References

Aasen, H., Burkart, A., Bolten, A., & Bareth, G. (2015). Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing108 , 245-259. https://doi.org/10.1016/j.isprsjprs.2015.08.002 Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T., O’Connor, T., … & Lindborg, R. (2019). Grasslands—more important for ecosystem services than you might think. Ecosphere , 10(2), e02582. https://doi.org/10.1002/ecs2.2582 Blair, J., Nippert, J., & Briggs, J. (2014). Grassland Ecology. In: Monson, R. (eds) Ecology and the Environment. The Plant Sciences, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7501-9_14 Capolupo, A., Kooistra, L., Berendonk, C., Boccia, L., & Suomalainen, J. (2015). Estimating plant traits of grasslands from UAV-acquired hyperspectral images: a comparison of statistical approaches. ISPRS International Journal of Geo-Information4 (4), 2792-2820. https://doi.org/10.3390/ijgi4042792 Cavender-Bares, J., Gamon, J. A., & Townsend, P. A. (2020). Remote sensing of plant biodiversity (p. 581). Springer Nature . https://doi.org/10.1007/978-3-030-33157-3 Cleland, E. E., Chiariello, N. R., Loarie, S. R., Mooney, H. A., & Field, C. B. (2006). Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences103 (37), 13740-13744. https://doi.org/10.1073/pnas.0600815103 Conti, L., Malavasi, M., Galland, T., Komárek, J., Lagner, O., Carmona, C. P., … & Šímová, P. (2021). The relationship between species and spectral diversity in grassland communities is mediated by their vertical complexity. Applied Vegetation Science24 (3). https://doi.org/10.1111/avsc.12600 Craven, D., Eisenhauer, N., Pearse, W. D., Hautier, Y., Isbell, F., Roscher, C., … & Manning, P. (2018). Multiple facets of biodiversity drive the diversity–stability relationship. Nature ecology & evolution , 2(10), 1579-1587. https://doi.org/10.1038/s41559-018-0647-7 Dı́az, S., & Cabido, M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in ecology & evolution16 (11), 646-655. https://doi.org/10.1016/S0169-5347(01)02283-2 Erb, K. H., Fetzel, T., Kastner, T., Kroisleitner, C., Lauk, C., Mayer, A., & Niedertscheider, M. (2016). Livestock grazing, the neglected land use. Social ecology: Society-nature relations across time and space , 295-313. https://doi.org/10.1007/978-3-319-33326-7_13 Fauvel, M., Lopes, M., Dubo, T., Rivers-Moore, J., Frison, P. L., Gross, N., & Ouin, A. (2020). Prediction of plant diversity in grasslands using Sentinel-1 and-2 satellite image time series. Remote Sensing of Environment237 , 111536. https://doi.org/10.1016/j.rse.2019.111536 Finn, J. A., Kirwan, L., Connolly, J., Sebastià, M. T., Helgadottir, A., Baadshaug, O. H., … & Lüscher, A. (2013). Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3‐year continental‐scale field experiment. Journal of Applied Ecology , 50(2), 365-375. https://doi.org/10.1111/1365-2664.12041 Gašparović, M., Rumora, L., Miler, M., & Medak, D. (2019). Effect of fusing Sentinel-2 and WorldView-4 imagery on the various vegetation indices. Journal of Applied Remote Sensing13 (3), 036503-036503. https://doi.org/10.1117/1.JRS.13.036503 Gholizadeh, H., Gamon, J. A., Zygielbaum, A. I., Wang, R., Schweiger, A. K., & Cavender-Bares, J. (2018). Remote sensing of biodiversity: Soil correction and data dimension reduction methods improve assessment of α-diversity (species richness) in prairie ecosystems. Remote Sensing of Environment206 , 240-253. https://doi.org/10.1016/j.rse.2017.12.014 Gholizadeh, H., Gamon, J. A., Townsend, P. A., Zygielbaum, A. I., Helzer, C. J., Hmimina, G. Y., … & Cavender-Bares, J. (2019). Detecting prairie biodiversity with airborne remote sensing. Remote Sensing of Environment221 , 38-49. https://doi.org/10.1016/j.rse.2018.10.037 Gholizadeh, H., Gamon, J. A., Helzer, C. J., & Cavender‐Bares, J. (2020). Multi‐temporal assessment of grassland α‐and β‐diversity using hyperspectral imaging. Ecological Applications30 (7), e02145. https://doi.org/10.1002/eap.2145 Gholizadeh, H., Friedman, M. S., McMillan, N. A., Hammond, W. M., Hassani, K., Sams, A. V., … & Adams, H. D. (2022). Mapping invasive alien species in grassland ecosystems using