References
Arogoundade, A. M., Mutanga, O., Odindi, J., & Odebiri, O. (2023).
Leveraging Google Earth Engine to estimate foliar C: N ratio in an
African savannah rangeland using Sentinel 2 data. Remote Sensing
Applications: Society and Environment , 30 , 100981.
https://doi.org/10.1016/j.rsase.2023.100981
Arogoundade, A. M., Mutanga, O., Odindi, J., & Naicker, R. (2023). The
role of remote sensing in tropical grassland nutrient estimation: a
review. Environmental Monitoring and Assessment , 195 (8),
954. 10.1007/s10661-023-11562-6
Askari, M. S., McCarthy, T., Magee, A., & Murphy, D. J. (2019).
Evaluation of grass quality under different soil management scenarios
using remote sensing techniques. Remote Sensing , 11 (15),
1835. https://doi.org/10.3390/rs11151835
Bandopadhyay, S., Rastogi, A., Rascher, U., Rademske, P., Schickling,
A., Cogliati, S., … & Juszczak, R. (2019). Hyplant-derived
sun-induced fluorescence—A new opportunity to disentangle complex
vegetation signals from diverse vegetation types. Remote
sensing , 11 (14), 1691. https://doi.org/10.3390/rs11141691
Barnetson, J., Phinn, S., & Scarth, P. (2020). Estimating plant pasture
biomass and quality from UAV imaging across Queensland’s
Rangelands. AgriEngineering , 2 (4), 523-543.
https://doi.org/10.3390/agriengineering2040035
Bazzo, C. O. G., Kamali, B., dos Santos Vianna, M., Behrend, D.,
Hueging, H., Schleip, I., … & Gaiser, T. (2024). Integration of
UAV-sensed features using machine learning methods to assess species
richness in wet grassland ecosystems. Ecological
Informatics , 83 , 102813.
https://doi.org/10.1016/j.ecoinf.2024.102813
Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T.,
O’Connor, T., … & Lindborg, R. (2019). Grasslands—more important
for ecosystem services than you might think. Ecosphere , 10(2),
e02582. https://doi.org/10.1002/ecs2.2582
Blair, J., Nippert, J., & Briggs, J. (2014). Grassland Ecology. In:
Monson, R. (eds) Ecology and the Environment. The Plant Sciences, vol 8.
Springer, New York, NY.
https://doi.org/10.1007/978-1-4614-7501-9_14
Brown, L. A., Fernandes, R., Djamai, N., Meier, C., Gobron, N., Morris,
H., … & Dash, J. (2021). Validation of baseline and modified
Sentinel-2 Level 2 Prototype Processor leaf area index retrievals over
the United States. ISPRS Journal of Photogrammetry and Remote
Sensing , 175 , 71-87.
https://doi.org/10.1016/j.isprsjprs.2021.02.020
Castelli, M., Peratoner, G., Pasolli, L., Molisse, G., Dovas, A.,
Sicher, G., … & Notarnicola, C. (2023). Insuring Alpine Grasslands
against Drought-Related Yield Losses Using Sentinel-2 Satellite
Data. Remote Sensing , 15 (14), 3542.
https://doi.org/10.3390/rs15143542
Cavender-Bares, J., Gamon, J. A., Hobbie, S. E., Madritch, M. D.,
Meireles, J. E., Schweiger, A. K., & Townsend, P. A. (2017). Harnessing
plant spectra to integrate the biodiversity sciences across biological
and spatial scales. American Journal of Botany , 104 (7),
966-969. https://doi.org/10.3732/ajb.1700061
Cavender-Bares, J., Gamon, J. A., & Townsend, P. A. (2020). Remote
sensing of plant biodiversity (p. 581). Springer Nature .
https://doi.org/10.1007/978-3-030-33157-3
Cavender‐Bares, J., Schweiger, A. K., Gamon, J. A., Gholizadeh, H.,
Helzer, K., Lapadat, C., … & Hobbie, S. E. (2022). Remotely detected
aboveground plant function predicts belowground processes in two prairie
diversity experiments. Ecological Monographs , 92 (1),
e01488. https://doi.org/10.1002/ecm.1488
Chitale, V. S., Behera, M. D., & Roy, P. S. (2019). Deciphering plant
richness using satellite remote sensing: a study from three biodiversity
hotspots. Biodiversity and Conservation , 28 , 2183-2196.
DOI10.1007/s10531-019-01761-4
Cisneros, A., Fiorio, P., Menezes, P., Pasqualotto, N., Van
Wittenberghe, S., Bayma, G., & Furlan Nogueira, S. (2020). Mapping
productivity and essential biophysical parameters of cultivated tropical
grasslands from sentinel-2 imagery. Agronomy , 10 (5), 711.
https://doi.org/10.3390/agronomy10050711
Conti, L., Malavasi, M., Galland, T., Komárek, J., Lagner, O., Carmona,
C. P., … & Šímová, P. (2021). The relationship between species and
spectral diversity in grassland communities is mediated by their
vertical complexity. Applied Vegetation Science , 24 (3).
https://doi.org/10.1111/avsc.12600
Craven, D., Eisenhauer, N., Pearse, W. D., Hautier, Y., Isbell, F.,
Roscher, C., … & Manning, P. (2018). Multiple facets of biodiversity
drive the diversity–stability relationship. Nature ecology &
evolution , 2(10), 1579-1587.
