest expected aftershock is of critical impor-36

tance. This problem can be addresses within the statistical modelling of the occurrence37

of earthquakes. In this work, the 2019 Ridgecrest, California, earthquake sequence is cho-38

sen to illustrate and compare several approaches as to how this probabilities can be com-39

puted during the evolution of the sequence. The first approach uses the extreme value40

theory and the modelling of the earthquake rate based on the Omori-Utsu formula. Whereas,41

the second approach uses a recently formulated method based on the Bayesian predic-42

tive analysis and the Epidemic Type Aftershock Sequence (ETAS) model to approximate43

the earthquake rate. The obtained results indicate that the latter approach produces sta-44
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tistically accurate forecast for the magnitudes of the largest expected earthquakes. This45

is verified by applying several statistical tests.46

1 Introduction47

The occurrence of a significant mainshock presents an opportunity to test differ-48

ent existing or novel statistical approaches to model the evolution of the corresponding49

sequences of earthquakes that precede and follow the mainshock. Among several statis-50

tical measures, the computation of the probability to have the magnitude of the largest51

expected earthquake to be above a certain value during a predefined future time inter-52

val is of critical importance. In this respect, the 2019 Ridgecrest, California, earthquake53

sequence represents the latest highly productive and non-standard sequence to be an-54

alyzed in detail.55

The 2019 Ridgecrest sequence started on July 4th when several small events of low56

magnitude occurred not far away from the town of Ridgecrest in southern California. Then,57

two strong foreshocks of magnitudes M3.98 and M6.4 struck on 2019/07/04 at 17:02:5558

UTC and 17:33:49 UTC, respectively (Figure 1). These events were followed by a well-59

developed aftershock sequence that culminated in the occurrence of M7.1 mainshock on60

2019/07/06 (03:19:53 UTC), which in turn generated a more prolific aftershock sequence.61

The M6.4 foreshock ruptured several predominantly strike-slip, left-lateral fault segments,62

whereas the M7.1 mainshock occurred on a system of several right-lateral fault segments63

conjugate to the rupture of the M6.4 foreshock (Ross et al., 2019; Barnhart et al., 2019).64

Many of the foreshocks and subsequent aftershocks of the M7.1 mainshock occurred on65

numerous secondary faults adjacent to the main rupture faults. It was suggested that66

this earthquake sequence occurred in an immature fault zone with a complex fault struc-67

ture (Ross et al., 2019; Liu et al., 2019).68

In this paper, a detailed statistical analysis of the 2019 Ridgecrest earthquake se-69

quence was performed to study its temporal evolution and frequency-magnitude statis-70

tics. In addition, several methods were considered to estimate the probabilities to have71

the largest expected aftershock to be above a certain magnitude during several stages72

of the evolution of the sequence. The computation of probabilities was performed using73

two approaches, i.e., the one based on the extreme value theory and the second one us-74

ing the Bayesian predictive distribution. These approaches assume parametric models75
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Figure 1. The distribution of earthquake epicentres of the 2019 Ridgecrest, California, se-

quence during 14 days starting from 2019/07/04 (17:02:55 UTC). Solid squares within an ellipti-

cal zone indicate foreshocks above magnitude m ≥ 3.2 during 1.428 days before the occurrence of

the M7.1 mainshock on 2019/07/06 (03:19:53 UTC). Similarly, solid circles indicate aftershocks

of the M7.1 mainshock. The focal mechanisms of the M7.1 mainshock and M6.4 foreshock are

plotted as beach balls. All other earthquakes above magnitude m ≥ 2.0 are shown as black solid

circles. The quaternary faults are plotted as light brown line segments.

for the earthquake occurrence rate and the frequency-magnitude statistics. Specifically,76

the Omori-Utsu (OU) law (Omori, 1894; Utsu, 1961; Utsu et al., 1995), the compound77

Omori-Utsu law (Ogata, 1983), and the Epidemic Type Aftershock Sequence (ETAS)78

process (Ogata, 1988, 1999, 2017) were used to approximate the earthquake rate. The79

frequency-magnitude statistics of earthquakes was modelled by the left-truncated expo-80

nential distribution (Vere-Jones, 2010). The obtained results, which are reported below,81

suggest that the clustering of earthquakes plays an important role in approximating the82

earthquake rate and as a consequence can significantly affect the computation of the prob-83

abilities for the occurrence of the largest expected aftershocks.84
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The problem of constraining the magnitudes of the largest expected aftershocks is85

important as these aftershocks can inflict further damage to already weakened by a main-86

shock structures or the evolution of the sequence can trigger even larger subsequent events87

(Gerstenberger et al., 2005; Shebalin et al., 2011; Omi et al., 2013; Page et al., 2016).88

The standard approach is to use the past seismicity to compute the probabilities of hav-89

ing subsequent strong earthquakes during a finite future time interval. The most recog-90

nized model was formulated by Reasenberg and Jones (1989) for California based on the91

analysis of the past aftershock sequences. In that model, the probabilities are computed92

from the extreme value distribution by assuming that the occurrence of earthquakes fol-93

lows a non-homogeneous Poisson process, the earthquake rate is approximated by the94

Omori-Utsu formula and the frequency-magnitude statistics is described by the left-truncated95

exponential distribution. Reasenberg and Jones (1989) estimated the average values of96

the model parameters to be used in California. However, a recent work by Hardebeck97

et al. (2019) introduced improvements to the original Reasenberg and Jones (1989) model98

by analysing more recent sequences, introducing the ability to control the early incom-99

pleteness of aftershock sequences, and using the Bayesian updating of the model param-100

eters. These developments contributed to the introduction of the operational aftershock101

forecasting in the U.S. by the U.S. Geological Survey (Michael et al., 2019). A similar102

approach has been undertaken in Japan to create a real-time system for automatic af-103

tershock forecasting (Omi et al., 2016, 2019). Earthquake forecasting centers also op-104

erate in New Zealand (Rhoades et al., 2018) and Italy (Taroni et al., 2018), where the105

evaluation of earthquake probabilities and assessment of earthquake hazard are routinely106

performed.107

A critical aspect of any earthquake forecasting methods is their prospective/retrospective108

testing and validation (Kagan & Jackson, 1995). This is consistently implemented by109

the Collaboratory for the Study of Earthquake Predictability (CSEP) (Schorlemmer et110

al., 2007; Zechar et al., 2010; Schorlemmer et al., 2018; Gerstenberger et al., 2020). Within111

the CSEP framework several statistical methods were developed to test the short/long112

term earthquake forecasts. Those methods test the consistency of a given forecasting scheme113

to reproduce the observed number of earthquakes, their spatial and magnitude distri-114

butions during the forecasting time interval (Zechar et al., 2010). They also incorporate115

likelihood based approaches to compare various forecasting schemes. For example, this116

framework was used to test the performance of aftershock forecasts during the 2011 To-117
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hoku, Japan, earthquake (Nanjo et al., 2012), the 2010 Canterbury, New Zealand, earth-118

quake sequence (Rhoades et al., 2016; Cattania et al., 2018), and the 2016 Kaikoura, New119

Zealand, earthquake sequence (Rhoades et al., 2018).120

An early systematic empirical study of aftershocks concluded that the largest oc-121

curred aftershock on average was approximately 1.2 magnitude less than the magnitude122

of a mainshock (B̊ath, 1965). This is referred to as B̊ath’s law. Subsequently, it was pro-123

posed that the difference was independent of the number of events and its mean value124

was proportional to the inverse of the b-value (Vere-Jones, 1969, 1975). More recent stud-125

ies have provided further details on this difference (Console et al., 2003; Shcherbakov &126