airborne imaging spectroscopy and remotely observable vegetation functional traits. Remote Sensing of Environment271 , 112887. https://doi.org/10.1016/j.rse.2022.112887 Grüner, E., Wachendorf, M., & Astor, T. (2020). The potential of UAV-borne spectral and textural information for predicting aboveground biomass and N fixation in legume-grass mixtures. PloS one15 (6), e0234703. https://doi.org/10.1371/journal.pone.0234703 Grüner, E., Astor, T., & Wachendorf, M. (2021). Prediction of biomass and N fixation of legume–grass mixtures using sensor fusion. Frontiers in plant science11 , 603921. https://doi.org/10.3389/fpls.2020.603921 Haughey, E., Suter, M., Hofer, D., Hoekstra, N. J., McElwain, J. C., Lüscher, A., & Finn, J. A. (2018). Higher species richness enhances yield stability in intensively managed grasslands with experimental disturbance. Scientific reports8 (1), 15047. https://doi.org/10.1038/s41598-018-33262-9 Homolová, L., Malenovský, Z., Clevers, J. G., García-Santos, G., & Schaepman, M. E. (2013). Review of optical-based remote sensing for plant trait mapping. Ecological Complexity15 , 1-16. https://doi.org/10.1016/j.ecocom.2013.06.003 Henle, K., Alard, D., Clitherow, J., Cobb, P., Firbank, L., Kull, T., … & Young, J. (2008). Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe–A review. Agriculture, ecosystems & environment124 (1-2), 60-71. https://doi.org/10.1016/j.agee.2007.09.005 Imran, H. A., Gianelle, D., Rocchini, D., Dalponte, M., Martín, M. P., Sakowska, K., … & Vescovo, L. (2020). VIS-NIR, red-edge and NIR-shoulder based normalized vegetation indices response to co-varying leaf and Canopy structural traits in heterogeneous grasslands. Remote Sensing12 (14), 2254. https://doi.org/10.3390/rs12142254 Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., … & Eisenhauer, N. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes.Nature , 526(7574), 574-577. https://doi.org/10.1038/nature15374 Kattge, J., Diaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., … & Wirth, C. (2011). TRY–a global database of plant traits. Global change biology17 (9), 2905-2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x Laliberte, A. S., & Rango, A. (2011). Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands. GIScience & Remote Sensing48 (1), 4-23. https://doi.org/10.2747/1548-1603.48.1.4 Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., … & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature communications6 (1), 6707. https://doi.org/10.1038/ncomms7707 Li, C., Wulf, H., Schmid, B., He, J. S., & Schaepman, M. E. (2018). Estimating plant traits of alpine grasslands on the Qinghai-Tibetan Plateau using remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing11 (7), 2263-2275. https://doi.org/10.1109/JSTARS.2018.2824901 Lopes, M., Fauvel, M., Ouin, A., & Girard, S. (2017, June). Potential of Sentinel-2 and SPOT5 (Take5) time series for the estimation of grasslands biodiversity indices. In 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)  (pp. 1-4). IEEE. https://doi.org/10.1109/Multi-Temp.2017.8035206 Lu, B., & He, Y. (2017). Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland. ISPRS Journal of Photogrammetry and Remote Sensing128 , 73-85. https://doi.org/10.1016/j.isprsjprs.2017.03.011 Lyu, X., Li, X., Dang, D., Dou, H., Xuan, X., Liu, S., … & Gong, J. (2020). A new method for grassland degradation monitoring by vegetation species composition using hyperspectral remote sensing. Ecological Indicators114 , 106310. https://doi.org/10.1016/j.ecolind.2020.106310 Mansour, K., Mutanga, O., Adam, E., & Abdel-Rahman, E. M. (2016). Multispectral remote sensing for mapping grassland degradation using the key indicators of grass species and edaphic factors. Geocarto International31 (5), 477-491. https://doi.org/10.1080/10106049.2015.1059898 Miller, J. E. D., Li, D., LaForgia, M., Harrison, S. ( 2019). Functional diversity is a passenger but not driver of drought-related plant diversity losses in annual grasslands. Journal of Ecology , 107, 2033–2039. https://doi.org/10.1111/1365-2745.13244 Näsi, R., Viljanen, N., Kaivosoja, J., Alhonoja, K., Hakala, T., Markelin, L., & Honkavaara, E. (2018). Estimating biomass and nitrogen amount of barley and grass using UAV and aircraft based spectral and photogrammetric 3D features. Remote Sensing10 (7), 1082. https://doi.org/10.3390/rs10071082 Newbold, T., Hudson, L. N., Arnell, A. P., Contu, S., De Palma, A., Ferrier, S., … & Purvis, A. (2016). Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science353 (6296), 288-291. https://doi.org/10.1126/science.aaf2201 O’Mara, F. P. (2012). The role of grasslands in food security and climate change. Annals of botany110 (6), 1263-1270. https://doi.org/10.1093/aob/mcs209 Pärtel, M., Bruun, H. H., & Sammul, M. (2005). Biodiversity in temperate European grasslands: origin and conservation. Grassland science in Europe10 (1), 14. Peciña, M. V., Ward, R. D., Bunce, R. G., Sepp, K., Kuusemets, V., & Luuk, O. (2019). Country-scale mapping of ecosystem services provided by semi-natural grasslands. Science of the Total Environment661 , 212-225. Pöttker, M., Kiehl, K., Jarmer, T., & Trautz, D. (2023). Convolutional Neural Network Maps Plant Communities in Semi-Natural Grasslands Using Multispectral Unmanned Aerial Vehicle Imagery. Remote Sensing15 (7), 1945. https://doi.org/10.3390/rs15071945 Rakotoarivony, M. N. A., Gholizadeh, H., Hammond, W. M., Hassani, K., Joshi, O., Hamilton, R. G., … & Adams, H. D. (2023). Detecting the invasive Lespedeza cuneata in grasslands using commercial small satellite imagery. International Journal of Remote Sensing44 (21), 6802-6824. https://doi.org/10.1080/01431161.2023.2275321 Rocchini, D., Chiarucci, A., & Loiselle, S. A. (2004). Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecologica26 (2), 117-120. https://doi.org/10.1016/j.actao.2004.03.008 Rocchini, D., He, K. S., Oldeland, J., Wesuls, D., & Neteler, M. (2010). Spectral variation versus species β-diversity at different spatial scales: a test in African highland savannas. Journal of environmental monitoring12 (4), 825-831. https://doi.org/10.1039/B921835A Rossi, C., Kneubühler, M., Schütz, M., Schaepman, M. E., Haller, R. M., & Risch, A. C. (2022). Spatial resolution, spectral metrics and biomass are key aspects in estimating plant species richness from spectral diversity in species‐rich grasslands. Remote Sensing in Ecology and Conservation8 (3), 297-314. https://doi.org/10.1002/rse2.244 Russo, L., Fitzpatrick, Ú., Larkin, M., Mullen, S., Power, E., Stanley, D., … & Stout, J. C. (2022). Conserving diversity in Irish plant–pollinator networks. Ecology and Evolution12 (10), e9347. https://doi.org/10.1002/ece3.9347 Schmidtlein, S., & Fassnacht, F. E. (2017). The spectral variability hypothesis does not hold across landscapes. Remote Sensing of Environment192 , 114-125. https://doi.org/10.1016/j.rse.2017.01.036 Schweiger, A. K., Schütz, M., Risch, A. C., Kneubühler, M., Haller, R., & Schaepman, M. E. (2017). How to predict plant functional types using imaging spectroscopy: Linking vegetation community traits, plant functional types and spectral response. Methods in Ecology and Evolution8 (1), 86-95. https://doi.org/10.1111/2041-210X.12642 Shoko, C., Mutanga, O., & Dube, T. (2020). Optimal season for discriminating C3 and C4 grass functional types using multi-date Sentinel 2 data. GIScience & Remote Sensing57 (1), 127-139. https://doi.org/10.1080/15481603.2019.1675286 Stroh, P. A., Walker, K. J., Humphrey, T. A., Pescott, O. L., & Burkmar, R. J. Plant Atlas 2020. In Plant Atlas 2020 . Princeton University Press. Sun, Y., Yi, S., & Hou, F. (2018). Unmanned aerial vehicle methods makes species composition monitoring easier in grasslands. Ecological Indicators95 , 825-830. https://doi.org/10.1016/j.ecolind.2018.08.042 Tang, Z., Zhang, Y., Cong, N., Wang, L., Zhu, Y., Li, Z., & Zhao, G. (2021). Remotely piloted aircraft systems remote sensing can effectively retrieve ecosystem traits of alpine grasslands on the Tibetan Plateau at a landscape scale. Remote Sensing in Ecology and Conservation7 (3), 382-396. https://doi.org/10.1002/rse2.196 Thornley, R. H., Gerard, F. F., White, K., & Verhoef, A. (2023). Prediction of grassland