References

Arogoundade, A. M., Mutanga, O., Odindi, J., & Odebiri, O. (2023). Leveraging Google Earth Engine to estimate foliar C: N ratio in an African savannah rangeland using Sentinel 2 data. Remote Sensing Applications: Society and Environment30 , 100981. https://doi.org/10.1016/j.rsase.2023.100981 Arogoundade, A. M., Mutanga, O., Odindi, J., & Naicker, R. (2023). The role of remote sensing in tropical grassland nutrient estimation: a review. Environmental Monitoring and Assessment195 (8), 954. 10.1007/s10661-023-11562-6 Askari, M. S., McCarthy, T., Magee, A., & Murphy, D. J. (2019). Evaluation of grass quality under different soil management scenarios using remote sensing techniques. Remote Sensing11 (15), 1835. https://doi.org/10.3390/rs11151835 Bandopadhyay, S., Rastogi, A., Rascher, U., Rademske, P., Schickling, A., Cogliati, S., … & Juszczak, R. (2019). Hyplant-derived sun-induced fluorescence—A new opportunity to disentangle complex vegetation signals from diverse vegetation types. Remote sensing11 (14), 1691. https://doi.org/10.3390/rs11141691 Barnetson, J., Phinn, S., & Scarth, P. (2020). Estimating plant pasture biomass and quality from UAV imaging across Queensland’s Rangelands. AgriEngineering2 (4), 523-543. https://doi.org/10.3390/agriengineering2040035 Bazzo, C. O. G., Kamali, B., dos Santos Vianna, M., Behrend, D., Hueging, H., Schleip, I., … & Gaiser, T. (2024). Integration of UAV-sensed features using machine learning methods to assess species richness in wet grassland ecosystems. Ecological Informatics83 , 102813. https://doi.org/10.1016/j.ecoinf.2024.102813 Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T., O’Connor, T., … & Lindborg, R. (2019). Grasslands—more important for ecosystem services than you might think. Ecosphere , 10(2), e02582. https://doi.org/10.1002/ecs2.2582 Blair, J., Nippert, J., & Briggs, J. (2014). Grassland Ecology. In: Monson, R. (eds) Ecology and the Environment. The Plant Sciences, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7501-9_14 Brown, L. A., Fernandes, R., Djamai, N., Meier, C., Gobron, N., Morris, H., … & Dash, J. (2021). Validation of baseline and modified Sentinel-2 Level 2 Prototype Processor leaf area index retrievals over the United States. ISPRS Journal of Photogrammetry and Remote Sensing175 , 71-87. https://doi.org/10.1016/j.isprsjprs.2021.02.020 Castelli, M., Peratoner, G., Pasolli, L., Molisse, G., Dovas, A., Sicher, G., … & Notarnicola, C. (2023). Insuring Alpine Grasslands against Drought-Related Yield Losses Using Sentinel-2 Satellite Data. Remote Sensing15 (14), 3542. https://doi.org/10.3390/rs15143542 Cavender-Bares, J., Gamon, J. A., Hobbie, S. E., Madritch, M. D., Meireles, J. E., Schweiger, A. K., & Townsend, P. A. (2017). Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales. American Journal of Botany104 (7), 966-969. https://doi.org/10.3732/ajb.1700061 Cavender-Bares, J., Gamon, J. A., & Townsend, P. A. (2020). Remote sensing of plant biodiversity (p. 581). Springer Nature . https://doi.org/10.1007/978-3-030-33157-3 Cavender‐Bares, J., Schweiger, A. K., Gamon, J. A., Gholizadeh, H., Helzer, K., Lapadat, C., … & Hobbie, S. E. (2022). Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments. Ecological Monographs92 (1), e01488. https://doi.org/10.1002/ecm.1488 Chitale, V. S., Behera, M. D., & Roy, P. S. (2019). Deciphering plant richness using satellite remote sensing: a study from three biodiversity hotspots. Biodiversity and Conservation28 , 2183-2196. DOI10.1007/s10531-019-01761-4 Cisneros, A., Fiorio, P., Menezes, P., Pasqualotto, N., Van Wittenberghe, S., Bayma, G., & Furlan Nogueira, S. (2020). Mapping productivity and essential biophysical parameters of cultivated tropical grasslands from sentinel-2 imagery. Agronomy10 (5), 711. https://doi.org/10.3390/agronomy10050711 Conti, L., Malavasi, M., Galland, T., Komárek, J., Lagner, O., Carmona, C. P., … & Šímová, P. (2021). The relationship between species and spectral diversity in grassland communities is mediated by their vertical complexity. Applied Vegetation Science24 (3). https://doi.org/10.1111/avsc.12600 Craven, D., Eisenhauer, N., Pearse, W. D., Hautier, Y., Isbell, F., Roscher, C., … & Manning, P. (2018). Multiple facets of biodiversity drive the diversity–stability relationship. Nature ecology & evolution , 2(10), 1579-1587. https://doi.org/10.1038/s41559-018-0647-7 Dąbrowska-Zielińska, K., Wróblewski, K., Goliński, P., Malińska, A., Bartold, M., Łągiewska, M., … & Paradowski, K. (2024). Integrating Copernicus LMS with ground measurements data for leaf area index and biomass assessment for grasslands in Poland and Norway. International Journal of Digital Earth17 (1), 2425165. 