References
Aasen, H., Burkart, A., Bolten, A., & Bareth, G. (2015). Generating 3D
hyperspectral information with lightweight UAV snapshot cameras for
vegetation monitoring: From camera calibration to quality
assurance. ISPRS Journal of Photogrammetry and Remote
Sensing , 108 , 245-259.
https://doi.org/10.1016/j.isprsjprs.2015.08.002
Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T.,
O’Connor, T., … & Lindborg, R. (2019). Grasslands—more important
for ecosystem services than you might think. Ecosphere , 10(2),
e02582. https://doi.org/10.1002/ecs2.2582
Blair, J., Nippert, J., & Briggs, J. (2014). Grassland Ecology. In:
Monson, R. (eds) Ecology and the Environment. The Plant Sciences, vol 8.
Springer, New York, NY.
https://doi.org/10.1007/978-1-4614-7501-9_14
Capolupo, A., Kooistra, L., Berendonk, C., Boccia, L., & Suomalainen,
J. (2015). Estimating plant traits of grasslands from UAV-acquired
hyperspectral images: a comparison of statistical
approaches. ISPRS International Journal of
Geo-Information , 4 (4), 2792-2820.
https://doi.org/10.3390/ijgi4042792
Cavender-Bares, J., Gamon, J. A., & Townsend, P. A. (2020). Remote
sensing of plant biodiversity (p. 581). Springer Nature .
https://doi.org/10.1007/978-3-030-33157-3
Cleland, E. E., Chiariello, N. R., Loarie, S. R., Mooney, H. A., &
Field, C. B. (2006). Diverse responses of phenology to global changes in
a grassland ecosystem. Proceedings of the National Academy of
Sciences , 103 (37), 13740-13744.
https://doi.org/10.1073/pnas.0600815103
Conti, L., Malavasi, M., Galland, T., Komárek, J., Lagner, O., Carmona,
C. P., … & Šímová, P. (2021). The relationship between species and
spectral diversity in grassland communities is mediated by their
vertical complexity. Applied Vegetation Science , 24 (3).
https://doi.org/10.1111/avsc.12600
Craven, D., Eisenhauer, N., Pearse, W. D., Hautier, Y., Isbell, F.,
Roscher, C., … & Manning, P. (2018). Multiple facets of biodiversity
drive the diversity–stability relationship. Nature ecology &
evolution , 2(10), 1579-1587.
https://doi.org/10.1038/s41559-018-0647-7
Dı́az, S., & Cabido, M. (2001). Vive la différence: plant functional
diversity matters to ecosystem processes. Trends in ecology &
evolution , 16 (11), 646-655.
https://doi.org/10.1016/S0169-5347(01)02283-2
Erb, K. H., Fetzel, T., Kastner, T., Kroisleitner, C., Lauk, C., Mayer,
A., & Niedertscheider, M. (2016). Livestock grazing, the neglected land
use. Social ecology: Society-nature relations across time and
space , 295-313. https://doi.org/10.1007/978-3-319-33326-7_13
Fauvel, M., Lopes, M., Dubo, T., Rivers-Moore, J., Frison, P. L., Gross,
N., & Ouin, A. (2020). Prediction of plant diversity in grasslands
using Sentinel-1 and-2 satellite image time series. Remote Sensing
of Environment , 237 , 111536.
https://doi.org/10.1016/j.rse.2019.111536
Finn, J. A., Kirwan, L., Connolly, J., Sebastià, M. T., Helgadottir, A.,
Baadshaug, O. H., … & Lüscher, A. (2013). Ecosystem function enhanced
by combining four functional types of plant species in intensively
managed grassland mixtures: a 3‐year continental‐scale field experiment.
Journal of Applied Ecology , 50(2), 365-375.
https://doi.org/10.1111/1365-2664.12041
Gašparović, M., Rumora, L., Miler, M., & Medak, D. (2019). Effect of
fusing Sentinel-2 and WorldView-4 imagery on the various vegetation
indices. Journal of Applied Remote Sensing , 13 (3),
036503-036503. https://doi.org/10.1117/1.JRS.13.036503
Gholizadeh, H., Gamon, J. A., Zygielbaum, A. I., Wang, R., Schweiger, A.