https://doi.org/10.1038/s41559-018-0647-7
Dąbrowska-Zielińska, K., Wróblewski, K., Goliński, P., Malińska, A.,
Bartold, M., Łągiewska, M., … & Paradowski, K. (2024). Integrating
Copernicus LMS with ground measurements data for leaf area index and
biomass assessment for grasslands in Poland and
Norway. International Journal of Digital Earth , 17 (1),
2425165. 10.1080/17538947.2024.2425165
Dehghan-Shoar, M. H., Pullanagari, R. R., Kereszturi, G., Orsi, A. A.,
Yule, I. J., & Hanly, J. (2023). A unified physically based method for
monitoring grassland nitrogen concentration with Landsat 7, Landsat 8,
and Sentinel-2 satellite data. Remote Sensing , 15 (10),
2491. https://doi.org/10.3390/rs15102491
Dieste, Á. G., Argüello, F., Heras, D. B., Magdon, P., Linstädter, A.,
Dubovyk, O., & Muro, J. (2024). ResNeTS: a ResNet for Time Series
Analysis of Sentinel-2 Data Applied to Grassland Plant-Biodiversity
Prediction. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing .
https://doi.org/10.1109/JSTARS.2024.3454271
Dube, T., Pandit, S., Shoko, C., Ramoelo, A., Mazvimavi, D., & Dalu, T.
(2019). Numerical assessments of leaf area index in tropical savanna
rangelands, South Africa using Landsat 8 OLI derived metrics and in-situ
measurements. Remote Sensing , 11 (7), 829.
https://doi.org/10.3390/rs11070829
Erb, K. H., Fetzel, T., Kastner, T., Kroisleitner, C., Lauk, C., Mayer,
A., & Niedertscheider, M. (2016). Livestock grazing, the neglected land
use. Social ecology: Society-nature relations across time and
space , 295-313. https://doi.org/10.1007/978-3-319-33326-7_13
Fauvel, M., Lopes, M., Dubo, T., Rivers-Moore, J., Frison, P. L., Gross,
N., & Ouin, A. (2020). Prediction of plant diversity in grasslands
using Sentinel-1 and-2 satellite image time series. Remote Sensing
of Environment , 237 , 111536.
https://doi.org/10.1016/j.rse.2019.111536
Ferner, J., Linstädter, A., Rogass, C., Südekum, K. H., & Schmidtlein,
S. (2021). Towards Forage Resource Monitoring in subtropical Savanna
Grasslands: going multispectral or hyperspectral?. European
Journal of Remote Sensing , 54 (1), 364-384.
http://dx.doi.org/10.1080/22797254.2021.1934556
Finn, J. A., Kirwan, L., Connolly, J., Sebastià, M. T., Helgadottir, A.,
Baadshaug, O. H., … & Lüscher, A. (2013). Ecosystem function enhanced
by combining four functional types of plant species in intensively
managed grassland mixtures: a 3‐year continental‐scale field experiment.
Journal of Applied Ecology , 50(2), 365-375.
https://doi.org/10.1111/1365-2664.12041
Franceschini, M. H., Becker, R., Wichern, F., & Kooistra, L. (2022).
Quantification of grassland biomass and nitrogen content through UAV
hyperspectral imagery—active sample selection for model
transfer. Drones , 6 (3), 73.
https://doi.org/10.3390/drones6030073
Gallmann, J., Schüpbach, B., Jacot, K., Albrecht, M., Winizki, J.,
Kirchgessner, N., & Aasen, H. (2022). Flower mapping in grasslands with
drones and deep learning. Frontiers in plant science , 12 ,
774965. https://doi.org/10.3389/fpls.2021.774965
Gao, R., Kong, Q., Wang, H., & Su, Z. (2019). Diagnostic feed values of
natural grasslands based on multispectral images acquired by small
unmanned aerial vehicle. Rangeland Ecology &
Management , 72 (6), 916-922.
https://doi.org/10.1016/j.rama.2019.06.005
Gao, J., Liu, J., Liang, T., Hou, M., Ge, J., Feng, Q., … & Li, W.
(2020). Mapping the forage nitrogen-phosphorus ratio based on Sentinel-2
MSI data and a random forest algorithm in an alpine grassland ecosystem
of the Tibetan Plateau. Remote Sensing , 12 (18), 2929.
https://doi.org/10.3390/rs12182929
Geipel, J., Bakken, A. K., Jørgensen, M., & Korsaeth, A. (2021). Forage
yield and quality estimation by means of UAV and hyperspectral
imaging. Precision Agriculture , 22 , 1437-1463.
10.1007/s11119-021-09790-2
Gholizadeh, H., Gamon, J. A., Townsend, P. A., Zygielbaum, A. I.,
Helzer, C. J., Hmimina, G. Y., … & Cavender-Bares, J. (2019).
Detecting prairie biodiversity with airborne remote
sensing. Remote Sensing of Environment , 221 , 38-49.
https://doi.org/10.1016/j.rse.2018.10.037
Gholizadeh, H., Gamon, J. A., Helzer, C. J., & Cavender‐Bares, J.
(2020). Multi‐temporal assessment of grassland α‐and β‐diversity using
hyperspectral imaging. Ecological Applications , 30 (7),
e02145. https://doi.org/10.1002/eap.2145
Gholizadeh, H., Friedman, M. S., McMillan, N. A., Hammond, W. M.,
Hassani, K., Sams, A. V., … & Adams, H. D. (2022a). Mapping invasive
alien species in grassland ecosystems using airborne imaging
spectroscopy and remotely observable vegetation functional
traits. Remote Sensing of Environment , 271 , 112887.
https://doi.org/10.1016/j.rse.2022.112887
Gholizadeh, H., Dixon, A. P., Pan, K. H., McMillan, N. A., Hamilton, R.