Turcotte, 2004; Tahir et al., 2012; Shearer, 2012; Shcherbakov et al., 2013). The after-127

shock sequences also exhibit scaling with respect to the lower magnitude cutoff (Shcherbakov128

et al., 2004; Shcherbakov, Turcotte, & Rundle, 2005; Shcherbakov et al., 2006, 2015).129

An important limitation of all earthquake catalogs is the early aftershock incom-130

pleteness (Kagan, 2004; Peng et al., 2006; Hainzl, 2016b, 2016a). This incompleteness131

can affect the estimation of the model parameters if the magnitude of completeness is132

underestimated. As a result, this can significantly influence the calculation of the prob-133

abilities for the occurrence of extreme earthquakes. To recover partially the true rate a134

variable magnitude of completeness can be considered (Helmstetter et al., 2006; Omi et135

al., 2014; Page et al., 2016). Several approaches were suggested to recover the aftershock136

rate by using the information of early aftershocks in order to estimate the probability137

of larger subsequent events during future evolution of the sequences (Omi et al., 2013;138

Ebrahimian et al., 2014; Omi et al., 2016).139

The occurrence of strong earthquakes typically produces spatial and temporal clus-140

ters. This clustering is a result of triggering by preceding earthquakes that can lead to141

a cascade of events with a complicated branching structure (Felzer et al., 2004). To de-142

scribe such a clustering, the ETAS model was introduced that offers a realistic and quan-143

tifiable approximation to the earthquake occurrence rate (Ogata, 1988, 1999, 2017). Par-144

ticularly, it can model the rate of earthquakes punctuated by the occurrence of strong145

earthquakes. This also allows to quantify the increased earthquake hazard after a main-146

shock by incorporating the triggering ability of foreshocks, a mainshock, and subsequent147

aftershocks. It also can be used for short-term forecasting of large earthquakes by study-148

–6–



manuscript submitted to JGR: Solid Earth

ing past seismicity (Helmstetter et al., 2006; Ogata, 2017; Ebrahimian & Jalayer, 2017;149

D. S. Harte, 2017; Omi et al., 2019).150

The paper is organized as follows. In Section Methods, the statistical methods used151

in the study are summarized and explained. In Section Results, a detailed analysis of152

the sequence is presented. In Section Discussion, the obtained results are summarized153

and evaluated. The last section presents concluding remarks.154

2 Methods155

2.1 Earthquake Catalog and the Spatial Distribution of Seismicity156

To analyze the 2019 Ridgecrest earthquake sequence, the earthquake catalog pro-157

vided by the Southern California Seismic Network (SCSN) was used. The spatial dis-158

tribution of seismicity during 14 days starting from 2019/07/04 (17:02:55 UTC) is shown159

in Figure 1. This includes the occurrence of the M6.4 foreshock on 2019/07/04 (17:33:49160

UTC) and the occurrence of the M7.1 mainshock on 2019/07/06 (03:19:53 UTC). Their161

focal mechanisms are also shown and were obtained from the SCSN Moment Tensor cat-162

alog. The foreshock-aftershock zone for the sequence is defined as an elliptical region out-163

lining the majority of earthquakes that occurred near the ruptures of both the M6.4 fore-164

shock and M7.1 mainshock. Figure 1 also shows the quaternary faults for this region ex-165

tracted from the U.S.G.S. Quaternary fault and fold database.166

When analyzing seismicity, several time intervals, during which the parameters of167

statistical models can be estimated or future evolution of the seismicity can be quanti-168

fied, are defined. Specifically, the past seismicity is extracted during the training time169

interval [T0, Te]. To minimize the effect of earlier earthquakes in the sequence, the train-170

ing time interval is typically subdivided into a preparatory time interval [T0, Ts] and a171

target time interval [Ts, Te] during which the parameters of the earthquake models are172

estimated. One also considers a forecasting time interval [Te, Te + ∆T ] during which173

specific measures of seismicity can be computed or evolution of seismicity can be fore-174

casted. For properly estimating the parameters of earthquake models, it is also impor-175

tant to consider the seismicity above the magnitude of completeness mc as typical earth-176

quake catalogs have missing events below this magnitude.177

For the statistical modeling of seismicity, the occurrence of earthquakes can be con-178

sidered as a realization of a stochastic marked point process in time (Daley & Vere-Jones,179
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2003; Vere-Jones, 2010). In this representation, the earthquakes are characterized by their180

occurrence times ti and magnitudes mi represent corresponding marks. The occurrence181

of earthquakes during a specified time interval can be arranged in an ordered set S =182

{(ti,mi)} : i = 1, ..., n. In one simplified assumption, the occurrence of earthquakes183

in the sequence can be described by a non-homogeneous Poisson marked point process184

(Utsu et al., 1995; Shcherbakov, Yakovlev, et al., 2005), where magnitudes and the time185

intervals between successive events are not correlated.186

2.2 Exponential Distribution and the Gutenberg-Richter Scaling Re-187

lation188

The frequency-magnitude statistics of earthquake magnitudes is typically modelled189

by the left-truncated exponential distribution (Vere-Jones, 2010):190

fθ(m) = β exp [−β (m−m0)] , (1)

Fθ(m) = 1− exp [−β (m−m0)] , for m ≥ m0 , (2)

where fθ(m) is the probability density, Fθ(m) is the cumulative distribution function,191

and θ = {β} is the model parameter. m0 is a given lower magnitude cutoff set above192

the catalog completeness level m0 ≥ mc. All earthquakes above m0 during the target193

time interval [Ts, Te] are used to estimate the model parameter β.194

The parameter β is related to the b-value of the Gutenberg-Richter (GR) scaling195

relation, β = ln(10)b (Gutenberg & Richter, 1944):196

log10N (≥ m) = a− bm , (3)

where N (≥ m) is the cumulative number of earthquakes above magnitude m. The GR197

relation combines two aspects of the occurrence of earthquakes, i.e. the frequency-magnitude198

statistics of earthquake magnitudes and the average rate of the occurrence of earthquakes,199

which is quantified through the parameter a. N (≥ 0) = 10a gives the total number of200

earthquakes above magnitude zero that occurred during the corresponding time inter-201

val.202

The standard method to estimate the parameter β (or b-value) is to use the max-203

imum likelihood approach, which has an analytic solution for the point estimator of the204

parameter of the exponential distribution. However, in typical earthquake catalogs the205

magnitudes are binned and not continuous variables. Therefore, one needs to apply a206
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corrected estimator, which explicitly assumes the binning of the magnitudes (Bender,207

1983). For the estimation of the parameter uncertainties at a given confidence level in208

case of binned magnitudes one can use the method suggested in Tinti and Mulargia (1987).209

2.3 Omori-Utsu Law210

The occurrence of moderate to large earthquakes, in most cases, triggers subsequent211

aftershock sequences and results in the rise of seismic activity. The most accepted model212

that reproduces the rate of the occurrence of aftershocks is know as the Omori-Utsu (OU)213

law (Omori, 1894; Utsu, 1961; Utsu et al., 1995):214

λω(t) =
Ko

(t+ co)po
, (4)

where λω is the rate of aftershocks per unit time for events above a certain magnitude215

m0. ω = {Ko, co, po} are the OU model parameters. The time t is elapsed since T0 =216

0, which corresponds to the time of the occurrence of the mainshock. The parameter Ko217

describes the productivity of the sequence, co is a characteristic time, and po specifies218

how fast or slow the sequence decays in time. The parameters can be estimated using219

the maximum likelihood method and parameter uncertainties are computed using the220

inverse of the Fisher information matrix, which is derived from the likelihood function221