K., & Cavender-Bares, J. (2018). Remote sensing of biodiversity: Soil
correction and data dimension reduction methods improve assessment of
α-diversity (species richness) in prairie ecosystems. Remote
Sensing of Environment , 206 , 240-253.
https://doi.org/10.1016/j.rse.2017.12.014
Gholizadeh, H., Gamon, J. A., Townsend, P. A., Zygielbaum, A. I.,
Helzer, C. J., Hmimina, G. Y., … & Cavender-Bares, J. (2019).
Detecting prairie biodiversity with airborne remote
sensing. Remote Sensing of Environment , 221 , 38-49.
https://doi.org/10.1016/j.rse.2018.10.037
Gholizadeh, H., Gamon, J. A., Helzer, C. J., & Cavender‐Bares, J.
(2020). Multi‐temporal assessment of grassland α‐and β‐diversity using
hyperspectral imaging. Ecological Applications , 30 (7),
e02145. https://doi.org/10.1002/eap.2145
Gholizadeh, H., Friedman, M. S., McMillan, N. A., Hammond, W. M.,
Hassani, K., Sams, A. V., … & Adams, H. D. (2022). Mapping invasive
alien species in grassland ecosystems using airborne imaging
spectroscopy and remotely observable vegetation functional
traits. Remote Sensing of Environment , 271 , 112887.
https://doi.org/10.1016/j.rse.2022.112887
Grüner, E., Wachendorf, M., & Astor, T. (2020). The potential of
UAV-borne spectral and textural information for predicting aboveground
biomass and N fixation in legume-grass mixtures. PloS
one , 15 (6), e0234703.
https://doi.org/10.1371/journal.pone.0234703
Grüner, E., Astor, T., & Wachendorf, M. (2021). Prediction of biomass
and N fixation of legume–grass mixtures using sensor
fusion. Frontiers in plant science , 11 , 603921.
https://doi.org/10.3389/fpls.2020.603921
Haughey, E., Suter, M., Hofer, D., Hoekstra, N. J., McElwain, J. C.,
Lüscher, A., & Finn, J. A. (2018). Higher species richness enhances
yield stability in intensively managed grasslands with experimental
disturbance. Scientific reports , 8 (1), 15047.
https://doi.org/10.1038/s41598-018-33262-9
Homolová, L., Malenovský, Z., Clevers, J. G., García-Santos, G., &
Schaepman, M. E. (2013). Review of optical-based remote sensing for
plant trait mapping. Ecological Complexity , 15 , 1-16.
https://doi.org/10.1016/j.ecocom.2013.06.003
Henle, K., Alard, D., Clitherow, J., Cobb, P., Firbank, L., Kull, T.,
… & Young, J. (2008). Identifying and managing the conflicts between
agriculture and biodiversity conservation in Europe–A
review. Agriculture, ecosystems & environment , 124 (1-2),
60-71. https://doi.org/10.1016/j.agee.2007.09.005
Imran, H. A., Gianelle, D., Rocchini, D., Dalponte, M., Martín, M. P.,
Sakowska, K., … & Vescovo, L. (2020). VIS-NIR, red-edge and
NIR-shoulder based normalized vegetation indices response to co-varying
leaf and Canopy structural traits in heterogeneous
grasslands. Remote Sensing , 12 (14), 2254.
https://doi.org/10.3390/rs12142254
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B.,
Beierkuhnlein, C., … & Eisenhauer, N. (2015). Biodiversity increases
the resistance of ecosystem productivity to climate extremes.Nature , 526(7574), 574-577.
https://doi.org/10.1038/nature15374
Kattge, J., Diaz, S., Lavorel, S., Prentice, I. C., Leadley, P.,
Bönisch, G., … & Wirth, C. (2011). TRY–a global database of plant
traits. Global change biology , 17 (9), 2905-2935.
https://doi.org/10.1111/j.1365-2486.2011.02451.x
Laliberte, A. S., & Rango, A. (2011). Image processing and
classification procedures for analysis of sub-decimeter imagery acquired
with an unmanned aircraft over arid rangelands. GIScience &
Remote Sensing , 48 (1), 4-23.
https://doi.org/10.2747/1548-1603.48.1.4
Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C.,
Griffiths, R. I., … & Gleixner, G. (2015). Plant diversity increases
soil microbial activity and soil carbon storage. Nature
communications , 6 (1), 6707.
https://doi.org/10.1038/ncomms7707
Li, C., Wulf, H., Schmid, B., He, J. S., & Schaepman, M. E. (2018).
