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Abstract12

The propagation of the fast magnetosonic (FMS) wave in the curved magnetic field is13

studied. A hemicylindrical model of the magnetosphere is considered where the magnetic14

field lines are represented by concentric circles. An ordinary differential equation is de-15

rived describing the coupled Alfvén and FMS waves. Using the equation, it was demon-16

strated that in the curved field the propagation of the fast mode is drastically different17

from the propagation in the planar magnetic field. In particular, on the magnetic sur-18

face known as the reflection surface for the fast mode in the planar magnetic field, there19

is a wave singularity where some components of the wave’s magnetic field (the azimuthal20

and compressional components) as well as the plasma density have logarithmic singu-21

larity. The physical reason for this singularity is the decrease of the volume of the mag-22

netic flux tube toward the axis of the cylinder.23

Plain Language Summary24

The fast magnetosonic mode (FMS) is one of the important wave modes in the Earth’s25

magnetosphere as it transfers energy across the magnetic field lines without significant26

attenuation. In simplest model of the magnetosphere where the magnetic field lines are27

assumed to be straight, the region of the FMS propagation is bounded by certain mag-28

netic surface which serves as a sort of mirror reflecting the wave’s energy. In this paper,29

we studied a simplified model with the field line curvature where the field lines form cir-30

cles, but the plasma properties changes only across the magnetic shells. it was found that31

the reflecting surface became a place of the wave’s energy and the plasma density ac-32

cumulation. Formally, the value of the wave’s magnetic field become infinite on this sur-33

face. This new kind of the wave’s resonance was coined as the logarithmic resonance. Prob-34

ably, it is caused by the harsh decceleration of the stream of the wave’s energy due to35

the decrease of the magnetic flux tube volume as it flows toward the Earth.36

1 Introduction37

In the studies of the ultra-low frequency (ULF) waves in planetary magnetospheres,38

a general framework is provided by the field line resonance (FLR) phenomenon: a com-39

pressional fast magnetosonic (FMS) wave propagates into the inhomogeneous magne-40

tosphere generating a shear Alfvén mode on a magnetic surface where the wave frequency41

equals the local Alfvén frequency (Glassmeier et al., 1999). This concept is usually ap-42
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plied to the dayside magnetosphere, where the role of driver of the FMS mode is pro-43

vided by the processes related to the solar wind, such as solar wind pressure impulses,44

Kelvin-Helmholtz instability on the magnetopause, or compressional waves in the solar45

wind (Menk & Waters, 2013). The FLR can take place also on the night side, where the46

FMS can be driven by the bursty bulk flows (Lysak et al., 2015).47

Figure 1. (A) The fast modes wave vector radial component squared k2
r as a function of the

radial coordinate in the box-model. The shaded rectangle depicts is the FMS transparent region.

(B) Hemicylindrical model of the magnetosphere

48

49

50

Originally, the FLR concept was established for the box-model with straight field51

lines (Tamao, 1965; Southwood, 1974; Chen & Hasegawa, 1974). In this case, the FMS’52

wave vector radial component is given by the equation k2r = (ω2 − k2yv2A − k2‖v
2
A)/v2A,53

where ω is the wave’s frequency, ky and k‖ are the azimuthal and parallel wave vector54

components, and vA is the Alfvén velocity. The FMS transparent region, that is, the re-55

gion where k2r > 0 is bounded by the magnetic shell where ω2 = (k2y + k2‖)v
2
A and kr56

vanishes (Fig.1, A). Reflecting from this boundary, incident FMS forms the wave stand-57

ing across the magnetic shells — the cavity mode (Kivelson & Southwood, 1985). The58

only wave field singularity in this model is the surface of the Alfvén (or field line) res-59

onance.60

The box-model cannot be considered as a realistic model of the magnetosphere since61

it does not take into account the field line curvature. The simplest model of the mag-62

netosphere with the curvature is the hemicylindrical model where field lines are concen-63

tric semi-circles. While the dynamics of the shear Alfvén waves in this model has received64

significant attention (Allan et al., 1986, 1987), the behaviour of the FMS mode has not65

been properly understood. The same model was used also for studies of the MHD os-66

cillations in the solar coronal arcades (Kaneko et al., 2015; Klimushkin et al., 2017). The67
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aim of the present paper is to consider some basic features of the field line resonance in68

the hemicylindrical model.69

2 The model70

In the hemicylindrical model, the magnetic field field lines and the magnetic shells71

are represented by concentric semi-circles and by half cylinder, respectively (Fig. 1, B).72

The plane cutting the cylinder along its axis represents the Earth’s ionosphere. All equi-73

librium parameters of the are taken to depend only on the radial coordinate r, the field74

line curvature radius. The coordinate θ is the angle changed along the field line, being75

equal 0 and π on the ionosphere. The coordinate y is directed along the cylinder. It cor-76

responds to the azimuthal coordinate in the magnetosphere.77

The plasma is considered to be cold, β = 0. The background magnetic field B0(r) =

{0, B0θ(r), 0} satisfies the equilibrium condition

∂

∂r
B0(r) = −B0(r)

r
.