10.1080/17538947.2024.2425165 Dehghan-Shoar, M. H., Pullanagari, R. R., Kereszturi, G., Orsi, A. A., Yule, I. J., & Hanly, J. (2023). A unified physically based method for monitoring grassland nitrogen concentration with Landsat 7, Landsat 8, and Sentinel-2 satellite data. Remote Sensing15 (10), 2491. https://doi.org/10.3390/rs15102491 Dieste, Á. G., Argüello, F., Heras, D. B., Magdon, P., Linstädter, A., Dubovyk, O., & Muro, J. (2024). ResNeTS: a ResNet for Time Series Analysis of Sentinel-2 Data Applied to Grassland Plant-Biodiversity Prediction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing . https://doi.org/10.1109/JSTARS.2024.3454271 Dube, T., Pandit, S., Shoko, C., Ramoelo, A., Mazvimavi, D., & Dalu, T. (2019). Numerical assessments of leaf area index in tropical savanna rangelands, South Africa using Landsat 8 OLI derived metrics and in-situ measurements. Remote Sensing11 (7), 829. https://doi.org/10.3390/rs11070829 Erb, K. H., Fetzel, T., Kastner, T., Kroisleitner, C., Lauk, C., Mayer, A., & Niedertscheider, M. (2016). Livestock grazing, the neglected land use. Social ecology: Society-nature relations across time and space , 295-313. https://doi.org/10.1007/978-3-319-33326-7_13 Fauvel, M., Lopes, M., Dubo, T., Rivers-Moore, J., Frison, P. L., Gross, N., & Ouin, A. (2020). Prediction of plant diversity in grasslands using Sentinel-1 and-2 satellite image time series. Remote Sensing of Environment237 , 111536. https://doi.org/10.1016/j.rse.2019.111536 Ferner, J., Linstädter, A., Rogass, C., Südekum, K. H., & Schmidtlein, S. (2021). Towards Forage Resource Monitoring in subtropical Savanna Grasslands: going multispectral or hyperspectral?. European Journal of Remote Sensing54 (1), 364-384. http://dx.doi.org/10.1080/22797254.2021.1934556 Finn, J. A., Kirwan, L., Connolly, J., Sebastià, M. T., Helgadottir, A., Baadshaug, O. H., … & Lüscher, A. (2013). Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3‐year continental‐scale field experiment. Journal of Applied Ecology , 50(2), 365-375. https://doi.org/10.1111/1365-2664.12041 Franceschini, M. H., Becker, R., Wichern, F., & Kooistra, L. (2022). Quantification of grassland biomass and nitrogen content through UAV hyperspectral imagery—active sample selection for model transfer. Drones6 (3), 73. https://doi.org/10.3390/drones6030073 Gallmann, J., Schüpbach, B., Jacot, K., Albrecht, M., Winizki, J., Kirchgessner, N., & Aasen, H. (2022). Flower mapping in grasslands with drones and deep learning. Frontiers in plant science12 , 774965. https://doi.org/10.3389/fpls.2021.774965 Gao, R., Kong, Q., Wang, H., & Su, Z. (2019). Diagnostic feed values of natural grasslands based on multispectral images acquired by small unmanned aerial vehicle. Rangeland Ecology & Management72 (6), 916-922. https://doi.org/10.1016/j.rama.2019.06.005 Gao, J., Liu, J., Liang, T., Hou, M., Ge, J., Feng, Q., … & Li, W. (2020). Mapping the forage nitrogen-phosphorus ratio based on Sentinel-2 MSI data and a random forest algorithm in an alpine grassland ecosystem of the Tibetan Plateau. Remote Sensing12 (18), 2929. https://doi.org/10.3390/rs12182929 Geipel, J., Bakken, A. K., Jørgensen, M., & Korsaeth, A. (2021). Forage yield and quality estimation by means of UAV and hyperspectral imaging. Precision Agriculture22 , 1437-1463. 10.1007/s11119-021-09790-2 Gholizadeh, H., Gamon, J. A., Townsend, P. A., Zygielbaum, A. I., Helzer, C. J., Hmimina, G. Y., … & Cavender-Bares, J. (2019). Detecting prairie biodiversity with airborne remote sensing. Remote Sensing of Environment221 , 38-49. https://doi.org/10.1016/j.rse.2018.10.037 Gholizadeh, H., Gamon, J. A., Helzer, C. J., & Cavender‐Bares, J. (2020). Multi‐temporal assessment of grassland α‐and β‐diversity using hyperspectral imaging. Ecological Applications30 (7), e02145. https://doi.org/10.1002/eap.2145 Gholizadeh, H., Friedman, M. S., McMillan, N. A., Hammond, W. M., Hassani, K., Sams, A. V., … & Adams, H. D. (2022a). Mapping invasive alien species in grassland ecosystems using airborne imaging spectroscopy and remotely observable vegetation functional traits. Remote Sensing of Environment271 , 112887. https://doi.org/10.1016/j.rse.2022.112887 Gholizadeh, H., Dixon, A. P., Pan, K. H., McMillan, N. A., Hamilton, R. G., Fuhlendorf, S. D., … & Gamon, J. A. (2022b). Using