G., Fuhlendorf, S. D., … & Gamon, J. A. (2022b). Using airborne and
DESIS imaging spectroscopy to map plant diversity across the largest
contiguous tract of tallgrass prairie on earth. Remote Sensing of
Environment , 281 , 113254.
https://doi.org/10.1016/j.rse.2022.113254
Giraldo, R. A. D., De Leon, M. A., Castillo, A. R., López, O. P., Rocha,
E. C., & Asprilla, W. P. (2023). Estimation of forage availability and
parameters associated with the nutritional quality of Urochloa
humidicola cv Llanero based on multispectral images.
https://doi.org/10.17138/tgft(11)61-74
Grüner, E., Astor, T., & Wachendorf, M. (2021). Prediction of biomass
and N fixation of legume–grass mixtures using sensor
fusion. Frontiers in plant science , 11 , 603921.
https://doi.org/10.3389/fpls.2020.603921
Hall, E. C., & Lara, M. J. (2022). Multisensor UAS mapping of plant
species and plant functional types in midwestern
grasslands. Remote Sensing , 14 (14), 3453.
https://doi.org/10.3390/rs14143453
Han, F., Fu, G., Yu, C., & Wang, S. (2022). Modeling nutrition quality
and storage of forage using climate data and normalized-difference
vegetation index in alpine grasslands. Remote
Sensing , 14 (14), 3410. https://doi.org/10.3390/rs14143410
Hart, L., Huguenin-Elie, O., Latsch, R., Simmler, M., Dubois, S., &
Umstatter, C. (2020). Comparison of spectral reflectance-based smart
farming tools and a conventional approach to determine herbage mass and
grass quality on farm. Remote Sensing , 12 (19), 3256.
https://doi.org/10.3390/rs12193256
Haughey, E., Suter, M., Hofer, D., Hoekstra, N. J., McElwain, J. C.,
Lüscher, A., & Finn, J. A. (2018). Higher species richness enhances
yield stability in intensively managed grasslands with experimental
disturbance. Scientific reports , 8 (1), 15047.
https://doi.org/10.1038/s41598-018-33262-9
Henle, K., Alard, D., Clitherow, J., Cobb, P., Firbank, L., Kull, T.,
… & Young, J. (2008). Identifying and managing the conflicts between
agriculture and biodiversity conservation in Europe–A
review. Agriculture, ecosystems & environment , 124 (1-2),
60-71. https://doi.org/10.1016/j.agee.2007.09.005
Homolová, L., Malenovský, Z., Clevers, J. G., García-Santos, G., &
Schaepman, M. E. (2013). Review of optical-based remote sensing for
plant trait mapping. Ecological Complexity , 15 , 1-16.
https://doi.org/10.1016/j.ecocom.2013.06.003
Hua, R., Ye, G., De Giuli, M., Zhou, R., Bao, D., Hua, L., & Niu, Y.
(2023). Decreased species richness along bare patch gradient in the
degradation of Kobresia pasture on the Tibetan Plateau. Ecological
Indicators , 157 , 111195.
https://doi.org/10.1016/j.ecolind.2023.111195
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B.,
Beierkuhnlein, C., … & Eisenhauer, N. (2015). Biodiversity increases
the resistance of ecosystem productivity to climate extremes.Nature , 526(7574), 574-577.
https://doi.org/10.1038/nature15374
Jackson, J., Lawson, C. S., Adelmant, C., Huhtala, E., Fernandes, P.,
Hodgson, R., … & Salguero‐Gómez, R. (2022). Short‐range multispectral
imaging is an inexpensive, fast, and accurate approach to estimate
biodiversity in a temperate calcareous grassland. Ecology and
Evolution , 12 (12), e9623.
https://doi.org/10.1002/ece3.9623
Janišová, M., Sorescu-Marinković, A., Aćić, S., Hubáčková, B., Magnes,
M., Opravil, Š., & Širka, P. (2024). Exploring a grassland biodiversity
hotspot in the Serbian Carpathians: Interdisciplinary perspectives and
conservation implications. Biological Conservation , 299 ,
110822. https://doi.org/10.1016/j.biocon.2024.110822
Jiang, H., Jia, K., Wang, Q., Yuan, B., Tao, G., Wang, G., & Xue, B.
(2024). General BRDF Parameters for Normalizing GF-1 Reflectance Data to
Nadir Reflectance to Improve Vegetation Parameters Estimation
Accuracy. IEEE Transactions on Geoscience and Remote Sensing .
https://doi.org/10.1109/TGRS.2024.3403523
Johansen, L., Henriksen, M. V., & Wehn, S. (2022). The contribution of
alternative habitats for conservation of plant species associated with
threatened semi‐natural grasslands. Ecological Solutions and
Evidence , 3 (3), e12183.
https://doi.org/10.1002/2688-8319.12183
Kamaraj, N. P., Gholizadeh, H., Hamilton, R. G., Fuhlendorf, S. D., &
Gamon, J. A. (2024). Estimating plant β-diversity using airborne and
spaceborne imaging spectroscopy. International Journal of Remote
Sensing , 1-20. https://doi.org/10.1080/01431161.2024.2410959
Kattge, J., Diaz, S., Lavorel, S., Prentice, I. C., Leadley, P.,
Bönisch, G., … & Wirth, C. (2011). TRY–a global database of plant
traits. Global change biology , 17 (9), 2905-2935.
https://doi.org/10.1111/j.1365-2486.2011.02451.x
Klingler, A., Schaumberger, A., Vuolo, F., Kalmár, L. B., & Pötsch, E.