The solution of this equation is B0 ∝ r−1.78

3 The governing equations79

The MHD oscillations in the cold plasma are governed by the equation system80

ρ0ω
2~υ =

1

4π
~B0 ×∇×

{
∇× [~υ × ~B0]

}
, (1)

where ~υ is the plasma velocity and ω is the wave’s frequency. The ionosphere is supposed

to be ideally conductive, thus ~E(θ = 0) = ~E(θ = π) and ~υ(θ = 0) = ~υ(θ = π). Then

the velocity can be represented as

~υ(r, θ, y) = ~υ(r) sin (Nθ) e−i(ωt−kyy)

where N is an integer and ky is the azimuthal component of the wave vector. After some81

algebra, Eq. (1) is reduced to the form82

∂r

[
ω2 − ω2

A(r)

ω2 − ω2
0(r)

∂rυr

]
− ∂r

[
ω2 − ω2

A(r)

ω2 − ω2
0(r)

· υr
r

]
+
ω2 − ω2

A(r)

υ2A
υr = 0, (2)

where υA =
√
B0/4πρ0 is the Alfvén speed,83

ω2
A(r) = k2‖υ

2
A, (3)
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84

ω2
0(r) = (k2‖ + k2y)υ2A, (4)

k‖ = N/r is the radial component of the wave vector. The azimuthal component of the85

plasma velocity vy and the wave’s magnetic field can be expressed in terms of the radial86

component of the plasma velocity vr as87

υy = −iky
υ2A

ω2 − ω2
0(r)

[
∂rυr −

υr
r

]
, (5)

Br = −k‖
B0

ω
υr, (6)

By = i
B0

ω

kyk‖υ
2
A

ω2 − ω2
0(r)

[
∂rυr −

υr
r

]
, (7)

Bθ = −iB0

ω

ω2 − ω2
A(r)

ω2 − ω2
0(r)

[
∂rυr −

υr
r

]
. (8)

4 Approximate solution for the fast mode88

The main subject of our study is the fast mode. Assuming ωA � ω0 and ω �89

ωA, Eq. (2) is reduced to the form90

∂2rυr +
[ω2

0(r)]′

ω2 − ω2
0(r)

∂rυr +

(
− 1

r

[ω2
0(r)]′

ω2 − ω2
0(r)

+
ω2 − ω2

0(r)− υ2A/r2

υ2A

)
υr = 0. (9)

Here the prime means the derivative over the radial coordinate, (...)′ = ∂(...)/∂r.91

The box-model (straight field lines) corresponds to the case r →∞. In this case92

case, Eq. (2) takes the form known from the previous work on the field line resonance93

(Southwood, 1974; Chen & Hasegawa, 1974):94

∂r

[
ω2 − ω2

A(r)

ω2 − ω2
0(r)

∂rυr

]
+
ω2 − ω2

A(r)

υ2A
υr = 0. (10)

Correspondingly, the fast mode equation (9) is reduced to the form95

∂2rυr +
[ω2

0(r)]′

ω2 − ω2
0(r)

∂rυr +
ω2 − ω2

0(r)

υ2A
υr = 0. (11)

This equation has a singularity in the point r0 where the equality96

ω = ω0(r) (12)

holds. However, the solution of this equation is regular, as had been mentioned in pa-97

pers (Southwood, 1974; Chen & Hasegawa, 1974): in the plasma with straight field lines,98

there is no singularity in the fast mode wave field. The only singularity is the Alfvén res-99

onance where ω = ωA(r).100
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Now let us proceed to the r−1 6= 0 case. In the the proximity of the resonant point

r0, where the inequality |ω − ωA| � |ω − ω0| holds, the function ω2
0(r) can be repre-

sented as

ω2 − ω2
0(r) ≈ −[ω2

0(r)]′(r − r0) =
ω2
0

L
(r − r0).