biodiversity using measures of spectral variance: a meta-analytical review. Remote Sensing15 (3), 668. https://doi.org/10.3390/rs15030668 Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. (1997). The influence of functional diversity and composition on ecosystem processes. Science , 277(5330), 1300-1302. https://doi.org/10.1126/science.277.5330.1300 Vitousek, P. M. (2015). Grassland ecology: Complexity of nutrient constraints. Nature Plants, 1(7), 1-2. http://dx.doi.org/10.1038/nplants.2015.98 Wang, R., Gamon, J. A., Emmerton, C. A., Li, H., Nestola, E., Pastorello, G. Z., & Menzer, O. (2016). Integrated analysis of productivity and biodiversity in a southern Alberta prairie. Remote Sensing8 (3), 214. https://doi.org/10.3390/rs8030214 Wang, R., Gamon, J. A., Cavender‐Bares, J., Townsend, P. A., & Zygielbaum, A. I. (2018). The spatial sensitivity of the spectral diversity–biodiversity relationship: an experimental test in a prairie grassland. Ecological Applications28 (2), 541-556. https://doi.org/10.1002/eap.1669 Wang, R., & Gamon, J. A. (2019). Remote sensing of terrestrial plant biodiversity. Remote Sensing of Environment231 , 111218. https://doi.org/10.1016/j.rse.2019.111218 Wang, Z., Townsend, P. A., Schweiger, A. K., Couture, J. J., Singh, A., Hobbie, S. E., & Cavender-Bares, J. (2019). Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sensing of Environment221 , 405-416. https://doi.org/10.1016/j.rse.2018.11.016 Wijesingha, J., Astor, T., Schulze-Brüninghoff, D., Wengert, M., & Wachendorf, M. (2020). Predicting forage quality of grasslands using UAV-borne imaging spectroscopy. Remote Sensing12 (1), 126. https://doi.org/10.3390/rs12010126 Wilson, J. B., Peet, R. K., Dengler, J., & Pärtel, M. (2012). Plant species richness: the world records. Journal of vegetation Science , 23(4), 796-802. https://doi.org/10.1111/j.1654-1103.2012.01400.x Wingler A., Sandel B. (2023). Relationships of the CSR functional strategies of grass species with lifespan, photosynthetic type, naturalization and climate. AoB PLANTS , 15, plad021. https://doi.org/10.1093/aobpla/plad021 Xu, C., Zeng, Y., Zheng, Z., Zhao, D., Liu, W., Ma, Z., & Wu, B. (2022). Assessing the impact of soil on species diversity estimation based on UAV imaging spectroscopy in a natural alpine steppe. Remote Sensing14 (3), 671. https://doi.org/10.3390/rs14030671 Yang, H., & Du, J. (2021). Classification of desert steppe species based on unmanned aerial vehicle hyperspectral remote sensing and continuum removal vegetation indices. Optik247 , 167877. https://doi.org/10.1016/j.ijleo.2021.167877 Yang, M., Chen, A., Zhang, M., Gu, Q., Wang, Y., Guo, J., … & Yang, X. (2023). Relationship between plant species diversity and aboveground biomass in alpine grasslands on the Qinghai–Tibet Plateau: Spatial patterns and the factors driving them. Frontiers in Ecology and Evolution11 , 1138884. https://doi.org/10.3389/fevo.2023.1138884 Zhang, Y. W., Wang, T., Guo, Y., Skidmore, A., Zhang, Z., Tang, R., … & Tang, Z. (2022). Estimating community-level plant functional traits in a species-rich alpine meadow using UAV image spectroscopy. Remote Sensing14 (14), 3399. https://doi.org/10.3390/rs14143399 Zhao, Y., Sun, Y., Lu, X., Zhao, X., Yang, L., Sun, Z., & Bai, Y. (2021a). Hyperspectral retrieval of leaf physiological traits and their links to ecosystem productivity in grassland monocultures. Ecological Indicators122 , 107267. https://doi.org/10.1016/j.ecolind.2020.107267 Zhao, Y., Sun, Y., Chen, W., Zhao, Y., Liu, X., & Bai, Y. (2021b). The potential of mapping grassland plant diversity with the links among spectral diversity, functional trait diversity, and species diversity. Remote Sensing13 (15), 3034. https://doi.org/10.3390/rs13153034 Zhao, Y., Wu, Z., Zhao, Y., Zheng, Z., Lu, X., Sun, W., … & Bai, Y. (2024). Inferring scalable productivity-related grassland functional diversity in combination with in-situ leaf spectra and Sentinel-2 data. Fundamental Research . https://doi.org/10.1016/j.fmre.2024.01.012 Table 2: List of the main grassland biodiversity and functional trait remote sensing studies used for this review