M. (2020). Comparison of direct and indirect determination of leaf area
index in permanent grassland. PFG–Journal of Photogrammetry,
Remote Sensing and Geoinformation Science , 88 (5), 369-378.
10.1007/s41064-020-00119-8
Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C.,
Griffiths, R. I., … & Gleixner, G. (2015). Plant diversity increases
soil microbial activity and soil carbon storage. Nature
communications , 6 (1), 6707.
https://doi.org/10.1038/ncomms7707
Li, X., Lu, H., Yu, L., & Yang, K. (2018a). Comparison of the spatial
characteristics of four remotely sensed leaf area index products over
China: Direct validation and relative uncertainties. Remote
Sensing , 10 (1), 148. https://doi.org/10.3390/rs10010148
Li, C., Wulf, H., Schmid, B., He, J. S., & Schaepman, M. E. (2018b).
Estimating plant traits of alpine grasslands on the Qinghai-Tibetan
Plateau using remote sensing. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing , 11 (7), 2263-2275.
https://doi.org/10.1109/JSTARS.2018.2824901
Li, Z., Huang, C., Zhu, Z., Gao, F., Tang, H., Xin, X., … & Yan, R.
(2018c). Mapping daily leaf area index at 30 m resolution over a meadow
steppe area by fusing Landsat, Sentinel-2A and MODIS
data. International Journal of Remote Sensing , 39 (23),
9025-9053. https://doi.org/10.1080/01431161.2018.1504342
Li, Z., Ding, L., Shen, B., Chen, J., Xu, D., Wang, X., … & Xin, X.
(2024). Quantifying key vegetation parameters from Sentinel-3 and MODIS
over the eastern Eurasian steppe with a Bayesian geostatistical
model. Science of The Total Environment , 909 , 168594.
https://doi.org/10.1016/j.scitotenv.2023.168594
Liu, Y., Xiao, J., Ju, W., Zhu, G., Wu, X., Fan, W., … & Zhou, Y.
(2018). Satellite-derived LAI products exhibit large discrepancies and
can lead to substantial uncertainty in simulated carbon and water
fluxes. Remote Sensing of Environment , 206 , 174-188.
https://doi.org/10.1016/j.rse.2017.12.024
Löfgren, O., Prentice, H. C., Moeckel, T., Schmid, B. C., & Hall, K.
(2018). Landscape history confounds the ability of the NDVI to detect
fine‐scale variation in grassland communities. Methods in Ecology
and Evolution , 9 (9), 2009-2018.
https://doi.org/10.1111/2041-210X.13036
Lu, B., & He, Y. (2019). Leaf area index estimation in a heterogeneous
grassland using optical, SAR, and DEM Data. Canadian Journal of
Remote Sensing , 45 (5), 618-633.
https://doi.org/10.1080/07038992.2019.1641401
Lussem, U., Bolten, A., Kleppert, I., Jasper, J., Gnyp, M. L.,
Schellberg, J., & Bareth, G. (2022). Herbage mass, N concentration, and
N uptake of temperate grasslands can adequately be estimated from
UAV-based image data using machine learning. Remote
Sensing , 14 (13), 3066. https://doi.org/10.3390/rs14133066
Lyu, X., Li, X., Dang, D., Wang, K., Zhang, C., Cao, W., & Lou, A.
(2024). Systematic review of remote sensing technology for grassland
biodiversity monitoring: Current status and challenges. Global
Ecology and Conservation , e03196.
https://doi.org/10.1016/j.gecco.2024.e03196
Masenyama, A., Mutanga, O., Dube, T., Sibanda, M., Odebiri, O., &
Mabhaudhi, T. (2023). Inter-seasonal estimation of grass water content
indicators using multisource remotely sensed data metrics and the
cloud-computing google earth engine platform. Applied
Sciences , 13 (5), 3117. https://doi.org/10.3390/app13053117
Mashiane, K., Ramoelo, A., & Adelabu, S. (2024). Prediction of species
richness and diversity in sub‐alpine grasslands using satellite remote
sensing and random forest machine‐learning algorithm. Applied
Vegetation Science , 27 (2), e12778.
https://doi.org/10.1111/avsc.12778
Monteiro, A. T., Alves, P., Carvalho-Santos, C., Lucas, R., Cunha, M.,
Marques da Costa, E., & Fava, F. (2021). Monitoring plant diversity to
support agri-environmental schemes: Evaluating statistical models
informed by satellite and local factors in Southern European Mountain
Pastoral Systems. Diversity , 14 (1), 8.
https://doi.org/10.3390/d14010008
Morais, T. G., Jongen, M., Tufik, C., Rodrigues, N. R., Gama, I.,
Fangueiro, D., … & Teixeira, R. F. (2023). Characterization of
portuguese sown rainfed grasslands using remote sensing and machine
learning. Precision Agriculture , 24 (1), 161-186.