airborne and DESIS imaging spectroscopy to map plant diversity across the largest contiguous tract of tallgrass prairie on earth. Remote Sensing of Environment281 , 113254. https://doi.org/10.1016/j.rse.2022.113254 Giraldo, R. A. D., De Leon, M. A., Castillo, A. R., López, O. P., Rocha, E. C., & Asprilla, W. P. (2023). Estimation of forage availability and parameters associated with the nutritional quality of Urochloa humidicola cv Llanero based on multispectral images. https://doi.org/10.17138/tgft(11)61-74 Grüner, E., Astor, T., & Wachendorf, M. (2021). Prediction of biomass and N fixation of legume–grass mixtures using sensor fusion. Frontiers in plant science11 , 603921. https://doi.org/10.3389/fpls.2020.603921 Hall, E. C., & Lara, M. J. (2022). Multisensor UAS mapping of plant species and plant functional types in midwestern grasslands. Remote Sensing14 (14), 3453. https://doi.org/10.3390/rs14143453 Han, F., Fu, G., Yu, C., & Wang, S. (2022). Modeling nutrition quality and storage of forage using climate data and normalized-difference vegetation index in alpine grasslands. Remote Sensing14 (14), 3410. https://doi.org/10.3390/rs14143410 Hart, L., Huguenin-Elie, O., Latsch, R., Simmler, M., Dubois, S., & Umstatter, C. (2020). Comparison of spectral reflectance-based smart farming tools and a conventional approach to determine herbage mass and grass quality on farm. Remote Sensing12 (19), 3256. https://doi.org/10.3390/rs12193256 Haughey, E., Suter, M., Hofer, D., Hoekstra, N. J., McElwain, J. C., Lüscher, A., & Finn, J. A. (2018). Higher species richness enhances yield stability in intensively managed grasslands with experimental disturbance. Scientific reports8 (1), 15047. https://doi.org/10.1038/s41598-018-33262-9 Henle, K., Alard, D., Clitherow, J., Cobb, P., Firbank, L., Kull, T., … & Young, J. (2008). Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe–A review. Agriculture, ecosystems & environment124 (1-2), 60-71. https://doi.org/10.1016/j.agee.2007.09.005 Homolová, L., Malenovský, Z., Clevers, J. G., García-Santos, G., & Schaepman, M. E. (2013). Review of optical-based remote sensing for plant trait mapping. Ecological Complexity15 , 1-16. https://doi.org/10.1016/j.ecocom.2013.06.003 Hua, R., Ye, G., De Giuli, M., Zhou, R., Bao, D., Hua, L., & Niu, Y. (2023). Decreased species richness along bare patch gradient in the degradation of Kobresia pasture on the Tibetan Plateau. Ecological Indicators157 , 111195. https://doi.org/10.1016/j.ecolind.2023.111195 Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., … & Eisenhauer, N. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes.Nature , 526(7574), 574-577. https://doi.org/10.1038/nature15374 Jackson, J., Lawson, C. S., Adelmant, C., Huhtala, E., Fernandes, P., Hodgson, R., … & Salguero‐Gómez, R. (2022). Short‐range multispectral imaging is an inexpensive, fast, and accurate approach to estimate biodiversity in a temperate calcareous grassland. Ecology and Evolution12 (12), e9623. https://doi.org/10.1002/ece3.9623 Janišová, M., Sorescu-Marinković, A., Aćić, S., Hubáčková, B., Magnes, M., Opravil, Š., & Širka, P. (2024). Exploring a grassland biodiversity hotspot in the Serbian Carpathians: Interdisciplinary perspectives and conservation implications. Biological Conservation299 , 110822. https://doi.org/10.1016/j.biocon.2024.110822 Jiang, H., Jia, K., Wang, Q., Yuan, B., Tao, G., Wang, G., & Xue, B. (2024). General BRDF Parameters for Normalizing GF-1 Reflectance Data to Nadir Reflectance to Improve Vegetation Parameters Estimation Accuracy. IEEE Transactions on Geoscience and Remote Sensing . https://doi.org/10.1109/TGRS.2024.3403523 Johansen, L., Henriksen, M. V., & Wehn, S. (2022). The contribution of alternative habitats for conservation of plant species associated with threatened semi‐natural grasslands. Ecological Solutions and Evidence3 (3), e12183. https://doi.org/10.1002/2688-8319.12183 Kamaraj, N. P., Gholizadeh, H., Hamilton, R. G., Fuhlendorf, S. D., & Gamon, J. A. (2024). Estimating plant β-diversity using airborne and spaceborne imaging spectroscopy. International Journal of Remote Sensing , 1-20. https://doi.org/10.1080/01431161.2024.2410959 Kattge, J., Diaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., … & Wirth, C. (2011). TRY–a global database of plant traits. Global change biology17 (9), 2905-2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x Klingler, A., Schaumberger, A., Vuolo, F., Kalmár, L. B., & Pötsch, E. M. (2020). Comparison of direct and indirect determination of leaf area index in permanent grassland. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science88 (5), 369-378. 10.1007/s41064-020-00119-8 Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., … & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature communications6 (1), 6707. https://doi.org/10.1038/ncomms7707 Li, X., Lu, H., Yu, L., & Yang, K. (2018a). Comparison of the spatial characteristics of four remotely sensed leaf area index products over China: Direct validation and relative uncertainties. Remote Sensing10 (1), 148. https://doi.org/10.3390/rs10010148 Li, C., Wulf, H., Schmid, B., He, J. S., & Schaepman, M. E. (2018b). Estimating plant traits of alpine grasslands on the Qinghai-Tibetan Plateau using remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing11 (7), 2263-2275. https://doi.org/10.1109/JSTARS.2018.2824901 Li, Z., Huang, C., Zhu, Z., Gao, F., Tang, H., Xin, X., … & Yan, R. (2018c). Mapping daily leaf area index at 30 m resolution over a meadow steppe area by fusing Landsat, Sentinel-2A and MODIS data. International Journal of Remote Sensing39 (23), 9025-9053. https://doi.org/10.1080/01431161.2018.1504342 Li, Z., Ding, L., Shen, B., Chen, J., Xu, D., Wang, X., … & Xin, X. (2024). Quantifying key vegetation parameters from Sentinel-3 and MODIS over the eastern Eurasian steppe with a Bayesian geostatistical model. Science of The Total Environment909 , 168594. https://doi.org/10.1016/j.scitotenv.2023.168594 Liu, Y., Xiao, J., Ju, W., Zhu, G., Wu, X., Fan, W., … & Zhou, Y. (2018). Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sensing of Environment206 , 174-188. https://doi.org/10.1016/j.rse.2017.12.024 Löfgren, O., Prentice, H. C., Moeckel, T., Schmid, B. C., & Hall, K. (2018). Landscape history confounds the ability of the NDVI to detect fine‐scale variation in grassland communities. Methods in Ecology and Evolution9 (9), 2009-2018. https://doi.org/10.1111/2041-210X.13036 Lu, B., & He, Y. (2019). Leaf area index estimation in a heterogeneous grassland using optical, SAR, and DEM Data. Canadian Journal of Remote Sensing45 (5), 618-633. https://doi.org/10.1080/07038992.2019.1641401 Lussem, U., Bolten, A., Kleppert, I., Jasper, J., Gnyp, M. L., Schellberg, J., & Bareth, G. (2022). Herbage mass, N concentration, and N uptake of temperate grasslands can adequately be estimated from UAV-based image data using machine learning. Remote Sensing14 (13), 3066. https://doi.org/10.3390/rs14133066 Lyu, X., Li, X., Dang, D., Wang, K., Zhang, C., Cao, W., & Lou, A. (2024). Systematic review of remote sensing technology for grassland biodiversity monitoring: Current status and challenges. Global Ecology and Conservation , e03196. https://doi.org/10.1016/j.gecco.2024.e03196 Masenyama, A., Mutanga, O., Dube, T., Sibanda, M., Odebiri, O., & Mabhaudhi, T. (2023). Inter-seasonal estimation of grass water content indicators using multisource remotely sensed data metrics and the cloud-computing google earth engine platform. Applied Sciences13 (5), 3117. https://doi.org/10.3390/app13053117 Mashiane, K., Ramoelo, A., & Adelabu, S. (2024). Prediction of species richness and diversity in sub‐alpine grasslands using satellite remote sensing and random forest machine‐learning algorithm. Applied Vegetation Science27 (2), e12778. https://doi.org/10.1111/avsc.12778 Monteiro, A. T., Alves, P., Carvalho-Santos, C., Lucas, R., Cunha, M., Marques da Costa, E., & Fava, F. (2021). Monitoring plant diversity to support agri-environmental schemes: Evaluating statistical models informed by satellite and local factors in Southern European Mountain Pastoral Systems. Diversity14 (1), 8. https://doi.org/10.3390/d14010008 Morais, T. G., Jongen, M., Tufik, C., Rodrigues, N. R., Gama, I., Fangueiro, D., … & Teixeira, R. F. (2023). Characterization of portuguese sown rainfed grasslands using remote sensing and machine learning. Precision Agriculture24 (1), 161-186. 10.1007/s11119-022-09937-9 Munier, S., Carrer, D., Planque, C., Camacho, F., Albergel, C., & Calvet, J. C. (2018). Satellite leaf area index: Global scale analysis of the tendencies per vegetation type over the last 17 years. Remote Sensing10 (3), 424. https://doi.org/10.3390/rs10030424 Muro, J., Linstädter, A., Magdon, P., Wöllauer, S., Männer, F. A., Schwarz, L. M., … & Dubovyk, O. (2022). Predicting plant biomass and species richness in temperate grasslands across regions, time, and land management with remote sensing and deep learning. Remote Sensing of Environment282 , 113262. https://doi.org/10.1016/j.rse.2022.113262 Newbold, T., Hudson, L. N., Arnell, A. P., Contu, S., De Palma, A., Ferrier, S., … & Purvis, A. (2016). Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science353 (6296), 288-291. https://doi.org/10.1126/science.aaf2201 Oliveira, R. A., Näsi, R., Niemeläinen, O., Nyholm, L., Alhonoja, K., Kaivosoja, J., … & Honkavaara, E. (2020). Machine learning estimators for the quantity and quality of grass swards used for silage production using drone-based imaging spectrometry and photogrammetry. Remote Sensing of Environment246 , 111830. https://doi.org/10.1016/j.rse.2020.111830 Oliveira, R. A., Marcato Junior, J., Soares Costa, C., Näsi, R., Koivumäki, N., Niemeläinen, O., … & Honkavaara, E. (2022). Silage grass sward nitrogen concentration and dry matter yield estimation using deep regression and RGB images captured by UAV. Agronomy12 (6), 1352. https://doi.org/10.3390/agronomy12061352 O’Mara, F. P. (2012). The role of grasslands in food security and climate change. Annals of botany110 (6), 1263-1270. https://doi.org/10.1093/aob/mcs209 Panek-Chwastyk, E., Ozbilge, C. N., Dąbrowska-Zielińska, K., & Wróblewski, K. (2024). Assessment of Grassland Biomass Prediction Using AquaCrop Model: Integrating Sentinel-2 Data and Ground Measurements in Wielkopolska and Podlasie Regions, Poland. Agriculture14 (6), 837. https://doi.org/10.3390/agriculture14060837 Pang, H., Zhang, A., Yin, S., Zhang, J., Dong, G., He, N., … & Wei, D. (2022). Estimating carbon, nitrogen, and phosphorus contents of west–east grassland transect in Inner Mongolia based on Sentinel-2 and meteorological data. Remote Sensing14 (2), 242. https://doi.org/10.3390/rs14020242 Pau, S., Nippert, J. B., Slapikas, R., Griffith, D., Bachle, S., Helliker, B. R., … & Zaricor, M. (2022). Poor relationships between NEON Airborne Observation Platform data and field‐based vegetation traits at a mesic grassland. Ecology103 (2), e03590. https://doi.org/10.1002/ecy.3590 Pärtel, M., Bruun, H. H., & Sammul, M. (2005). Biodiversity in temperate European grasslands: origin and conservation. Grassland science in Europe10 (1), 14. Peciña, M. V., Ward, R. D., Bunce, R. G., Sepp, K., Kuusemets, V., & Luuk, O. (2019). Country-scale mapping of ecosystem services provided by semi-natural grasslands. Science of the Total Environment661 , 212-225. Peng, S., Wang, Z., Lu, X., & Liu, X. (2024). Hybrid inversion of radiative transfer models based on topographically corrected Landsat surface reflectance improves leaf area index and aboveground biomass retrievals of grassland on the hilly Loess Plateau. International Journal of Digital Earth17 (1), 2316840. 10.1080/17538947.2024.2316840 Perrone, M., Conti, L., Galland, T., Komárek, J., Lagner, O., Torresani, M., … & Malavasi, M. (2024). “Flower power”: How flowering affects spectral diversity metrics and their relationship with plant diversity. Ecological Informatics81 , 102589. https://doi.org/10.1016/j.ecoinf.2024.102589 Polley, H. W., Yang, C., Wilsey, B. J., & Fay, P. A. (2019). Spectral heterogeneity predicts local-scale gamma and beta diversity of mesic grasslands. Remote Sensing11 (4), 458. https://doi.org/10.3390/rs11040458 Polley, H. W., Yang, C., Wilsey, B. J., & Fay, P. A. (2020A). Spectrally derived values of community leaf dry matter content link shifts in grassland composition with change in biomass production. Remote Sensing in Ecology and Conservation6 (3), 344-353. https://doi.org/10.1002/rse2.145 Polley, H. W., Yang, C., Wilsey, B. J., & Fay, P. A. (2020B). Temporal stability of grassland metacommunities is regulated more by community functional traits than species diversity. Ecosphere11 (7), e03178. https://doi.org/10.1002/ecs2.3178 Polley, H. W., Collins, H. P., & Fay, P. A. (2020). Biomass production and temporal stability are similar in switchgrass monoculture and diverse grassland. Biomass and Bioenergy142 , 105758. https://doi.org/10.1016/j.biombioe.2020.105758 Polley, H. W., Collins, H. P., & Fay, P. A. (2022). Community leaf dry matter content predicts plant production in simple and diverse grassland. Ecosphere13 (5), e4076. https://doi.org/10.1002/ecs2.4076 Polley, H. W., Jones, K. A., Kolodziejczyk, C. A., & Fay, P. A. (2023). Reduced precipitation lessens the scaling of growth to plant N in mesic grasslands. Plant Ecology224 (1), 113-123. 