(Ogata, 1983, 1999). This model assumes that the occurrence of earthquakes follows a222

non-homogeneous Poisson process, where earthquake magnitudes are independent and223

identically distributed (i.i.d.) random numbers and do not influence the future earth-224

quake rate.225

The Omori-Utsu law is applicable to ”standard” aftershock sequences with a sin-226

gle mainshock and a consistently decaying rate. However, in some cases the earthquake227

sequence can be punctuated by several strong shocks each one of them producing their228

own aftershocks. In that case, a compound Omori-Utsu model can be considered (Ogata,229

1983; Shcherbakov et al., 2012). In a case of two strong earthquakes, it is written as:230

λω(t) =
K1

(t+ c1)p1
+H(t− τm)

K2

(t− τm + c2)p2
, (5)

where ω = {K1, c1, p1, K2, c2, p2}, time t is elapsed since the occurrence of the first231

event at T0 = 0 and τm is the time of the occurrence of the second strong event. H(x)232

is a Heaviside step function and is equal to one for positive x ≥ 0 and is zero otherwise.233

For the times past the occurrence of the second strong earthquake (t ≥ τm), equation (5)234
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defines the total rate as a superposition of two aftershock sequences triggered by the both235

strong earthquakes.236

2.4 Epidemic Type Aftershock Sequence (ETAS) Model.237

The occurrence of earthquakes is characterized by the clustering of seismicity. This238

clustering is a direct manifestation of the ability of earthquakes to trigger subsequent239

events. The ETAS model was introduced to reflect this essential aspect of the occurrence240

of earthquakes (Ogata, 1988, 1999, 2017). In the temporal version of the model, the con-241

ditional earthquake rate λω(t|Ht) at a given time t is given as (Ogata, 1988; D. Harte,242

2010):243

λω(t|Ht) = µ+K

Nt∑
i:ti<t

eα(mi−m0)(
t−ti
c + 1

)p , (6)

where ω = {µ, K, c, p, α} is a set of parameters and m0 is a reference magnitude. The244

summation is performed over the history, Ht, of past events up to time t during the time245

interval [T0, t]. Nt is the number of earthquakes in the interval [T0, t] above the lower246

magnitude cutoff m0. In the ETAS process, a certain fraction of earthquakes occurs ran-247

domly with a constant rate µ. These earthquakes are associated with background seis-248

micity driven by tectonic loading and can be modelled as a homogeneous Poisson pro-249

cess. It is also postulated that each earthquake is capable of triggering its own offsprings.250

As a result, the total earthquake rate at a given time, is a superposition of the background251

rate given by µ and the contribution from each already occurred earthquake.252

As the ETAS rate, equation (6), is conditioned on past seismicity H, one has to253

minimize the effect of lack of earthquakes at the start of the sequence when estimating254

the ETAS parameters. For this, one can consider a short time interval [T0, Ts] before the255

target time interval [Ts, Te] . The earthquakes in the interval [T0, Ts] can be used to prop-256

erly estimate the conditional earthquake rate during the target time interval [Ts, Te]. The257

ETAS parameters ω = {µ, K, c, p, α} are estimated in the target time interval [Ts, Te]258

by maximizing the likelihood function and the uncertainties are computed using the in-259

verse of the Fisher information matrix.260

2.5 Extreme Value Distribution261

For the sequence of earthquake that can be described as a non-homogeneous Pois-262

son process, the probability that the magnitude of the largest expected event will exceed263
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m for all possible number of events during a future time interval [Te, Te+∆T ] can be264

computed from the extreme value distribution (EVD) (Campbell, 1982; Coles, 2001; Da-265

ley & Vere-Jones, 2003):266

PEV(mex > m|θ, ω,∆T ) = 1− exp{−Λω(∆T ) [1− Fθ(m)]} , (7)

where the productivity is Λω(∆T ) =
∫ Te+∆T

Te
λω(t) dt. Using the exponential model for267

the magnitude distribution, equation (2), this results in the Gumbel distribution for the268

magnitudes of extreme earthquakes:269

PEV(mex > m|θ, ω,∆T ) = 1− exp{−Λω(∆T ) exp [−β (m−m0)]} . (8)

Assuming that the earthquake rate is described by the OU law, equation (4), the270

productivity Λω(∆T ) can be computed explicitly and takes the following form for po 6=271

1:272

Λω(∆T ) = Ko
(Te + co)

1−po − (Te + ∆T + co)
1−po

po − 1
. (9)

Given a set of parameters {θ, ω}, which can be estimated from past seismicity during273

the training time interval [Ts, Te], equations (8) and (9) allow to compute the probabil-274

ity to have the extreme earthquake above magnitude m during a future time interval ∆T .275

It is equivalent to the Reasenberg and Jones (1989) model.276

For the compound OU model, equation (5), the productivity Λω(∆T ) can be ex-277

pressed as follows for p1 6= 1 and p2 6= 1:278

Λω(∆T ) = K1
(Te + c1)1−p1 − (Te + ∆T + c1)1−p1

p1 − 1
+

K2
(Te − τm + c2)1−p2 − (Te + ∆T − τm + c2)1−p2

p2 − 1
, (10)

where τm is the time of the occurrence of the second strong earthquake during the train-279

ing time interval [Ts, Te].280

2.6 Bayesian Predictive Distribution281

The computation of the EVD, equation (7), using specific parametric models for282

the earthquake rate and frequency-magnitude statistics, requires the knowledge of the283

model parameters. However, the true values of the model parameters are not known for284

specific earthquake sequences. As a result, the parameter estimates are used, which are285

computed with a given range of uncertainties. Those uncertainties can significantly af-286

fect the computation of the corresponding probabilities. The incorporation of the model287
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uncertainties into the computation of probabilities can be achieved through the Bayesian288

predictive distribution (BPD) (Zöller et al., 2013; Shcherbakov et al., 2018, 2019). The289

BPD for the largest expected event mex to be greater than a certain value m and dur-290

ing the forecasting time interval ∆T is:291

PB(mex > m|S,∆T ) =

∫
Ω

∫
Θ

PEV(mex > m|θ, ω,∆T ) p(θ, ω|S) dθ dω , (11)

where Θ and Ω define the multidimensional domains of the frequency-magnitude distri-292

bution and earthquake rate parameters, respectively. When computing the predictive293

distribution, equation (11), the model parameter uncertainties are fully integrated into294

the BPD (Renard et al., 2013; Shcherbakov et al., 2019). This is done through the use295

of the posterior distribution function p(θ, ω|S), which characterizes the distribution of296

the model parameter uncertainties.297

For the ETAS model, the extreme value distribution for the extreme events does298

not follow, equation (7), due to stochastic nature of the process, which deviates from a299

non-homogeneous Poisson process. In this case, one can compute the extreme value dis-300

tribution by stochastic simulation of the ETAS model and extracting the maximum mag-301

nitude from each simulated sequence (Shcherbakov et al., 2019).302

To compute the BPD for a given training time interval, first, the Markov Chain303

Monte Carlo (MCMC) sampling of the posterior distribution is performed to generate304

a chain of the ETAS parameters using the Metropolis-within-Gibbs algorithm. The gen-305

erated chains of length Nsim are used to simulate the ensemble of the ETAS processes306

forward in time during the forecasting time interval ∆T . From each simulated sequence307

the maximum event is extracted and the distribution of these maxima approximates the308

BPD (Shcherbakov et al., 2019).309

2.7 Forecast Validation310

The extreme value distribution, equation (8), and the Bayesian predictive distri-311

bution, equation (11), allow to compute the probability of having the expected largest312

event during the forecasting time interval ∆T . This computation critically depends on313

the proper simulation of the earthquake rate and the frequency-magnitude distribution314

of earthquakes during ∆T . Therefore, it is important to perform specific statistical tests315

to validate retrospectively as to how the models, that are used to describe those aspects316

of seismicity, accurately reproduce the observed earthquakes during the forecasting time317
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intervals. One such test has been developed for the CSEP testing framework and is known318

as the N-test (Kagan & Jackson, 1995; Schorlemmer et al., 2007; Zechar et al., 2010).319