10.1007/s11119-022-09937-9
Munier, S., Carrer, D., Planque, C., Camacho, F., Albergel, C., &
Calvet, J. C. (2018). Satellite leaf area index: Global scale analysis
of the tendencies per vegetation type over the last 17
years. Remote Sensing , 10 (3), 424.
https://doi.org/10.3390/rs10030424
Muro, J., Linstädter, A., Magdon, P., Wöllauer, S., Männer, F. A.,
Schwarz, L. M., … & Dubovyk, O. (2022). Predicting plant biomass and
species richness in temperate grasslands across regions, time, and land
management with remote sensing and deep learning. Remote Sensing
of Environment , 282 , 113262.
https://doi.org/10.1016/j.rse.2022.113262
Newbold, T., Hudson, L. N., Arnell, A. P., Contu, S., De Palma, A.,
Ferrier, S., … & Purvis, A. (2016). Has land use pushed terrestrial
biodiversity beyond the planetary boundary? A global
assessment. Science , 353 (6296), 288-291.
https://doi.org/10.1126/science.aaf2201
Oliveira, R. A., Näsi, R., Niemeläinen, O., Nyholm, L., Alhonoja, K.,
Kaivosoja, J., … & Honkavaara, E. (2020). Machine learning estimators
for the quantity and quality of grass swards used for silage production
using drone-based imaging spectrometry and photogrammetry. Remote
Sensing of Environment , 246 , 111830.
https://doi.org/10.1016/j.rse.2020.111830
Oliveira, R. A., Marcato Junior, J., Soares Costa, C., Näsi, R.,
Koivumäki, N., Niemeläinen, O., … & Honkavaara, E. (2022). Silage
grass sward nitrogen concentration and dry matter yield estimation using
deep regression and RGB images captured by
UAV. Agronomy , 12 (6), 1352.
https://doi.org/10.3390/agronomy12061352
O’Mara, F. P. (2012). The role of grasslands in food security and
climate change. Annals of botany , 110 (6), 1263-1270.
https://doi.org/10.1093/aob/mcs209
Panek-Chwastyk, E., Ozbilge, C. N., Dąbrowska-Zielińska, K., &
Wróblewski, K. (2024). Assessment of Grassland Biomass Prediction Using
AquaCrop Model: Integrating Sentinel-2 Data and Ground Measurements in
Wielkopolska and Podlasie Regions,
Poland. Agriculture , 14 (6), 837.
https://doi.org/10.3390/agriculture14060837
Pang, H., Zhang, A., Yin, S., Zhang, J., Dong, G., He, N., … & Wei,
D. (2022). Estimating carbon, nitrogen, and phosphorus contents of
west–east grassland transect in Inner Mongolia based on Sentinel-2 and
meteorological data. Remote Sensing , 14 (2), 242.
https://doi.org/10.3390/rs14020242
Pau, S., Nippert, J. B., Slapikas, R., Griffith, D., Bachle, S.,
Helliker, B. R., … & Zaricor, M. (2022). Poor relationships between
NEON Airborne Observation Platform data and field‐based vegetation
traits at a mesic grassland. Ecology , 103 (2), e03590.
https://doi.org/10.1002/ecy.3590
Pärtel, M., Bruun, H. H., & Sammul, M. (2005). Biodiversity in
temperate European grasslands: origin and conservation. Grassland
science in Europe , 10 (1), 14.
Peciña, M. V., Ward, R. D., Bunce, R. G., Sepp, K., Kuusemets, V., &
Luuk, O. (2019). Country-scale mapping of ecosystem services provided by
semi-natural grasslands. Science of the Total
Environment , 661 , 212-225.
Peng, S., Wang, Z., Lu, X., & Liu, X. (2024). Hybrid inversion of
radiative transfer models based on topographically corrected Landsat
surface reflectance improves leaf area index and aboveground biomass
retrievals of grassland on the hilly Loess Plateau. International
Journal of Digital Earth , 17 (1), 2316840.
10.1080/17538947.2024.2316840
Perrone, M., Conti, L., Galland, T., Komárek, J., Lagner, O., Torresani,
M., … & Malavasi, M. (2024). “Flower power”: How flowering affects
spectral diversity metrics and their relationship with plant
diversity. Ecological Informatics , 81 , 102589.
https://doi.org/10.1016/j.ecoinf.2024.102589
Polley, H. W., Yang, C., Wilsey, B. J., & Fay, P. A. (2019). Spectral
heterogeneity predicts local-scale gamma and beta diversity of mesic
grasslands. Remote Sensing , 11 (4), 458.
https://doi.org/10.3390/rs11040458
Polley, H. W., Yang, C., Wilsey, B. J., & Fay, P. A. (2020A).
Spectrally derived values of community leaf dry matter content link
shifts in grassland composition with change in biomass
production. Remote Sensing in Ecology and
Conservation , 6 (3), 344-353.
https://doi.org/10.1002/rse2.145
Polley, H. W., Yang, C., Wilsey, B. J., & Fay, P. A. (2020B). Temporal
stability of grassland metacommunities is regulated more by community
functional traits than species
diversity. Ecosphere , 11 (7), e03178.
https://doi.org/10.1002/ecs2.3178
Polley, H. W., Collins, H. P., & Fay, P. A. (2020). Biomass production
and temporal stability are similar in switchgrass monoculture and
diverse grassland. Biomass and Bioenergy , 142 , 105758.
https://doi.org/10.1016/j.biombioe.2020.105758
Polley, H. W., Collins, H. P., & Fay, P. A. (2022). Community leaf dry
matter content predicts plant production in simple and diverse
grassland. Ecosphere , 13 (5), e4076.
https://doi.org/10.1002/ecs2.4076
Polley, H. W., Jones, K. A., Kolodziejczyk, C. A., & Fay, P. A. (2023).
Reduced precipitation lessens the scaling of growth to plant N in mesic
grasslands. Plant Ecology , 224 (1), 113-123.
