References
Anderson, R. O., Alton, L. A., White, C. R., & Chapple, D. G. (2022). Ecophysiology of a small ectotherm tracks environmental variation along an elevational cline. Journal of Biogeography , 00, 1–11.
Angilletta M. J., Niewiarowski P. H., Dunham A. E., Leache A. D., & Porter W. P. (2004). Bergmann’s clines in ectotherms: Illustrating a life-history perspective withSceloporus lizards. American Naturalist , 164: E168–E183.
Ashton K. G., & Feldman C. R. 2003. Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it.Evolution , 57: 1151–1163.
Bates, D., Mächler, M., Bolker, B. and Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software , 67(1), 1–48.
Bergmann, C. (1847). Uber die Verhaltnisse der Warmeokonomie derThiere zu ihrer Grosse. Göttinger Studien , 3, 595–708.
Blackburn T. M., Gaston K. J., & Loder N. (1999). Geographic gradients in body size: A clarification of Bergmann’s rule. Diversity and Distribution , 5: 165–174.
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H., & White, J. S. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution , 24, 127–135
Brusch, G.A., IV, Le Galliard, J.-F., Viton, R., Gavira, R.S.B., Clobert, J. and Lourdais, O. (2022), Reproducing in a changing world: combined effects of thermal conditions by day and night and of water constraints during pregnancy in a cold-adapted ectotherm. Oikos , e09536.
Collar, D. C., Schulte, J. A., O’meara, B. C., & Losos, J. B. (2010). Habitat use affects morphological diversification in dragon lizards.Journal of Evolutionary Biology , 23: 1033–1049.
Deme, G. G., Hao, X., Ma, L., Sun, B. J., & Du, W. G. (2022a). Elevational variation in reproductive strategy: high-elevation females lay fewer but larger eggs in a widespread lizard. Asian Herpetological Research , 13(3), 198 – 204
Deme, G. G., Wu, N. C., Sun, B. J. & Hao, X. (2022b). Environmental extremes at high altitude drive clutch size patterns in a wide-ranging lizard. Preprint , doi: https://doi.org/10.21203/rs.3.rs-1504104/v1
Diamond, Sarah E., & Ryan A. Martin. (2020) ”Evolution is a double‐edged sword, not a silver bullet, to confront global change.” Annals of the New York Academy of Sciences 1469, no. 1: 38-51.
Diamond, Sarah E., & Ryan A. Martin. (2021). ”Buying time: Plasticity and population persistence.” In Phenotypic plasticity & evolution, pp. 185-209. CRC Press.
Duellman, W.E. & Trueb, L. (1986) Biology of Amphibians . McGraw-Hill, New York.
Feldman, A., & Meiri, S. (2014). Australian snakes do not follow Bergmann’s rule. Evolutionary Biology , 41: 327–335.
Forsman, A., & Shine, R. (1995). Parallel geographic varia­tion in body shape and reproductive life history with­in the Australian scincid lizard Lampropholis delica­ta . Functional Ecology, 9, 818–28.
Fielding C.A., J.B. Whittaker, J.E.L. Butterfield, and J.C. Coulson. 1999. Predicting responses to climate change: the effect of altitude and latitude on the phenology of the spittlebug Neophilaenus lineatus . Functional Ecology , 13:65–73.
Fischer K., P.M. Brakefield, and B.J. Zwaan. 2003. Plasticity in butterfly egg size: why larger offspring at lower temperatures?Ecology , 84:3138–3147.
Fox, J. & Weisberg, S. (2019). An R Companion to Applied Regression , Third edition. Sage, Thousand Oaks CA.
Freckleton, R. P., Harvey, P. H., & Pagel, M. (2003). Bergmann’s Rule and Body Size in Mammals. American Naturalist , 161(5): 821–825.
Ghalambor C.K., J.K. McKay, S.P. Carroll, and D.N. Reznick. 2007. Adaptive versus non- adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology , 21:394–407.
Giovanna, M., María, E. L., Anti, V., Mikko, N. & Katja, A. (2022). Are you ready for the heat? Phenotypic plasticity versus adaptation of heat tolerance in three‐spined stickleback. Ecosphere , 13, 4
Guo, C. (2016). Bergmann’s rule among Chinese amphibians and squamates , (PhD). Wuhan University.