This test is used to quantify as to how accurately a given stochastic process reproduces320

the observed number of earthquakes above a certain magnitude during the forecasting321

time interval.322

The following implementation of the N-test is considered in this work. It is assumed323

that Nobs earthquakes above magnitude m0 occurred during a given forecasting time in-324

terval [Te, Te + ∆T ]. The posterior distribution of the parameters of a given stochas-325

tic point process model is sampled by the MCMC method Nsim times using the infor-326

mation of the earthquakes that occurred during the training time interval [Ts, Te]. The327

MCMC sets of the model parameters are used to model forward in time a given point328

process during the forecasting time interval ∆T . The synthetic simulations produce the329

distribution of the number of the forecasted events at the end of the interval ∆T cor-330

responding to each MCMC set of model parameters. The N-test statistically assesses whether331

the observed number of earthquakes Nobs is consistent with the forecast. The two quan-332

tile scores are computed (Zechar et al., 2010):333

δ1 = 1− P (Nobs − 1|Nfore) , (12)

δ2 = P (Nobs|Nfore) , (13)

where Nfore is the average number of forecasted events above magnitude m0 at the end334

of the forecasted time interval Te+∆T . P (x|λ) is the cumulative Poisson distribution335

with the expectation λ. As a result, δ1 gives the probability of observing at least Nobs336

events and δ2 gives the probability of observing at most Nobs events. The forecast un-337

derpredicts the observations if δ1 is very small and the forecast overpredicts the obser-338

vation if δ2 is very small. Therefore, one can consider a one-sided test with an effective339

significance level αeff . If the computed probabilities δ1 and δ2 are smaller than αeff then340

the forecast can be rejected.341

The second test, which is known as M-test, has been suggested to check whether342

the distribution of the forecasted magnitudes is consistent with the observed magnitudes343

(Schorlemmer et al., 2007; Zechar et al., 2010). The M-test is performed by computing344

a quantile score κ. The values of κ below a significance level αeff signify that the distri-345

bution of forecasted earthquake magnitudes is inconsistent with observations. The de-346

tails of computing the κ score can be found in Zechar et al. (2010).347
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Two more tests have been introduced to compare the performance of different fore-348

casting models. These are known as R-test and T-test (Schorlemmer et al., 2007; Rhoades349

et al., 2011). The R-test is performed by computing the log-likelihood ratio for two mod-350

els under consideration. The joint log-likelihood for given earthquake observations dur-351

ing the forecasting time interval can be written as follows:352

L(M|Λ) = log [Pr(M|Λ)] =
∑
i∈B

{−λ(i) +m(i) log[λ(i)]− log[m(i)!]} , (14)

where M = {m(i)|i ∈ B} is the set of the number of earthquakes m(i) in each mag-353

nitude bin above a certain magnitude threshold. Λ = {λ(i)|i ∈ B} is the earthquake354

forecast produced by a given point process in each magnitude bin, where λ(i) is the num-355

ber of earthquakes forecasted in bin i and the magnitude binning coincides with the bin-356

ning of the earthquake catalog. In the definition of the joint log-likelihood, equation (14),357

it is assumed that the number of earthquakes in a forecast bin follows a Poisson distri-358

bution: Pr(m|λ) = λm

m! exp(−λ). To compare two models, Λ1 and Λ2, that forecast the359

same sequence of events one can compute the log-likelihood ratio: R21 = L(M|Λ2) −360

L(M|Λ1).361

In applying the R-test, one of the two models is assumed to be correct and is used362

to simulate the ensemble of synthetic earthquake events and compute the log-likelihood363

ratios for each synthetic record by using both models. These ratios are compared with364

the log-likelihood ratio computed for the observed earthquake sequence during the fore-365

casting interval. The properly normalized fraction of the simulated ratios that are less366

than the observed ratio gives the quantile score α (Schorlemmer et al., 2007). The val-367

ues of α that are larger than a certain significance level support the model that was as-368

sumed to be correct. This test is symmetric with respect to both models and can result369

in the situations when both models reject each other (Rhoades et al., 2011). To over-370

come this difficulty, a so called T-test was introduced along with the sample informa-371

tion gain per earthquake (Rhoades et al., 2011). The sample information gain per earth-372

quake of the model Λ2 over the model Λ1 is defined as IN (Λ2,Λ1) = R21/Nobs, where373

Nobs is the number of observed earthquakes during the forecasting time interval ∆T . The374

T-test checks whether the sample information gain is statistically different from zero that375

indicates a significant difference between the two models (Rhoades et al., 2011).376

One important difference in performing the above tests is implemented in this work.377

To account for the stochastic variability of the model parameters and the uncertainty378
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associated with the prior information on the model parameters, the MCMC sampling379

of the posterior distribution of the model parameters is performed to produce a chain380

of model parameters that are used when simulating the models forward in time during381

the forecasting time interval.382

The N-, M-, R-, and T-tests check the consistency of the underlying earthquake383

rate and frequency-magnitude distribution models. To test the consistency of the Bayesian384

predictive distribution, equation (11), with the observed largest earthquakes during the385

forecasting time interval [Te, Te+∆T ], one can evaluate the posterior predictive p-value386

(Gelman et al., 2013, p.146). The Bayesian p-value gives the probability that the largest387

simulated earthquakes can be more extreme than the observed largest earthquake dur-388

ing the forecasting time interval. It is defined as follows:389

p = Pr [T (ŷ, θ, ω) ≥ T (y, θ, ω)|y] , (15)

where T (y, θ, ω) is a test quantity computed for an observed variable y and simulated390

variable ŷ. The test quantity T (y, θ, ω) characterizes data y with given model param-391

eters θ and ω. It is used for model checking in Bayesian analysis similar to a test statis-392

tic in classical testing. One possible choice for the test quantity is: T (y, θ, ω) = max(y).393

In practice, the Bayesian p-value can be computed from the MCMC chain of the model394

parameters θ and ω. For each set of the model parameters, the stochastic forecasting model395

is simulated forward in time and the largest event is extracted. This will allow to com-396

pute T (ŷ, θ, ω) = max(ŷ). The realized test quantity T (y, θ, ω) = max(y) is simply397

the value of the largest observed earthquake during the forecasting time interval. There-398

fore, the estimated p-value is the proportion of the test quantities for the simulated max-399

imum events that are larger than the observed largest event:400

p =
|{T (ŷ, θi, ωi) ≥ T (y)|i = 1, ..., Nsim}|

Nsim
, (16)

where Nsim is the total number of simulated sequences from the MCMC chain and |x|401

gives the size of the set x.402

3 Results403

3.1 Frequency-Magnitude Statistics404

The earthquakes within an elliptical region, given in Figure 1, were extracted dur-405

ing predefined target time intervals. The frequency-magnitude statistics of earthquake406
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Figure 2. The frequency-magnitude statistics of earthquakes in the sequence and the mod-

elling by the Gutenberg-Richter relation, equation (3). The symbols (representing the cumulative

numbers) correspond to the foreshocks of the M7.1 mainshock (open squares), the aftershocks

of the mainshock (open circles), and for the whole sequence (open diamonds). The fits of the

GR relation are plotted as straight lines. The estimated b-values are given in the legend for all

earthquakes above m ≥ 3.2. The uncertainties are given as 95% confidence intervals.

magnitudes were computed for the foreshock sequence starting from 2019/07/04 (17:02:55407

UTC) which corresponds to T0 = 0 and during 1.428 days with [Ts, Te] = [10−5, 1.428].408

It was also computed for the aftershocks of the M7.1 mainshock starting from 2019/07/06409

(03:19:53 UTC) during 7 days after the mainshock. The frequency-magnitude statistics410

was also computed for the whole sequence including both foreshocks and aftershocks dur-411

ing 31 days. The results are given in Figure 2 as open symbols for events larger than m ≥412

2.0. The maximum likelihood fits of the exponential distribution, equation (1), to the413

frequency-magnitude data is also shown as GR plots with estimated b-values using the414

method of Bender (1983) and their 95% confidence intervals according to Tinti and Mu-415

largia (1987).416
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Figure 3. The earthquake decay rates for the foreshock sequence (solid squares) and for the

aftershock sequence (solid circles). The corresponding fits of the Omori-Utsu law, equation (4), to

the foreshock (dash-dotted line) and aftershock (dashed line) sequences. The estimated parame-

ters with the corresponding 95% confidence intervals are given in the legend using all earthquakes

above magnitude m ≥ 3.2.