10.1007/s11258-022-01283-0
Pöttker, M., Kiehl, K., Jarmer, T., & Trautz, D. (2023). Convolutional
Neural Network Maps Plant Communities in Semi-Natural Grasslands Using
Multispectral Unmanned Aerial Vehicle Imagery. Remote
Sensing , 15 (7), 1945. https://doi.org/10.3390/rs15071945
Punalekar, S. M., Verhoef, A., Quaife, T. L., Humphries, D., Bermingham,
L., & Reynolds, C. K. (2018). Application of Sentinel-2A data for
pasture biomass monitoring using a physically based radiative transfer
model. Remote Sensing of Environment , 218 , 207-220.
https://doi.org/10.1016/j.rse.2018.09.028
Qin, Y., Sun, Y., Zhang, W., Qin, Y., Chen, J., Wang, Z., & Zhou, Z.
(2020). Species monitoring using unmanned aerial vehicle to reveal the
ecological role of Plateau Pika in maintaining vegetation diversity on
the northeastern Qinghai-Tibetan Plateau. Remote
Sensing , 12 (15), 2480. https://doi.org/10.3390/rs12152480
Qin, Q., Xu, D., Hou, L., Shen, B., & Xin, X. (2021). Comparing
vegetation indices from Sentinel-2 and Landsat 8 under different
vegetation gradients based on a controlled grazing
experiment. Ecological indicators , 133 , 108363.
https://doi.org/10.1016/j.ecolind.2021.108363
Raab, C., Riesch, F., Tonn, B., Barrett, B., Meißner, M., Balkenhol, N.,
& Isselstein, J. (2020). Target‐oriented habitat and wildlife
management: estimating forage quantity and quality of semi‐natural
grasslands with Sentinel‐1 and Sentinel‐2 data. Remote Sensing in
Ecology and Conservation , 6 (3), 381-398.
https://doi.org/10.1002/rse2.149
Rocchini, D., Chiarucci, A., & Loiselle, S. A. (2004). Testing the
spectral variation hypothesis by using satellite multispectral
images. Acta Oecologica , 26 (2), 117-120.
https://doi.org/10.1016/j.actao.2004.03.008
Rossi, C., Kneubühler, M., Schütz, M., Schaepman, M. E., Haller, R. M.,
& Risch, A. C. (2021). Remote sensing of spectral diversity: A new
methodological approach to account for spatio-temporal dissimilarities
between plant communities. Ecological Indicators , 130 ,
108106. https://doi.org/10.1016/j.ecolind.2021.108106
Rossi, C., Kneubühler, M., Schütz, M., Schaepman, M. E., Haller, R. M.,
& Risch, A. C. (2022). Spatial resolution, spectral metrics and biomass
are key aspects in estimating plant species richness from spectral
diversity in species‐rich grasslands. Remote Sensing in Ecology
and Conservation , 8 (3), 297-314.
https://doi.org/10.1002/rse2.244
Rossi, C., & Gholizadeh, H. (2023). Uncovering the hidden: Leveraging
sub-pixel spectral diversity to estimate plant diversity from
space. Remote Sensing of Environment , 296 , 113734.
https://doi.org/10.1016/j.rse.2023.113734
Rossi, C., McMillan, N. A., Schweizer, J. M., Gholizadeh, H., Groen, M.,
Ioannidis, N., & Hauser, L. T. (2024). Parcel level temporal variance
of remotely sensed spectral reflectance predicts plant
diversity. Environmental Research Letters .
10.1088/1748-9326/ad545a
Russo, L., Fitzpatrick, Ú., Larkin, M., Mullen, S., Power, E., Stanley,
D., … & Stout, J. C. (2022). Conserving diversity in Irish
plant–pollinator networks. Ecology and Evolution , 12 (10),
e9347. https://doi.org/10.1002/ece3.9347
Schmidtlein, S., & Fassnacht, F. E. (2017). The spectral variability
hypothesis does not hold across landscapes. Remote Sensing of
Environment , 192 , 114-125.
https://doi.org/10.1016/j.rse.2017.01.036
Schucknecht, A., Seo, B., Krämer, A., Asam, S., Atzberger, C., & Kiese,
R. (2022). Estimating dry biomass and plant nitrogen concentration in
pre-Alpine grasslands with low-cost UAS-borne multispectral data–a
comparison of sensors, algorithms, and predictor
sets. Biogeosciences , 19 (10), 2699-2727.
https://doi.org/10.5194/bg-19-2699-2022
Schwieder, M., Buddeberg, M., Kowalski, K., Pfoch, K., Bartsch, J.,
Bach, H., … & Hostert, P. (2020). Estimating grassland
parameters from Sentinel-2: a model comparison study. PFG 88, 379–390 .
10.1007/s41064-020-00120-1
Sha, Z., Wang, Y., Bai, Y., Zhao, Y., Jin, H., Na, Y., & Meng, X.
(2019). Comparison of leaf area index inversion for grassland vegetation
through remotely sensed spectra by unmanned aerial vehicle and
field-based spectroradiometer. Journal of Plant
Ecology , 12 (3), 395-408.
https://doi.org/10.1093/jpe/rty036
Shen, B., Ding, L., Ma, L., Li, Z., Pulatov, A., Kulenbekov, Z., … &
Xin, X. (2022). Modeling the leaf area index of Inner mongolia grassland
based on machine learning regression algorithms incorporating empirical
knowledge. Remote Sensing , 14 (17), 4196.
https://doi.org/10.3390/rs14174196
Shen, B., Guo, J., Li, Z., Chen, J., Fang, W., Kussainova, M., … &
Xin, X. (2023). Comparative Verification of Leaf Area Index Products for
Different Grassland Types in Inner Mongolia, China. Remote
Sensing , 15 (19), 4736. https://doi.org/10.3390/rs15194736
Shi, J., Zhang, A., Wang, J., Gao, X., Hu, S., & Chai, S. (2024).
