
 Applying PCA reduces the dimensionality of the data needed to cover cloud field
variability, and two PCs explain 65% of the variability among CCVs. PCA is useful in
efficiently selecting LES cases that encompass the observed CCV phase space.
 A large number of Lagrangian trajectories are developed and reanalysis and satellite

variables are compiled along each trajectory. From them and based on the phase space,
10s of cases with distinct environmental conditions will be selected and used to initialize
2-day LES modeling to provide a spectrum of aerosol-cloud interactions and Sc-to-
Cumulus transition under observed ambient conditions.
 Such a large number of simulations will help create statistics to assess how well the LES

can simulate the cloud lifecycle when constrained by the ‘best estimate’ of the
environmental conditions, and how sensitive the modeled clouds are to changes in these
driving fields. Ultimately this analysis will be useful for assessing the efficacy of
intentional Marine Cloud Brightening (MCB) under a range of representative conditions.
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 For each location, 9 points 
are selected to represent 
(-1.5σ, 0, 1.5σ)
in PC1-PC2 space (points 
shown by different 
markers).

 It is seen that selected data 
points in PC1-PC2 space 
successfully represents the 
observed spectrum of 
CCVs and cloud variables.

Phase Space

 Low marine clouds are a major source of uncertainty in cloud feedbacks
across climate models and in forcing by aerosol-cloud interactions (IPCC
2013).
 The evolution of these clouds and their response to aerosols are sensitive

to ambient environmental conditions (Erfani et al., 2022), so it is important
to determine different responses over a representative set of conditions.
 Here, we propose a novel approach to encompassing the broad range of

conditions present in low marine cloud regions, by building a library of
observed environmental conditions.
 The approach can be used, for example, to select a representative set of

cases for process model studies (e.g., Large Eddy Simulations or LES).

1. Background
 2208 Lagrangian forward trajectories 

are created isobarically from an initial 
level of 950 hPa for 72 hours, using 
ECMWF ERA5 winds and trajectory 
code developed at UW.
 Those will serve as forcing for 10s of 

LES cases (will be selected from the 
phase space) and will provide a tool for 
comparison of LES and observations.

Dataset

ERA5
(surface & 
pressure 
levels)

MERRA2
M2I3NVAER

(aerosol 
variables)

CERES 
SYN L3
(cloud 

variables)

SSMI 
V08 L3
(LWP)

AMSR-2 
V08 L3
(LWP)

AMSR-2 
V08 L3

(rain rate)

MODIS
(CTH)

Reference Hersbach et 
al. (2020)

Gelaro et al. 
(2017)

Doelling et 
al. (2016)

Wentz et 
al. (2012)

Kawanishi
et al. (2003)

Eastman et 
al. (2019)

Eastman et 
al. (2017)

Temporal 
Resolution Hourly 3-hourly Hourly Two times 

per day*
Two times 
per day*

Two times 
per day*

Two times 
per day*

Spatial 
Resolution 0.25×0.25° 0.5×0.625° 1×1° 0.25×0.25° 0.25×0.25° from 5×3 to 

62×35 km
1 km 

at nadir

Correlation (R) between 
PCs, CCVs, and cloud variables

Data
 ERA5 reanalysis and various satellite observations are used to extract

and derive macrophysical and microphysical cloud-controlling variables
(CCVs) and cloud variables.

 CCVs: sea-surface temperature (SST), lower tropospheric stability
(LTS), surface wind speed (WS), free-tropospheric (FT) moisture (q), FT
subsidence (ω), and surface pressure (P).

 Cloud variables: low cloud fraction (CF), liquid water path (LWP),
cloud-top height (CTH), and cloud droplet number concentration (Nd).

Locations
A few locations in the stratocumulus (Sc) deck region of the Northeast
Pacific (NEP) during summer (JJA) 2018-2021 are selected to fill out a
phase space of CCVs and cloud variables.

PCA
Principal Component Analysis (PCA) is applied to reduce the
dimensionality and to select a reduced set of principal components (PCs).

• Here, the relationships between PCs and all variables are shown.
• LTS contributes the most to PC1 and ω contributes the most to PC2.
• An R-value of 0.1 or higher is statistically significant since it leads to a 

p-value smaller than 0.05 for non-directional conditions.

 We conduct one PCA based on 4 CCVs for all 6 locations 
and all days in JJA 2018-2021 (a total of 2208 data points).

 Most (65%) of the information is compressed into 
PC1 and PC2.

4 CCVs (WS, q, ω, and LTS) 
are used as inputs for PCA.

Removing 
seasonality Standardization PCA

𝑉𝑉′𝑛𝑛 = 𝑉𝑉𝑛𝑛 − 𝑉𝑉𝑛𝑛
n: nth day since June 1st

𝑉𝑉𝑛𝑛: 𝑉𝑉 for day n of a year
𝑉𝑉𝑛𝑛 : time-mean 𝑉𝑉 for day n of 2012-2021

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑉𝑉 − �𝑉𝑉)
𝜎𝜎𝑉𝑉

�𝑉𝑉: time-mean 𝑉𝑉
𝜎𝜎𝑉𝑉: standard deviation of 𝑉𝑉

Frequency
(Number of data points in each pixel)

Compiling variables along trajectories

* 01:30 and 13:30 LT

Time (hours since 2021-07-07 09Z) Time (hours since 2021-07-07 09Z)

The accumulated-
mode aerosol number 
concentration (Na) is 
calculated using the 
MERRA2 mass of 
aerosol species and 
their assumed particle 
size distribution 
(Erfani et al., 2022).
Just one example 

is shown here for the 
thick black trajectory.
The starting location 

of this trajectory 
corresponds to green 
circle marker in the 
phase space.

2 CCVs (SST and PMSL) and cloud 
variables are excluded from PCA.

We use the Python package “uw-trajectory” developed at UW for compiling reanalysis
and satellite data along trajectories.
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