3.2 Earthquake Rate Evolution and Modelling417

First, the earthquake rate was modelled separately for the foreshock and aftershock418

sequences using the OU law, equation (4). The results are given in Figure 3 for all earth-419

quakes above magnitude m ≥ 3.2. For the foreshock sequence, the following target time420

interval was used [Ts, Te] = [10−3, 1.428] with T0 = 0 corresponding to 2019/07/04421

(17:33:49 UTC). For the aftershock sequence, T0 = 0 was set to the occurrence of the422

M7.1 mainshock on 2019/07/06 (03:19:53 UTC) with the target time interval [Ts, Te] =423

[10−3, 30] days. The OU law parameters for the foreshock and aftershock sequences are424

given in the legend with the corresponding 95% confidence intervals.425

Next, the compound OU model, equation (5), was used to fit the sequence start-426

ing from the occurrence of the M6.4 foreshock on 2019/07/04 (17:33:49 UTC) correspond-427

ing to T0 = 0 and during the following target time interval [Ts, Te] = [10−3, 8.407]428

days. All earthquakes above magnitude m ≥ 3.2 were considered. This is illustrated429
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Figure 4. The occurrence of earthquakes during the evolution of the 2019 Ridgecrest se-

quence and the fitting of the compound Omori-Utsu law, equation (5). T0 = 0 corresponds to

the occurrence of M6.4 foreshock on 2019/07/04 (17:33:49 UTC). The earthquake magnitudes

are plotted as open diamond symbols. The cumulative number of earthquakes is plotted as open

circles. The dashed curve corresponds to the fit of the compound Omori-Utsu law, equation (5).

The corresponding fit of the cumulative numbers is given as a solid curve. All earthquakes above

magnitude m ≥ 3.2 were used.

in Figure 4 and Figure S1. The maximum likelihood fitting of the compound OU model430

yielded the following parameters {K1, c1, p1, K2, c2, p2} = {21.92, 0.0019, 0.92, 40.14, 0.043, 1.59}.431

The ETAS model was fitted to the 2019 Ridgecrest sequence using a number of tar-432

get time intervals for all the events above magnitude m ≥ 3.2. In one particular exam-433

ple, the training time interval [Ts, Te] = [0.03, 7.428] days was used with T0 = 0.0 cor-434

responding to the start date 2019/07/04 (17:02:55 UTC). The estimated conditional rate,435

equation (6), and the corresponding earthquake magnitudes above the lower threshold436

m ≥ 3.2 are plotted in Figure 5 and Figure S2. For comparison, the separate fits of the437

Omori-Utsu law to the foreshocks and aftershocks of the M7.1 mainshock are also plot-438

ted with the parameters given in Figure 3.439
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Figure 5. The occurrence of earthquakes during the evolution of the 2019 Ridgecrest sequence

and the fitting of the ETAS model, equation (6). The start of the sequence T0 = 0 corresponds to

the time of the occurrence of the M3.98 foreshock on 2019/07/04 (17:02:55 UTC). All the events

above magnitude m ≥ 3.2 are shown. The ETAS model is fitted to the sequence during the tar-

get time interval [Ts, Te] = [0.03, 7.428] days. The estimated conditional earthquake rate (solid

curve) is plotted using the following ETAS parameters: µ = 0.05, K = 1.255, c = 0.023, p = 1.39,

and α = 2.18. For comparison, the Omori-Utsu law fit, equation (4), is plotted as a short-dashed

curve.
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Finally, the point estimates of the model parameters and their 95% confidence in-440

tervals were computed at predefined times during the evolution of the sequence. This441

is illustrated in Figure 6. The reported b-value at time 1.428 days corresponds to the fore-442

shock sequence starting from the occurrence of the M3.98 foreshock on 2019/07/04 (17:02:55443

UTC). The frequency-magnitude statistics and the fitting of the GR relation to the fore-444

shock sequence is also illustrated in Figure 2. The subsequent estimates of b-values at445

days 1d, 2d, etc., correspond to the time duration of the aftershock sequence since the446

M7.1 mainshock (Figure 6a). Similarly, the parameters of the OU law, equation (4), were447

estimated during the same time intervals (Figure 6b). In addition, the point estimates448

of the ETAS model parameters were also computed. This is given in Figure 6c. The pa-449

rameter µ was held constant at µ = 0.05 to improve the stability of the parameter es-450

timation. It was assumed that the background seismicity rate for earthquakes above mag-451

nitude m ≥ 3.2 was relatively low in this region prior to the start of the sequence.452

3.3 Forecasting the Magnitude of the Largest Expected Earthquake453

The EVD, equation (7), and the BPD, equation (11), were used to compute ret-454

rospectively the probabilities of having the largest expected earthquakes to occur dur-455

ing predefined times of the evolution of the 2019 Ridgecrest earthquake sequence. This456

was done both before and after the occurrence of the M7.1 mainshock using the OU, equa-457

tion (4), compound OU, equation (5), or ETAS, equation (6), parametric models for the458

earthquake rate and the exponential distribution, equation (2), for the distribution of459

earthquake magnitudes. When computing the probabilities for the aftershock sequence460

generated by the M7.1 mainshock two cases were analyzed. In the first consideration,461

only the aftershocks were used. However, when using the ETAS model and the compound462

OU model the foreshock sequence was also incorporated into the analysis.463

First, the only aftershocks of the M7.1 mainshock were used to compute the prob-464

abilities of having the strongest aftershocks above a specified magnitude during a future465

time interval of ∆T = 7 days. The occurrence of the M7.1 mainshock on 2019/07/06466

(03:19:53 UTC) corresponded to T0 = 0 with the target time interval [Ts, Te] = [10−4, 1.0].467

One particular example is given in Figure 7, where the EVD, equation (8), was computed468

after 1 day for all aftershocks above magnitude m ≥ 3.2 and plotted as a short dashed469

curve. The following model parameter estimates were used: β = 2.18 and {Ko, co, po} =470
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Figure 6. Point estimates of the model parameters during the evolution of the 2019 Ridge-

crest sequence. The start of the sequence T0 = 0 corresponds to the time of the occurrence of the

M3.98 foreshock on 2019/07/04 (17:02:55 UTC). All the events above magnitude m ≥ 3.2 were

used to compute the parameters using the maximum likelihood method. The point estimates

of a) the b-value; b) the Omori-Utsu parameters, equation (4), and c) the ETAS parameters,

equation (6), are plotted. The 95% confidence intervals are also given. The vertical dashed lines

correspond to the times in days since the occurrence of the M7.1 mainshock.
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Figure 6. Continued.
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Figure 7. The extreme value and the Bayesian predictive distributions for the 2019 Ridge-

crest sequence. The BPD is shown as a solid curve using the ETAS model and MCMC sampling

with the Gamma prior for the foreshocks and 1 day of aftershocks after the M7.1 mainshock. For

the same sequence of events, the EVD using the compound OU law is shown as a dashed curve.