Mapping Seasonal Spatiotemporal Dynamics of Alpine Grassland Forage
Phosphorus Using Sentinel-2 MSI and a DRL-GP-Based Symbolic Regression
Algorithm. Remote Sensing , 16 (21), 4086.
https://doi.org/10.3390/rs16214086
Smith, H. D., Dubeux, J. C., Zare, A., & Wilson, C. H. (2023).
Assessing transferability of remote sensing pasture estimates using
multiple machine learning algorithms and evaluation
structures. Remote Sensing , 15 (11), 2940.
https://doi.org/10.3390/rs15112940
Tang, Z., Zhang, Y., Cong, N., Wang, L., Zhu, Y., Li, Z., & Zhao, G.
(2021). Remotely piloted aircraft systems remote sensing can effectively
retrieve ecosystem traits of alpine grasslands on the Tibetan Plateau at
a landscape scale. Remote Sensing in Ecology and
Conservation , 7 (3), 382-396.
https://doi.org/10.1002/rse2.196
Tian, Y., & Fu, G. (2022). Quantifying plant species α-diversity using
normalized difference vegetation index and climate data in alpine
grasslands. Remote Sensing , 14 (19), 5007.
https://doi.org/10.3390/rs14195007
Thornley, R. H., Gerard, F. F., White, K., & Verhoef, A. (2023).
Prediction of grassland biodiversity using measures of spectral
variance: a meta-analytical review. Remote Sensing , 15 (3),
668. https://doi.org/10.3390/rs15030668
Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E.
(1997). The influence of functional diversity and composition on
ecosystem processes. Science , 277(5330), 1300-1302.
https://doi.org/10.1126/science.277.5330.1300
Tsele, P., Ramoelo, A., & Qabaqaba, M. (2023). Development of the grass
LAI and CCC remote sensing-based models and their transferability using
sentinel-2 data in heterogeneous grasslands. International Journal
of Remote Sensing , 44 (8), 2643-2667.
https://doi.org/10.1080/01431161.2023.2205982
Van Cleemput, E., Vanierschot, L., Fernández-Castilla, B., Honnay, O.,
& Somers, B. (2018). The functional characterization of grass-and
shrubland ecosystems using hyperspectral remote sensing: trends,
accuracy and moderating variables. Remote Sensing of
Environment , 209 , 747-763.
https://doi.org/10.1016/j.rse.2018.02.030
Van Cleemput, E., Adler, P., & Suding, K. N. (2023). Making remote
sense of biodiversity: What grassland characteristics make spectral
diversity a good proxy for taxonomic diversity?. Global Ecology
and Biogeography , 32 (12), 2177-2188.
https://doi.org/10.1111/geb.13759
Vitousek, P. M. (2015). Grassland ecology: Complexity of nutrient
constraints. Nature Plants, 1(7), 1-2.
http://dx.doi.org/10.1038/nplants.2015.98
Wang, R., Gamon, J. A., Cavender‐Bares, J., Townsend, P. A., &
Zygielbaum, A. I. (2018). The spatial sensitivity of the spectral
diversity–biodiversity relationship: an experimental test in a prairie
grassland. Ecological Applications , 28 (2), 541-556.
https://doi.org/10.1002/eap.1669
Wang, R., & Gamon, J. A. (2019). Remote sensing of terrestrial plant
biodiversity. Remote Sensing of Environment , 231 , 111218.
https://doi.org/10.1016/j.rse.2019.111218
Wang, Z., Townsend, P. A., Schweiger, A. K., Couture, J. J., Singh, A.,
Hobbie, S. E., & Cavender-Bares, J. (2019). Mapping foliar functional
traits and their uncertainties across three years in a grassland
experiment. Remote Sensing of Environment , 221 , 405-416.
https://doi.org/10.1016/j.rse.2018.11.016
Wijesingha, J., Astor, T., Schulze-Brüninghoff, D., Wengert, M., &
Wachendorf, M. (2020). Predicting forage quality of grasslands using
UAV-borne imaging spectroscopy. Remote Sensing , 12 (1),
126. https://doi.org/10.3390/rs12010126
Wilson, J. B., Peet, R. K., Dengler, J., & Pärtel, M. (2012). Plant
species richness: the world records. Journal of vegetation
Science , 23(4), 796-802.
https://doi.org/10.1111/j.1654-1103.2012.01400.x
Wingler A., Sandel B. (2023). Relationships of the CSR functional
strategies of grass species with lifespan, photosynthetic type,
naturalization and climate. AoB PLANTS , 15, plad021.
https://doi.org/10.1093/aobpla/plad021
Xin, J., Li, J., Zeng, Q., Peng, Y., Wang, Y., Teng, X., … & Chen, C.
(2024). High-precision estimation of plant alpha diversity in different
ecosystems based on Sentinel-2 data. Ecological
Indicators , 166 , 112527.
https://doi.org/10.1016/j.ecolind.2024.112527
Xu, D., Koper, N., & Guo, X. (2018). Quantifying the influences of
grazing, climate and their interactions on grasslands using Landsat TM
images. Grassland science , 64 (2), 118-127.
https://doi.org/10.1111/grs.12192
Xu, C., Zeng, Y., Zheng, Z., Zhao, D., Liu, W., Ma, Z., & Wu, B.