Hille, S. M., & Cooper, C. B. (2015). Elevational trends in life histories: revising the pace-of-life framework. Biological Reviews , 90, 204–213.
Horváthová, T., Cooney, C. R., Fitze, P. S., Oksanen, T. A., Jelić, D., Ghira, I., Uller, T., & Jandzik, D. (2013). Length of activity season drives geographic variation in body size of a widely distributed lizard.Ecology & Evolution , 3(8): 2424–2442.
Jadin, R. C., Mihaljevic, J. R., & Orlofske, S. A. (2019). Do New World pitvipers ”scale-down” at high elevations? Macroecological patterns of scale characters and body size. Ecology & Evolution , 9(16): 9362–9375.
Lack, J. B., Yassin, A., Sprengelmeyer, Q. D., Johanning, E. J., David, J. R., & Pool, J. E. (2016). Life history evolution and cellular mechanisms associated with increased size in high-altitudeDrosophila . Ecology and Evolution , 6, 5893–5906.
Laiolo, P., & Obeso, J. R. (2015). Plastic Responses to Temperature Versus Local Adaptation at the Cold Extreme of the Climate Gradient.Evolutionary Biology , 1–10.
Lenth, R. (2019). emmeans: Estimated Marginal Means, aka Least-Squares Means. R
package version 1.4.2.
Liang, T., Zhang, Z., Dai, W. Y., Shi, L., Lu, C. H. (2021). Spatial patterns in the size of Chinese lizards are driven by multiple factors.Ecology & Evolution , 11: 9621–9630.
Lu, H. L., Xu, C. X., Jin, Y.-T., Hero, J. M., & Du, W. G. (2018a). Proximate causes of altitudinal differences in body size in an agamid lizard. Ecology & Evolution , 8: 645–54.
Lu, H. L., Xu, C. X., Zeng, Z. G., Du, W. G. (2018b). Environmental causes of between-population difference in growth rate of a high-altitude lizard. BMC Ecology , 18: 37.
Meiri, S. (2018). Traits of lizards of the world: Variation around a successful evolutionary design. Global Ecology & Biogeography , 27: 1168–1172.
Meiri S., & Dayan, T. (2003). On the validity of Bergmann’s rule.Journal of Biogeography , 30: 331–351.
Meiri, S., Yom-Tov, Y., & Geffen, E. (2007). What determines conformity to Bergmann’s rule? Global Ecology & Biogeography , 16(6): 788–794.
Meiri, S., Bauer, A. M., Chirio, L., Colli, G. R., Das, I., Doan, T. M., Feldman, A., Herrera, F.-C., Novosolov, M., Pafilis, P., Pincheira-Donoso, D., Powney, G., Torres-Carvajal, O., Uetz, P., & Van Damme, R. (2013). Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Global Ecology & Biogeography , 22: 834–845
Meiri, S., Avila, L., Bauer, A., Chapple, D., Das, I., Doan, T., Doughty, P., Ellis, R., Grismer, L., Kraus, F., Morando, M., Oliver, P., Pincheira-Donoso, D., Ribeiro-Junior, M., Shea, G., Torres-Carvajal, O., Slavenko, A., & Roll, U. (2020). The global diversity and distribution of lizard clutch sizes. Global Ecology & Biogeography , 00:1–16.
Merilä, J., & Hendry, A. P. (2014). Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolutionary applications, 7(1), 1-14.
Moreno Azocar, D. L., Perotti, M. G., Bonino, M. F., Schulte, J. A., Abdala, C. S., & Cruz, F. B. (2015). Variation in body size and degree of melanism within a lizards clade: Is it driven by latitudinal and climatic gradients? Journal of Zoology , 295: 243–253.
Morrison, C., & Hero, J.M. (2003) Geographic variation in life-history characteristics of amphibians: a review. Journal of Animal Ecology , 72, 270– 279.
Norris J., Tingley R., Meiri S., & Chapple D. G. (2021). Environmental correlates of morphological diversity in Australian geckos. Global Ecology & Biogeography , 30: 1086– 1100
Olalla-Tárraga, M. Á. (2011). “Nullius in Bergmann” or the pluralistic approach to ecogeographical rules: a reply to Watt et al. (2010).Oikos , 120(10): 1441–1444.