For the rest of the distributions, 1 day of aftershocks after the M7.1 mainshock was used: the

OU rate using the MCMC sampling with the Gamma prior (short dashed curve); the Gumbel

distribution with OU rate (dash-dotted curve).

{38.57, 0.052, 1.691}. The corresponding probabilities to have strong aftershocks above471

mex ≥ 5.0, 6.1, 7.1 are also given.472

Next, the BPD, equation (11), was computed using the aftershocks of the M7.1 main-473

shock during different training time intervals to forecast the magnitudes of the largest474

expected earthquakes to occur during the evolution of the sequence. The OU law, equa-475

tion (4), was used to approximate the earthquake rate. The exponential distribution, equa-476

tion (2), was used to model the frequency-magnitude statistics. The forecasting time in-477

terval was fixed at ∆T = 7 days. The computed BPD to estimate probabilities for the478

largest expected aftershocks above magnitude m ≥ 3.2 during one day after the main-479

shock is plotted in Figure 7 as a dash-dotted curve. This was done by employing the MCMC480

sampling of the posterior distribution and the Gamma distribution for the priors of the481
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model parameters (Shcherbakov et al., 2019). The total number of 150,000 MCMC sam-482

pling steps were performed for each model. The first 50,000 steps were discarded as ”burn483

in” and the remaining Nsim = 100, 000 sampling steps were used for the synthetic model484

simulations or analysis. For the OU model, this is given in Figure S3. The distribution485

of the OU model parameters computed from the MCMC chain is illustrated in Figure S4.486

The matrix plot of the pairs of the OU model parameters is given in Figure S5. The val-487

ues for the mean and variance of the prior distribution (Gamma) of the OU model pa-488

rameters are provided in Table S1.489

To investigate the influence of the foreshocks on the computation of the probabil-490

ities for the largest expected aftershocks, the EVD, equation (8), using the compound491

OU law, equation (5), and the BPD using the ETAS model, equation (6), were computed492

for the earthquake sequence starting from the occurrence of the first M3.98 foreshock493

on 2019/07/04 (17:02:55 UTC). The earthquakes above magnitude m ≥ 3.2 were used.494

In case of the BPD with the ETAS model, the target time interval [Ts, Te] = [0.03, 2.408]495

days was used with T0 = 0 corresponding to 2019/07/04 (17:02:55 UTC), which included496

the foreshocks and one day of aftershocks after the M7.1 mainshock. The values for the497

mean and variance of the prior distribution (Gamma) of the compound OU and ETAS498

model parameters are provided in Tables S2-S3. The resulting BPD is plotted as a solid499

curve in Figure 7. The probabilities of having the largest expected earthquakes during500

the next ∆T = 7 days are provided in the legend. For the same sequence, the EVD,501

equation (8), with the compound OU law, equation (10), was computed and the corre-502

sponding probabilities to have the largest aftershocks during the next ∆T = 7 days were503

estimated. This is plotted as a dashed curve in Figure 7. The MCMC sampling steps504

are given in Figure S6. The distribution of the compound OU model parameters com-505

puted from the MCMC chain is illustrated in Figure S7. The matrix plot of the pairs506

of the compound OU model parameters is given in Figure S8.507

The probabilities to have the largest expected earthquake above a certain magni-508

tude can be computed at specified times during the evolution of the sequence. This can509

be done by increasing progressively the upper limit Te of the target time interval [Ts, Te]510

for a fixed forecasting interval ∆T . Figure 8 illustrates the computed probabilities from511

the BPD, equation (11), with the ETAS model, equation (6), as an earthquake rate, and512

the exponential distribution, equations (2), for the frequency-magnitude statistics. T0 =513

0 corresponded to the date 2019/07/04 (17:02:55 UTC) and Ts = 0.03 days. The MCMC514
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Figure 8. The probabilities for the largest expected earthquake to be above the magni-

tudes mex ≥ 4.5, 5.0, 6.1, 6.4, 7.1 and during the progressively increasing time intervals since

2019/07/04 (17:02:55 UTC). The probabilities are estimated using the BPD combined with

the ETAS model for the earthquake rate during the forecasting time interval ∆T = 7 days and

plotted in a logarithmic scale. The earthquake magnitudes of the 2019 Ridgecrest sequence are

plotted as open diamonds for all events above magnitude m ≥ 3.2. The fit of the ETAS model is

shown as a solid curve.

sampling steps, the distribution of the ETAS model parameters, and the matrix plot of515

the pairs of the ETAS parameters are given in Figures S9-S11. The probabilities were516

estimated for the largest expected earthquakes to be larger than mex ≥ 5.0, 6.1, 6.4,517

and 7.1. First, the probabilities were computed using only the foreshock sequence right518

before the occurrence of the M7.1 mainshock with Te = 1.4284 days. After that, the519

probabilities were recomputed for each subsequent day after the M7.1 mainshock by in-520

corporating the information from the newly occurred aftershocks. For reference, the fit521

of the ETAS model is also shown as a red curve using the following estimated model pa-522

rameters {β, µ, K, c, p, α} = {2.3, 0.05, 1.51, 0.02, 1.35, 2.14} during the training time523

interval [Ts, Te] = [0.03, 15.4284] days.524
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Finally, Figure 9 provides a comparison of the results for the computation of the525

probabilities to have the expected largest aftershock to be greater than mex ≥ 6.1 af-526

ter progressively increasing times Te during the evolution of the sequence by using sev-527

eral methods examined in this work. The forecasting time interval was set to ∆T = 7528

days and all the earthquakes above magnitude m ≥ 3.2 were considered. Specifically,529

the EVD with the OU law, equations (8) and (9), was used and the estimated proba-530

bilities are plotted as solid squares. Next, the compound OU law, equation (10), was used531

in the EVD computation and the results are plotted as solid circles in Figure 9. The com-532

puted probabilities from the BPD, equation (11), with the ETAS model, equation (6),533

as the earthquake rate are plotted as solid triangles. And finally, the probabilities were534

computed from the BPD with the earthquake rate modelled using the standard OU law,535

equation (4) and are plotted as solid diamonds.536

3.4 Model and Forecast Validation537

The three point process models (OU, compound OU, and ETAS) were examined538

to see whether they were consistent with the observed seismicity during the forecasting539

time intervals [Te, Te+∆T ]. For this, N- and M-tests were performed. Figure 10a shows540

the observed number of earthquakes above magnitude m ≥ 3.2 (as solid black diamonds)541

during a fixed forecasting time interval ∆T = 7 days and varying training time inter-542

val [Ts, Te]. The numbers are plotted at the end of the forecasting time interval with the543

training interval ending after 1, 2, 3, 4, 5, 6, 7, 10, 14, 30 days after the M7.1 mainshock544

(the corresponding Te = 2.4284, 3.4284, ..., 11.4284, 15.4284, 31.4284). For example,545

the first symbol at Te + ∆T = 9.4284 days gives 86 earthquakes above magnitude 3.2546

that occurred during 7 days starting after 1 day (Te = 2.4284) after the M7.1 main-547

shock. It also shows the average forecasted numbers of earthquakes with the correspond-548

ing 95% bands (plotted as shaded regions) simulated by the three models. Each model549

was simulated Nsim = 100, 000 times forward in time during ∆T = 7 days and for the550

varying ends of the training time interval Te. For each model simulation, the parame-551

ters were chosen from the MCMC chain obtained by sampling the posterior distribution552

of the model parameters. This allowed to incorporate the variability of the model pa-553

rameters into the forecasted numbers. Similarly, Figure 10b illustrates the observed and554

forecasted number of earthquakes when the end of the training time interval was held555

fixed at Te = 3.4284 days (2 days after the M7.1 mainshock) and the forecasting time556
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Figure 9. The comparison of the computed probabilities for the largest expected after-

shock to be above magnitude mex ≥ 6.1 during the progressively increasing time intervals since