10.1007/s11258-022-01283-0 Pöttker, M., Kiehl, K., Jarmer, T., & Trautz, D. (2023). Convolutional Neural Network Maps Plant Communities in Semi-Natural Grasslands Using Multispectral Unmanned Aerial Vehicle Imagery. Remote Sensing15 (7), 1945. https://doi.org/10.3390/rs15071945 Punalekar, S. M., Verhoef, A., Quaife, T. L., Humphries, D., Bermingham, L., & Reynolds, C. K. (2018). Application of Sentinel-2A data for pasture biomass monitoring using a physically based radiative transfer model. Remote Sensing of Environment218 , 207-220. https://doi.org/10.1016/j.rse.2018.09.028 Qin, Y., Sun, Y., Zhang, W., Qin, Y., Chen, J., Wang, Z., & Zhou, Z. (2020). Species monitoring using unmanned aerial vehicle to reveal the ecological role of Plateau Pika in maintaining vegetation diversity on the northeastern Qinghai-Tibetan Plateau. Remote Sensing12 (15), 2480. https://doi.org/10.3390/rs12152480 Qin, Q., Xu, D., Hou, L., Shen, B., & Xin, X. (2021). Comparing vegetation indices from Sentinel-2 and Landsat 8 under different vegetation gradients based on a controlled grazing experiment. Ecological indicators133 , 108363. https://doi.org/10.1016/j.ecolind.2021.108363 Raab, C., Riesch, F., Tonn, B., Barrett, B., Meißner, M., Balkenhol, N., & Isselstein, J. (2020). Target‐oriented habitat and wildlife management: estimating forage quantity and quality of semi‐natural grasslands with Sentinel‐1 and Sentinel‐2 data. Remote Sensing in Ecology and Conservation6 (3), 381-398. https://doi.org/10.1002/rse2.149 Rocchini, D., Chiarucci, A., & Loiselle, S. A. (2004). Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecologica26 (2), 117-120. https://doi.org/10.1016/j.actao.2004.03.008 Rossi, C., Kneubühler, M., Schütz, M., Schaepman, M. E., Haller, R. M., & Risch, A. C. (2021). Remote sensing of spectral diversity: A new methodological approach to account for spatio-temporal dissimilarities between plant communities. Ecological Indicators130 , 108106. https://doi.org/10.1016/j.ecolind.2021.108106 Rossi, C., Kneubühler, M., Schütz, M., Schaepman, M. E., Haller, R. M., & Risch, A. C. (2022). Spatial resolution, spectral metrics and biomass are key aspects in estimating plant species richness from spectral diversity in species‐rich grasslands. Remote Sensing in Ecology and Conservation8 (3), 297-314. https://doi.org/10.1002/rse2.244 Rossi, C., & Gholizadeh, H. (2023). Uncovering the hidden: Leveraging sub-pixel spectral diversity to estimate plant diversity from space. Remote Sensing of Environment296 , 113734. https://doi.org/10.1016/j.rse.2023.113734 Rossi, C., McMillan, N. A., Schweizer, J. M., Gholizadeh, H., Groen, M., Ioannidis, N., & Hauser, L. T. (2024). Parcel level temporal variance of remotely sensed spectral reflectance predicts plant diversity. Environmental Research Letters . 10.1088/1748-9326/ad545a Russo, L., Fitzpatrick, Ú., Larkin, M., Mullen, S., Power, E., Stanley, D., … & Stout, J. C. (2022). Conserving diversity in Irish plant–pollinator networks. Ecology and Evolution12 (10), e9347. https://doi.org/10.1002/ece3.9347 Schmidtlein, S., & Fassnacht, F. E. (2017). The spectral variability hypothesis does not hold across landscapes. Remote Sensing of Environment192 , 114-125. https://doi.org/10.1016/j.rse.2017.01.036 Schucknecht, A., Seo, B., Krämer, A., Asam, S., Atzberger, C., & Kiese, R. (2022). Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data–a comparison of sensors, algorithms, and predictor sets. Biogeosciences19 (10), 2699-2727. https://doi.org/10.5194/bg-19-2699-2022 Schwieder, M., Buddeberg, M., Kowalski, K., Pfoch, K., Bartsch, J., Bach, H., … & Hostert, P. (2020). Estimating grassland parameters from Sentinel-2: a model comparison study. PFG 88, 379–390 . 10.1007/s41064-020-00120-1 Sha, Z., Wang, Y., Bai, Y., Zhao, Y., Jin, H., Na, Y., & Meng, X. (2019). Comparison of leaf area index inversion for grassland vegetation through remotely sensed spectra by unmanned aerial vehicle and field-based spectroradiometer. Journal of Plant Ecology12 (3), 395-408. https://doi.org/10.1093/jpe/rty036 Shen, B., Ding, L., Ma, L., Li, Z., Pulatov, A., Kulenbekov, Z., … & Xin, X. (2022). Modeling the leaf area index of Inner mongolia grassland based on machine learning regression algorithms incorporating empirical knowledge. Remote Sensing14 (17), 4196. https://doi.org/10.3390/rs14174196 Shen, B., Guo, J., Li, Z., Chen, J., Fang, W., Kussainova, M., … & Xin, X. (2023). Comparative Verification of Leaf Area Index Products for Different Grassland Types in Inner Mongolia, China. Remote Sensing15 (19), 