Olalla-Tárraga, M. Á., Rodríguez, M. Á., & Hawkins, B. A. (2006). Broad-scale patterns of body size in squamate reptiles of Europe and North America. Journal of Biogeography , 33(5): 781–793.
Olalla-Tárraga, M. Á., & Rodríguez, M. Á. (2007). Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse.Global Ecology & Biogeography , 16(5): 606–617.
Pepin, N., R. S. Bradley, H. F. Diaz, M. Baraer, E. B. Caceres, N. Forsythe, H. Fowler et al. (2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5: 424–430.
Pincheira-Donoso, D., Hodgson, D. J., & Tregenza T. (2008). The evolution of body size under environmental gradients in ectotherms: Why should Bergmann’s rule apply to lizards? BMC Evolutionary Biology , 8: 68.
Pincheira-Donoso, D., & Meiri, S. (2013). An intercontinental analysis of climate-driven body size clines in reptiles: No support for patterns, no signals of processes. Evolutionary Biology, 40: 562–578.
Pincheira-Donoso, D., Meiri, S., Jara, M., Olalla-Tárraga, M. Á., & Hodgson, D. J. (2019). Global patterns of body size evolution are driven by precipitation in legless amphibians. Ecography , 42(10): 1682–1690.
R Development Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Riesch, R., Martin, R. A., Diamond, S. E. , Jourdan, J., Plath, M. & Langerhans, R. B. (2018). Thermal regime drives a latitudinal gradient in morphology and life history in a live-bearing fish. Biological Journal of the Linnean Society  125:126–141.
Rivas, J., Quiero, A., Penna, M., & Velásquez, N. A. (2018). Body-Size variation across environmental gradients in an ectothermic organism: An intraspecific approach to ecogeographic patterns. Herpetologica , 74: 191–198.
Roff, D. A. (2002). Life history evolution . Sunderland, MA: Sinauer Associates.
Sears, M. W. (2005). Geographic variation in the life history of the sagebrush lizard: The role of thermal constraints on activity.Oecologia , 143: 25–36.
Sears M. W. & Angilletta M. J. (2004). Body size clines inSceloporus lizards: Proximate mechanisms and demographic constraints. Integrative and Comparative Biology , 44: 433–442.
Slavenko, A., Feldman, A., Allison, A., Bauer, A. M., Böhm, M., Chirio, L., Colli, G. R., Das, I., Doan, T. M., LeBreton, M., Martins, M., Meirte, D., Nagy, Z. T., Nogueira, C. D. C., Pauwels, O. S. G., Pincheira-Donoso, D., Roll, U., Wagner, P., Wang, Y., Meiri, S. (2019). Global patterns of body size evolution in squamate reptiles are not driven by climate. Global Ecology & Biogeography , 28: 471–483.
Slavenko, A., Allison, A., & Meiri, S. (2021). Elevation is a stronger predictor of morphological trait divergence than competition in a radiation of tropical lizards. Journal of Animal Ecology , 90(4): 917–930.
Stevenson, R. D. (1985). Body size and limits to the daily range of body temperature in terrestrial ectotherms. American Naturalist, 125: 102–117.
Szymkowiak, J. & Schmidt, K.A. (2022). Special issue: Ecology of information enters the Anthropocene. Oikos , e09677.
Tarr, S., Meiri, S., Hicks, J. J., & Algar, A. C. (2019). A biogeographic reversal in sexual size dimorphism along a continental temperature gradient. Ecography , 42(4): 706–716.
Valenzuela-Sánchez, A., Cunningham, A. A., & Soto-Azat, C. (2015). Geographic body size variation in ectotherms: Effects of seasonality on an anuran from the southern temperate forest. Frontiers in Zoology , 12 , 37.
Velasco, J. A., Villalobos, F., Diniz-Filho, J. A. F., Poe, S., & Flores-Villela, O. (2020). Macroecology and macroevolution of body size in Anolis lizards. Ecography , 43(6): 812– 822.
Volynchik, S. (2014). Climate-related variation in body dimensions within four lacertid species. International Journal of Zoology , 1–14.
Wang, K., Ren, J. L., Chen, H. M., Lv, Z. T., Guo, X. G., Jiang, K., & Che, J. (2020). The updated checklists of amphibians and reptiles of China. Biodiversity Science , 28(2): 189–218.