2019/07/04 (17:02:55 UTC) for the fixed forecasting time interval ∆T = 7 days. The four models

were considered: the EVD with the OU law (solid squares), the EVD with the compound OU for-

mula (solid circles), the BPD with the ETAS model (solid triangles), and the BPD with the OU

law (solid diamonds). The earthquake magnitudes of the 2019 Ridgecrest sequence are plotted as

open diamonds for all events above magnitude m ≥ 3.2.
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Figure 10. The observed and forecasted numbers of earthquakes starting after one day of

aftershocks post M7.1 mainshock and during specified forecasting and training time intervals by

using the three rate models: Omori-Utsu (OU), compound OU, and ETAS. a) The forecasting

time interval ∆T = 7 days is fixed while the end of the training time interval Te is progressively

increasing as Te = 2.428, 3.428, ..., 15.428, 31.428 days. The symbols indicate the number of the

observed (black solid diamonds) and the mean number of forecasted earthquakes during ∆T = 7

days computed at times Te + ∆T . b) The end of the training time interval is fixed at Te = 3.428

days while the forecasting time interval is increasing as ∆T = 1, 2, 5, 7, 10, 14. The shaded

bands correspond to 95% confidence intervals.

interval varied ∆T = 1, 2, 5, 7, 10, 14 days. For the compound OU and ETAS mod-557

els the preceding foreshock sequence was used. For the OU model only the aftershocks558

of the M7.1 mainshock were used.559

To analyze to what extent the considered models underpredicted or overpredicted560

the observed sequence of earthquakes, the N-test was performed. The quantile scores com-561

puted during the N-test corresponding to the forecasting of the number of earthquakes562

are illustrated in Figure 11ab. Two threshold quantiles are plotted at 0.025 and 0.05 lev-563

els. δ1 and δ2 scores, Equations (12) and (13), were computed and plotted for the three564
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Figure 10. Continued.

models for the same forecasting time intervals of duration ∆T = 7 days as used in Fig-565

ure 10a. In addition, the results of the M-test for the three models and for the same fore-566

casting time intervals are plotted in Figure 11c, where the quantile score κ character-567

izes the consistency of the forecasted earthquake magnitudes compared to the observed568

ones in each forecasting time interval. The quantile scores in a case of the varying fore-569

casting time interval ∆T = 1, 2, 5, 7, 10, 14 days and fixed training time interval Te =570

3.4284 days are given in Figure S12.571

The models were also compared among each other by applying the R- and T-tests.572

Two pairs of the models were considered, i.e. the forecasts produced by the ETAS model573

versus the model with the OU law and the ETAS model versus the model with the com-574

pound OU law. The results of the quantile score α for the R-test are plotted in Figure 12.575

The scores α were computed at the end of each forecasting time interval of duration ∆T576

as in Figure 10a. The corresponding sample information gain IN (Λ2,Λ1) for each pair577

of the models is illustrated in Figure 13. The quantile score α and the information gain578

per earthquake in a case of the varying forecasting time interval ∆T = 1, 2, 5, 7, 10, 14579

days and fixed training time interval Te = 3.4284 days are given in Figures S13 and S14.580
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Figure 11. Plot of the quantile scores a) δ1 (N-test), b) δ2 (N-test), and c) κ (M-test) for the

performance of the aftershock forecasts based on the three point process models. The scores are

computed at the end of each forecasting time interval of fixed duration ∆T = 7 days and varying

training time intervals [Ts, Te] as in Figure 10.
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Figure 11. Continued.

In both pairs of models, it was assumed that the ETAS model (with the forecast Λ2) is581

the correct model to simulate the synthetic sequences of events during the forecasting582

time intervals.583

Finally, the Bayesian p-values, equation (16), were computed for the three mod-584

els. This is plotted in Figure 14 for the varying training time intervals. Figure S15 il-585

lustrates the dependency of the p-value on the varying forecasting time interval as in Fig-586

ure S13.587

4 Discussion588

The 2019 Ridgecrest earthquake sequence occurred in a complex network of fault589

structures. It generated a prominent foreshock sequence that culminated in the occur-590

rence of the M7.1 mainshock, which was followed by a productive aftershock sequence.591

This complexity of the sequence was partially reflected in the frequency-magnitude statis-592

tics of foreshocks and aftershocks. It also manifested in the clustering of earthquakes in593

time and in space. The complex pattern of multi-segmented ruptures of the two strongest594
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Figure 12. Plot of the quantile score α (R-test) for the comparative test of the ETAS model

versus the forecast based on the OU model and on the compound OU model. The scores are

computed at the end of each forecasting time interval as in Figure 11.
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Figure 13. The sample information gain for the pairs of the models. The solid squares cor-

respond to the comparison of the forecasts based on the ETAS model versus the forecasts based

on the OU model. The solid diamonds correspond to the comparison of the forecasts based on

the ETAS model versus the forecast based on the compound OU model. The 95% confidence

intervals are given.
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Figure 14. Plot of the Bayesian predictive distribution p-value for the three models. The

p-values are computed at the end of each forecasting time interval as in Figure 11.

events in the sequence contributed to the assumed stress transfer pattern, which affected595

the distribution of subsequent triggered aftershocks.596

The sequence exhibited a change in the slope of the frequency-magnitude statis-597

tics around a magnitude 3.2. This was the reason to use only the events above this value598

in the analysis. This change in the behavior can be the result of the early aftershock in-599

completeness observed right after the M6.4 foreshock and the M7.1 mainshock or it can600

be related to the fact that the aftershocks occurred on a distributed fault network and601

the geometrical distribution of fault sizes affected the statistics of earthquake magnitudes.602

The fit of the exponential distribution, equation (2), (or the corresponding Gutenberg-603

Richter relation) to the frequency-magnitude statistics of the foreshock and aftershock604

sequences with magnitudes above m ≥ 3.2 produced the b-values which were typical605

for tectonic earthquakes as illustrated in Figure 2. The largest aftershock of the M7.1606

mainshock had a magnitude 5.5 and occurred less than half an hour after the mainshock.607

Two more strong aftershocks of magnitude 4.7 and 5.0 occurred later in the sequence608

on 20th and 48th days after the mainshock. The value of the largest occurred aftershock609
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is lower than what would be expected from B̊ath’s law (B̊ath, 1965). It is possible that610

the M6.4 foreshock partially released the accumulated strain energy in the region and611

this resulted in a lower magnitude of the largest occurred aftershock.612

The earthquake decay rates after the M6.4 foreshock and M7.1 mainshock exhib-613

ited a consistent pattern observed in other prominent aftershock sequences. The fit of614

the OU law, equation (4), produced p = 1.03±0.14 for the foreshock sequence and p =615

1.27± 0.04 for the aftershock sequence as illustrated in Figure 3. The smaller p-value616

for the foreshock sequence can be the result of a strong M5.36 foreshock that occurred617

16.2 hours before the M7.1 mainshock and triggered its own sequence of events. The in-618

fluence of the foreshock sequence on the overall rate of aftershocks was incorporated by619

employing the compound OU law, equation (5), or the ETAS process, equation (6), to620

model the earthquake decay rate (Figure 4).621

One of the main objectives of this work was to provide a framework to compute622

the probabilities for the occurrence of the largest expected aftershocks during different623

stages of the evolution of this earthquake sequence by incorporating the preceding seis-624

micity. This was accomplished through two main approaches. The first one was based625

on the assumption that the occurrence of earthquakes could be modelled as a non-homogenous626