Then Eq. (9) is reduced to the form101

∂2rυr −
1

r − r0
∂rυr +

1/r0
r − r0

υr = 0, (13)

where a and b are constants. Its solution is expressed in terms of the Bessel functions102

of the second order J2 and Y2:103

υr = (r − r0)

[
aJ2

(
2

√
r − r0
r0

)
+ bY2

(
2

√
r − r0
r0

)]
. (14)

When r → r0, the asymptotic of this solution is104

υr =
a

2r0
(r − r0)2 − b

π
r0 −

b

π
(r − r0) +

b

πr0
(r − r0)2 ln

√
r − r0
r0

. (15)

Thus, the resonance at r0 constitutes the branching point in υr component, but the wave’s105

amplitude remains finite.106

However, as follows from Eq. (5) the azimuthal component of the plasma veloc-107

ity υy has a logarithmic singularity:108

υy = −i kyL

k2y + k2‖

[
2b

πr0
ln

√
r − r0
r0

+
a

r0
+

2b

πr0

]
. (16)

Using Eqs. (6,7,8), the magnetic field components can be obtained:109

Br = −k‖
B0

ω

[
a

2r0
(r − r0)2 − b

π
r0 −

b

π
(r − r0) +

b

πr0
(r − r0)2 ln

√
r − r0
r0

]
, (17)

By = i
B0

ω

k‖kyL

k2y + k2‖

[
2b

πr0
ln

√
r − r0
r0

+
a

r0
+

2b

πr0

]
, (18)

Bθ = −iB0

ω

k2yL

k2y + k2‖

[
2b

πr0
ln

√
r − r0
r0

+
a

r0
+

2b

πr0

]
. (19)

Thus, while the radial component Br is finite near the resonant point, both azimuthal110

By and parallel Bθ components have the logarithmic singularity.111

It is instructive to consider also the perturbation of the plasma density determined112

from the continuity equation ∂ρ/∂t = −∇ · ρ0~υ. Near the resonant point, we have113

ρ =
i

ω
ρ0

(
ikyvy +

∂vr
∂r

)
' ln

√
r − r0
r0

. (20)

Thus, the resonant point serves as a point of both energy and mass accumulation.114

–6–



manuscript submitted to Geophysical Research Letters

5 Discussion115

As follows from the previous section, if the wave is propagating radially toward the116

centre of the cylinder, then when the wave is approaching the resonance point the wave117

decelerates radially but remains propagating along the cylinder. Thus, plasma can move118

only along the cylinder at the resonance point. In addition, the wave’s energy density119

grows rapidly up to infinity at the resonance point, since the wave becomes more and120

more narrowly localized approaching the resonance point. This is due to the fact that121

the magnetic flux tube volume decreases in toward the centre of the cylinder. This pat-122

tern of wave transformation resembles that which occurs during the earthward propa-123

gation of the bursty fast flows during substorms (Shiokawa et al., 1997; Baumjohann,124

2000): a earthward bursty fast flow decelerates and stops due to the strongly earthward125

decrease of the magnetic flux tube volume in the Earth’s dipolar magnetic field. It would126

be interesting to find out whether that breaking flow surface can be identified with the127

logarithmic resonance surface found in this paper.128

However, it should be noted that the hemicylindrical model is still oversimplified.129

Thus, it would be interesting to find out whether the FMS singularity found in this pa-130

per remains in dipolar geometry, as it happens for the Alfvén resonance (Chen & Cow-131

ley, 1989; Leonovich & Mazur, 1989), or it disappears due to the parallel plasma and mag-132

netic field inhomogeneity. Next, it is worth noting that the similar singularity for the fast133

mode can occur also in geometry with the straight field line but in the sheared magnetic134

field (Mager & Klimushkin, 2002). Moreover, similar singularity presents also in the slow135

mode wave field in the cylindrical geometry (Petrashchuk & Klimushkin, 2020). Finally,136

a kind of the singularity presents also for the drift-compressional modes in kinetics, but137

the formalism of kinetics does not allow to elucidate its precise nature (Klimushkin &138

Mager, 2011; Mager et al., 2013).139

6 Conclusions140

Let us resume the results of our analysis of the hemicylindrical model of the mag-141

netosphere, where the plasma is assumed to be one-dimensionally inhomogeneous, but142

which takes into account the field line curvature.143

1. The ordinary differential equation for coupled Alfvén and fast modes was derived.144
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2. The approximate solution of this equation near the surface r0 determined from145

the equation ω2
0(r) = (k2‖ + k2y)υ2A was obtained.146

3. As in the box model with the straight field lines this surface limits the fast mode147

propagation region. However, this location became a wave’s resonance surface as148

in the curved field the the azimuthal and compressional components of the wave’s149

magnetic field as well as the plasma density have a logarithmic singularity on this150

surface. Thus, the r0 surface can be coined as the surface of the logarithmic res-151

onance. Note that in the straight field lines case, the solution in the vicinity of the152

r0 surface is regular (Southwood, 1974; Chen & Hasegawa, 1974).153

Thus, the behavior of the fast mode in the box-model model with straight field lines and154

in the hemicylindrical models is completely different. This allows one to conclude that155

the model with straight field lines is too crude to examine the behavior of fast mode in156

the magnetosphere.157
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