(2022). Assessing the impact of soil on species diversity estimation
based on UAV imaging spectroscopy in a natural alpine
steppe. Remote Sensing , 14 (3), 671.
https://doi.org/10.3390/rs14030671
Yang, M., Chen, A., Zhang, M., Gu, Q., Wang, Y., Guo, J., … & Yang,
X. (2023a). Relationship between plant species diversity and aboveground
biomass in alpine grasslands on the Qinghai–Tibet Plateau: Spatial
patterns and the factors driving them. Frontiers in Ecology and
Evolution , 11 , 1138884.
https://doi.org/10.3389/fevo.2023.1138884
Yang, X., Lei, S., Shi, Y., Gong, C., Xu, J., & Wang, W. (2023b).
Impacts of open‐pit coal mining and livestock grazing on plant diversity
in a steppe: From the perspective of remote sensing. Land
Degradation & Development , 34 (16), 5122-5134.
https://doi.org/10.1002/ldr.4834
Yang, M., Chen, A., Cao, W., Wang, S., Xu, M., Gu, Q., … & Yang, X.
(2024). Spatial and Temporal Patterns of Grassland Species Diversity and
Their Driving Factors in the Three Rivers Headwater Region of China from
2000 to 2021. Remote Sensing , 16 (21), 4005.
https://doi.org/10.3390/rs16214005
Yin, G., Li, A., Zhang, Z., & Lei, G. (2020). Temporal validation of
four LAI products over grasslands in the northeastern Tibetan
Plateau. Photogrammetric Engineering & Remote
Sensing , 86 (4), 225-233.
https://doi.org/10.14358/PERS.86.4.225
Zhang, Y. W., Wang, T., Guo, Y., Skidmore, A., Zhang, Z., Tang, R., …
& Tang, Z. (2022). Estimating community-level plant functional traits
in a species-rich alpine meadow using UAV image
spectroscopy. Remote Sensing , 14 (14), 3399.
https://doi.org/10.3390/rs14143399
Zhang, Z., Jin, W., Dou, R., Cai, Z., Wei, H., Wu, T., … & Xu, B.
(2023a). Improved estimation of leaf area index by reducing leaf
chlorophyll content and saturation effects based on red-edge
bands. IEEE Transactions on Geoscience and Remote
Sensing , 61 , 1-14.
https://doi.org/10.1109/TGRS.2023.3270712
Zhang, X., Liang, T., Gao, J., Zhang, D., Liu, J., Feng, Q., … &
Wang, Z. (2023b). Mapping the forage nitrogen, phosphorus, and potassium
contents of alpine grasslands by integrating Sentinel-2 and Tiangong-2
data. Plant Methods , 19 (1), 48. 10.1186/s13007-023-01024-y
Zhao, Y., Sun, Y., Lu, X., Zhao, X., Yang, L., Sun, Z., & Bai, Y.
(2021a). Hyperspectral retrieval of leaf physiological traits and their
links to ecosystem productivity in grassland
monocultures. Ecological Indicators , 122 , 107267.
https://doi.org/10.1016/j.ecolind.2020.107267
Zhao, Y., Sun, Y., Chen, W., Zhao, Y., Liu, X., & Bai, Y. (2021b). The
potential of mapping grassland plant diversity with the links among
spectral diversity, functional trait diversity, and species
diversity. Remote Sensing , 13 (15), 3034.
https://doi.org/10.3390/rs13153034
Zhao, Y., Yin, X., Fu, Y., & Yue, T. (2022). A comparative mapping of
plant species diversity using ensemble learning algorithms combined with
high accuracy surface modeling. Environmental Science and
Pollution Research , 29 (12), 17878-17891.
10.1007/s11356-021-16973-x
Zhao, X., Wu, B., Xue, J., Shi, Y., Zhao, M., Geng, X., … & Fang, J.
(2023). Mapping forage biomass and quality of the inner mongolia
grasslands by combining field measurements and sentinel-2
observations. Remote Sensing , 15 (8), 1973.
https://doi.org/10.3390/rs15081973
Zhou, H., Wang, C., Zhang, G., Xue, H., Wang, J., & Wan, H. (2020).
Generating a spatio-temporal complete 30 m leaf area index from field
and remote sensing data. Remote Sensing , 12 (15), 2394.
https://doi.org/10.3390/rs12152394
Zhou, J., Yang, Q., Liu, L., Kang, Y., Jia, X., Chen, M., … & Jin, Z.
(2023). A deep transfer learning framework for mapping high
spatiotemporal resolution LAI. ISPRS Journal of Photogrammetry and
Remote Sensing , 206 , 30-48.
https://doi.org/10.1016/j.isprsjprs.2023.10.017
Zhu, X., Yang, Q., Chen, X., & Ding, Z. (2023). An approach for joint
estimation of grassland leaf area index and leaf chlorophyll content
from UAV hyperspectral data. Remote Sensing , 15 (10), 2525.
https://doi.org/10.3390/rs15102525
Zhu, X., Chen, X., Ma, L., & Liu, W. (2024). UAV and Satellite
Synergies for Mapping Grassland Aboveground Biomass in Hulunbuir Meadow
Steppe. Plants , 13 (7), 1006.
https://doi.org/10.3390/plants13071006
Zwick, M., Cardoso, J. A., Gutierrez-Zapata, D. M., Cerón-Muñoz, M.,
Gutierrez, J. F., Raab, C., … & Barrett, B. (2024). Pixels to
Pasture: Using Machine Learning and Multispectral Remote Sensing to
Predict Biomass and Nutrient Quality in Tropical
Grasslands. Remote Sensing Applications: Society and Environment ,
101282. https://doi.org/10.1016/j.rsase.2024.101282