Poisson process with a specified parametric model for the earthquake rate and the frequency-627

magnitude distribution. Specifically, one can use the OU law, equation (4), or the com-628

pound OU law, equation (5), and the exponential distribution for the earthquake mag-629

nitudes, equation (2). Then, the probabilities can be estimated from the EVD, equation (8),630

for a specific forecasting time interval ∆T by using the point estimates of the model pa-631

rameters. The second approach employed the computation of the BPD, equation (11),632

which allowed to incorporate the uncertainties of the model parameters into the com-633

putation of the BPD. This approach also requires to provide certain a priori knowledge634

on the model parameters specified through the prior distributions.635

The comparison of these two approaches with the combination of the three mod-636

els for the earthquake rate and either including or excluding the foreshocks is illustrated637

in Figure 7. The results clearly illustrate that the inclusion of the foreshocks along with638

the earthquake rate models that favour earthquake clustering produces higher probabil-639

ities for the occurrence of the largest expected earthquakes during the specified forecast-640

ing period of ∆T = 7 days.641
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The 2019 Ridgecrest earthquake sequence bears a striking similarity to the 2016642

Kumamoto, Japan, earthquake sequence. Both sequences had a pronounced foreshock643

sequence which was triggered by the strong foreshocks of similar magnitudes (M6.4 vs.644

M6.5) and duration. They occurred on the different fault segments than the mainshock645

fault rupture. The b-values of the GR relation and p values of the OU law were also smaller646

than the values for the aftershocks generated by the mainshocks. The mainshock mag-647

nitudes were also similar (M7.1 vs. M7.3) and had the strike-slip mechanisms.648

To validate the three stochastic models, several statistical tests (N-, M-, R-, and649

T-tests) were applied retrospectively for several combinations of the training and fore-650

casting time intervals. The results of the N-test indicate that the OU model underes-651

timated the observed number of earthquakes for most of the forecasting time intervals.652

The compound OU model performed better especially in the early stages of the evolu-653

tion of the sequence. The ETAS model approximated the observed number of earthquakes654

during the all considered forecasting time intervals, however, the ETAS model also had655

wider 95% spread in the number of forecasted earthquakes (Figure 10). This is the con-656

sequence of the branching nature of the ETAS process and the deviation of the distri-657

bution of the number of events from the Poisson distribution. The ETAS model was also658

consistent in reproducing the distribution of the magnitudes in each bin that is illustrated659

in Figure 11c through the κ quantile score.660

The comparative analysis of the ETAS model versus the OU and the compound661

OU models also confirmed that the forecast based on the ETAS model outperformed the662

forecasts based on the other two models. This is illustrated in Figure 12, where the quan-663

tile score α from the R-test is plotted at the end of each forecasting time interval. The664

values of the score above the threshold level 0.025 indicate that the ETAS model out-665

performed the other two models. The similar conclusion is drawn from the plot (Figure 13)666

of the sample information gain IN (Λ2,Λ1). The results of the T-test confirmed that the667

ETAS model provided a statistically significant information gain with respect to the mod-668

els based on the OU or compound OU rates except for the last forecasting interval end-669

ing at 38.4284 days, where the ETAS model and the model based on the compound OU670

rate performed similarly. For the last forecasting time interval ending at Te + ∆T =671

38.4284 days, there were only two events above magnitude m ≥ 3.2. The compound672

OU model produced relatively close results when computing the probabilities for the oc-673

currence of the largest expected earthquakes (Figure 9).674

–36–



manuscript submitted to JGR: Solid Earth

One limitation of the above tests (M-, R-, T-) based on the computing of the joint675

log-likelihoods, equation (14), is that they assume that the distribution of the number676

of earthquakes in the forecasting time interval is Poisson. This is true for the both point677

process models based on the OU law. However, the ETAS model deviates from the Pois-678

son assumption. This was already demonstrated in Shcherbakov et al. (2019) when com-679

puting the Bayesian predictive distribution. Therefore, the application of these tests to680

the ETAS based models has to be considered approximate.681

The above tests implemented in this work used the MCMC sampling of the pos-682

terior distribution of the model parameters. This allowed to incorporate the stochastic683

variability of the model parameters and the uncertainty associated with the prior infor-684

mation on the model parameters into the computation of the resulting probabilities and685

performing the statistical tests. The consistency of the Bayesian predictive distribution686

was evaluated by estimating the Bayesian p-value, equation (16). All the three models687

were consistent in reproducing the observed largest earthquakes in each forecasting time688

interval.689

5 Conclusions690

The 2019 Ridgecrest earthquake sequence was characterized by the complex clus-691

tering of seismicity with earthquakes occurring on a distributed fault network. It also692

presented a good opportunity to analyze the sequence retrospectively in order to test sev-693

eral statistical approaches to study the sequence in temporal and magnitude domains694

and to forecast the occurrence of the largest expected aftershocks during the evolution695

of the sequence.696

The frequency-magnitude statistics of earthquakes were studied for the foreshock697

and aftershock sequences and modeled using the exponential distribution, equation (2).698

The earthquake rate was analyzed during predefined time intervals in order to fit the three699

statistical models to describe its temporal evolution. Specifically, the OU law, equation (4),700

the compound OU formula, equation (5), and the ETAS model, eqaution (6), were used.701

Two approaches were used to compute the probabilities of having the largest ex-702

pected earthquakes to be above certain magnitudes after specified time intervals and dur-703

ing the fixed forecasting time interval ∆T = 7 days. For the first approach, the EVD,704

equation (8), with the OU law, equation (4), or the compound OU formula, equation (5),705
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was used. In the second approach, the Bayesian predictive distribution, equation (11),706

combined with the OU law or the ETAS model, equation (6), was used. The compar-707

ison of these approaches are illustrated in Figure 9.708

Applying these two approaches to the 2019 Ridgecrest earthquake sequence revealed709

that the incorporation of the foreshock sequence for the subsequent computation of the710

probabilities to have the largest expected aftershocks above a certain magnitude was im-711

portant. This was also relevant to the choice of the model to approximate the earthquake712

rate. Specifically, the compound OU law, equation (5), and the ETAS model, equation (6),713

provide a better approximation for the earthquake rate than the OU law, equation (4),714

applied separately to the foreshock and aftershock sequences during the forecasting time715

intervals. These conclusions have been verified by the several statistical tests. Overall,716

the ETAS model passed the tests most of the time and was successful in reproducing the717

observed number of earthquakes and the distribution of magnitudes. Therefore, the com-718

puted probabilities using the Bayesian predictive distribution (Figure 8) for the largest719

expected earthquake during the evolution of the 2019 Ridgecrest sequence can be con-720

sidered accurate.721

Data and Resources722

The Southern California Seismic Network (SCSN, https://service.scedc.caltech723

.edu/eq-catalogs/date\ mag\ loc.php) database was used for seismicity (last accessed724

on June 7, 2020).725

U.S. Geological Survey and California Geological Survey, 2006, Quaternary fault726

and fold database for the United States, accessed June 7, 2020, from USGS web site:727

https://earthquake.usgs.gov/hazards/qfaults/ (last accessed on June 7, 2020).728

The data analysis was performed using a computer code written in Matlab and can729

be requested from the author.730

The Supporting Information for this article includes Tables S1-S3 with the param-731

eters of the Gamma distribution, which was used as a prior distribution for the param-732

eters of the three models considered in the work. It also includes plots illustrating the733

fit of the compound OU (Figure S1) and the ETAS (Figure S2) models. The MCMC sam-734

pling of the model parameters for the OU (Figures S4-S5), the compound OU (Figures S6-735

8), the ETAS (Figures S9-S11) models are provided for one specific training and fore-736
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casting time intervals. The additional quantile scores of the plots are given in Figures S12-737

S15.738
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