4736. https://doi.org/10.3390/rs15194736 Shi, J., Zhang, A., Wang, J., Gao, X., Hu, S., & Chai, S. (2024). Mapping Seasonal Spatiotemporal Dynamics of Alpine Grassland Forage Phosphorus Using Sentinel-2 MSI and a DRL-GP-Based Symbolic Regression Algorithm. Remote Sensing16 (21), 4086. https://doi.org/10.3390/rs16214086 Smith, H. D., Dubeux, J. C., Zare, A., & Wilson, C. H. (2023). Assessing transferability of remote sensing pasture estimates using multiple machine learning algorithms and evaluation structures. Remote Sensing15 (11), 2940. https://doi.org/10.3390/rs15112940 Tang, Z., Zhang, Y., Cong, N., Wang, L., Zhu, Y., Li, Z., & Zhao, G. (2021). Remotely piloted aircraft systems remote sensing can effectively retrieve ecosystem traits of alpine grasslands on the Tibetan Plateau at a landscape scale. Remote Sensing in Ecology and Conservation7 (3), 382-396. https://doi.org/10.1002/rse2.196 Tian, Y., & Fu, G. (2022). Quantifying plant species α-diversity using normalized difference vegetation index and climate data in alpine grasslands. Remote Sensing14 (19), 5007. https://doi.org/10.3390/rs14195007 Thornley, R. H., Gerard, F. F., White, K., & Verhoef, A. (2023). Prediction of grassland biodiversity using measures of spectral variance: a meta-analytical review. Remote Sensing15 (3), 668. https://doi.org/10.3390/rs15030668 Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. (1997). The influence of functional diversity and composition on ecosystem processes. Science , 277(5330), 1300-1302. https://doi.org/10.1126/science.277.5330.1300 Tsele, P., Ramoelo, A., & Qabaqaba, M. (2023). Development of the grass LAI and CCC remote sensing-based models and their transferability using sentinel-2 data in heterogeneous grasslands. International Journal of Remote Sensing44 (8), 2643-2667. https://doi.org/10.1080/01431161.2023.2205982 Van Cleemput, E., Vanierschot, L., Fernández-Castilla, B., Honnay, O., & Somers, B. (2018). The functional characterization of grass-and shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables. Remote Sensing of Environment209 , 747-763. https://doi.org/10.1016/j.rse.2018.02.030 Van Cleemput, E., Adler, P., & Suding, K. N. (2023). Making remote sense of biodiversity: What grassland characteristics make spectral diversity a good proxy for taxonomic diversity?. Global Ecology and Biogeography32 (12), 2177-2188. https://doi.org/10.1111/geb.13759 Vitousek, P. M. (2015). Grassland ecology: Complexity of nutrient constraints. Nature Plants, 1(7), 1-2. http://dx.doi.org/10.1038/nplants.2015.98 Wang, R., Gamon, J. A., Cavender‐Bares, J., Townsend, P. A., & Zygielbaum, A. I. (2018). The spatial sensitivity of the spectral diversity–biodiversity relationship: an experimental test in a prairie grassland. Ecological Applications28 (2), 541-556. https://doi.org/10.1002/eap.1669 Wang, R., & Gamon, J. A. (2019). Remote sensing of terrestrial plant biodiversity. Remote Sensing of Environment231 , 111218. https://doi.org/10.1016/j.rse.2019.111218 Wang, Z., Townsend, P. A., Schweiger, A. K., Couture, J. J., Singh, A., Hobbie, S. E., & Cavender-Bares, J. (2019). Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sensing of Environment221 , 405-416. https://doi.org/10.1016/j.rse.2018.11.016 Wijesingha, J., Astor, T., Schulze-Brüninghoff, D., Wengert, M., & Wachendorf, M. (2020). Predicting forage quality of grasslands using UAV-borne imaging spectroscopy. Remote Sensing12 (1), 126. https://doi.org/10.3390/rs12010126 Wilson, J. B., Peet, R. K., Dengler, J., & Pärtel, M. (2012). Plant species richness: the world records. Journal of vegetation Science , 23(4), 796-802. https://doi.org/10.1111/j.1654-1103.2012.01400.x Wingler A., Sandel B. (2023). Relationships of the CSR functional strategies of grass species with lifespan, photosynthetic type, naturalization and climate. AoB PLANTS , 15, plad021. https://doi.org/10.1093/aobpla/plad021 Xin, J., Li, J., Zeng, Q., Peng, Y., Wang, Y., Teng, X., … & Chen, C. (2024). High-precision estimation of plant alpha diversity in different ecosystems based on Sentinel-2 data. Ecological Indicators166 , 112527. https://doi.org/10.1016/j.ecolind.2024.112527 Xu, D., Koper, N., & Guo, X. (2018). Quantifying the influences of grazing, climate and their interactions on grasslands using Landsat TM images. Grassland science64 (2), 118-127. https://doi.org/10.1111/grs.12192 Xu, C., Zeng, Y., Zheng, Z., Zhao, D., Liu, W., Ma, Z., & Wu, B. (2022). Assessing the impact of soil on species diversity estimation based on UAV imaging spectroscopy in a natural alpine steppe. Remote Sensing14 (3), 671. https://doi.org/10.3390/rs14030671 Yang, M., Chen, A., Zhang, M., Gu, Q., Wang, Y., Guo, J., … & Yang, X. (2023a). Relationship between plant species diversity and aboveground biomass in alpine grasslands on the Qinghai–Tibet Plateau: Spatial patterns and the factors driving them. Frontiers in Ecology and Evolution11 , 1138884. https://doi.org/10.3389/fevo.2023.1138884 Yang, X., Lei, S., Shi, Y., Gong, C., Xu, J., & Wang, W. (2023b). Impacts of open‐pit coal mining and livestock grazing on plant diversity in a steppe: From the perspective of remote sensing. Land Degradation & Development34 (16), 5122-5134. https://doi.org/10.1002/ldr.4834 Yang, M., Chen, A., Cao, W., Wang, S., Xu, M., Gu, Q., … & Yang, X. (2024). Spatial and Temporal Patterns of Grassland Species Diversity and Their Driving Factors in the Three Rivers Headwater Region of China from 2000 to 2021. Remote Sensing16 (21), 4005. https://doi.org/10.3390/rs16214005 Yin, G., Li, A., Zhang, Z., & Lei, G. (2020). Temporal validation of four LAI products over grasslands in the northeastern Tibetan Plateau. Photogrammetric Engineering & Remote Sensing86 (4), 225-233. https://doi.org/10.14358/PERS.86.4.225 Zhang, Y. W., Wang, T., Guo, Y., Skidmore, A., Zhang, Z., Tang, R., … & Tang, Z. (2022). Estimating community-level plant functional traits in a species-rich alpine meadow using UAV image spectroscopy. Remote Sensing14 (14), 3399. https://doi.org/10.3390/rs14143399 Zhang, Z., Jin, W., Dou, R., Cai, Z., Wei, H., Wu, T., … & Xu, B. (2023a). Improved estimation of leaf area index by reducing leaf chlorophyll content and saturation effects based on red-edge bands. IEEE Transactions on Geoscience and Remote Sensing61 , 1-14. https://doi.org/10.1109/TGRS.2023.3270712 Zhang, X., Liang, T., Gao, J., Zhang, D., Liu, J., Feng, Q., … & Wang, Z. (2023b). Mapping the forage nitrogen, phosphorus, and potassium contents of alpine grasslands by integrating Sentinel-2 and Tiangong-2 data. Plant Methods19 (1), 48. 10.1186/s13007-023-01024-y Zhao, Y., Sun, Y., Lu, X., Zhao, X., Yang, L., Sun, Z., & Bai, Y. (2021a). Hyperspectral retrieval of leaf physiological traits and their links to ecosystem productivity in grassland monocultures. Ecological Indicators122 , 107267. https://doi.org/10.1016/j.ecolind.2020.107267 Zhao, Y., Sun, Y., Chen, W., Zhao, Y., Liu, X., & Bai, Y. (2021b). The potential of mapping grassland plant diversity with the links among spectral diversity, functional trait diversity, and species diversity. Remote Sensing13 (15), 3034. https://doi.org/10.3390/rs13153034 Zhao, Y., Yin, X., Fu, Y., & Yue, T. (2022). A comparative mapping of plant species diversity using ensemble learning algorithms combined with high accuracy surface modeling. Environmental Science and Pollution Research29 (12), 17878-17891. 10.1007/s11356-021-16973-x Zhao, X., Wu, B., Xue, J., Shi, Y., Zhao, M., Geng, X., … & Fang, J. (2023). Mapping forage biomass and quality of the inner mongolia grasslands by combining field measurements and sentinel-2 observations. Remote Sensing15 (8), 1973. https://doi.org/10.3390/rs15081973 Zhou, H., Wang, C., Zhang, G., Xue, H., Wang, J., & Wan, H. (2020). Generating a spatio-temporal complete 30 m leaf area index from field and remote sensing data. Remote Sensing12 (15), 2394. https://doi.org/10.3390/rs12152394 Zhou, J., Yang, Q., Liu, L., Kang, Y., Jia, X., Chen, M., … & Jin, Z. (2023). A deep transfer learning framework for mapping high spatiotemporal resolution LAI. ISPRS Journal of Photogrammetry and Remote Sensing206 , 30-48. https://doi.org/10.1016/j.isprsjprs.2023.10.017 Zhu, X., Yang, Q., Chen, X., & Ding, Z. (2023). An approach for joint estimation of grassland leaf area index and leaf chlorophyll content from UAV hyperspectral data. Remote Sensing15 (10), 2525. https://doi.org/10.3390/rs15102525 Zhu, X., Chen, X., Ma, L., & Liu, W. (2024). UAV and Satellite Synergies for Mapping Grassland Aboveground Biomass in Hulunbuir Meadow Steppe. Plants13 (7), 1006. https://doi.org/10.3390/plants13071006 Zwick, M., Cardoso, J. A., Gutierrez-Zapata, D. M., Cerón-Muñoz, M., Gutierrez, J. F., Raab, C., … & Barrett, B. (2024). Pixels to Pasture: Using Machine Learning and Multispectral Remote Sensing to Predict Biomass and Nutrient Quality in Tropical Grasslands. Remote Sensing Applications: Society and Environment , 101282. https://doi.org/10.1016/j.rsase.2024.101282