Estimating plant traits of alpine grasslands on the Qinghai-Tibetan
Plateau using remote sensing. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing , 11 (7), 2263-2275.
https://doi.org/10.1109/JSTARS.2018.2824901
Lopes, M., Fauvel, M., Ouin, A., & Girard, S. (2017, June). Potential
of Sentinel-2 and SPOT5 (Take5) time series for the estimation of
grasslands biodiversity indices. In 2017 9th International
Workshop on the Analysis of Multitemporal Remote Sensing Images
(MultiTemp) (pp. 1-4). IEEE.
https://doi.org/10.1109/Multi-Temp.2017.8035206
Lu, B., & He, Y. (2017). Species classification using Unmanned Aerial
Vehicle (UAV)-acquired high spatial resolution imagery in a
heterogeneous grassland. ISPRS Journal of Photogrammetry and
Remote Sensing , 128 , 73-85.
https://doi.org/10.1016/j.isprsjprs.2017.03.011
Lyu, X., Li, X., Dang, D., Dou, H., Xuan, X., Liu, S., … & Gong, J.
(2020). A new method for grassland degradation monitoring by vegetation
species composition using hyperspectral remote sensing. Ecological
Indicators , 114 , 106310.
https://doi.org/10.1016/j.ecolind.2020.106310
Mansour, K., Mutanga, O., Adam, E., & Abdel-Rahman, E. M. (2016).
Multispectral remote sensing for mapping grassland degradation using the
key indicators of grass species and edaphic factors. Geocarto
International , 31 (5), 477-491.
https://doi.org/10.1080/10106049.2015.1059898
Miller, J. E. D., Li, D., LaForgia, M., Harrison, S. ( 2019). Functional
diversity is a passenger but not driver of drought-related plant
diversity losses in annual grasslands. Journal of Ecology , 107,
2033–2039. https://doi.org/10.1111/1365-2745.13244
Näsi, R., Viljanen, N., Kaivosoja, J., Alhonoja, K., Hakala, T.,
Markelin, L., & Honkavaara, E. (2018). Estimating biomass and nitrogen
amount of barley and grass using UAV and aircraft based spectral and
photogrammetric 3D features. Remote Sensing , 10 (7), 1082.
https://doi.org/10.3390/rs10071082
Newbold, T., Hudson, L. N., Arnell, A. P., Contu, S., De Palma, A.,
Ferrier, S., … & Purvis, A. (2016). Has land use pushed terrestrial
biodiversity beyond the planetary boundary? A global
assessment. Science , 353 (6296), 288-291.
https://doi.org/10.1126/science.aaf2201
O’Mara, F. P. (2012). The role of grasslands in food security and
climate change. Annals of botany , 110 (6), 1263-1270.
https://doi.org/10.1093/aob/mcs209
Pärtel, M., Bruun, H. H., & Sammul, M. (2005). Biodiversity in
temperate European grasslands: origin and conservation. Grassland
science in Europe , 10 (1), 14.
Peciña, M. V., Ward, R. D., Bunce, R. G., Sepp, K., Kuusemets, V., &
Luuk, O. (2019). Country-scale mapping of ecosystem services provided by
semi-natural grasslands. Science of the Total
Environment , 661 , 212-225.
Pöttker, M., Kiehl, K., Jarmer, T., & Trautz, D. (2023). Convolutional
Neural Network Maps Plant Communities in Semi-Natural Grasslands Using
Multispectral Unmanned Aerial Vehicle Imagery. Remote
Sensing , 15 (7), 1945. https://doi.org/10.3390/rs15071945
Rakotoarivony, M. N. A., Gholizadeh, H., Hammond, W. M., Hassani, K.,
Joshi, O., Hamilton, R. G., … & Adams, H. D. (2023). Detecting the
invasive Lespedeza cuneata in grasslands using commercial small
satellite imagery. International Journal of Remote
Sensing , 44 (21), 6802-6824.
https://doi.org/10.1080/01431161.2023.2275321
Rocchini, D., Chiarucci, A., & Loiselle, S. A. (2004). Testing the
spectral variation hypothesis by using satellite multispectral
images. Acta Oecologica , 26 (2), 117-120.
https://doi.org/10.1016/j.actao.2004.03.008
Rocchini, D., He, K. S., Oldeland, J., Wesuls, D., & Neteler, M.
(2010). Spectral variation versus species β-diversity at different
spatial scales: a test in African highland savannas. Journal of
environmental monitoring , 12 (4), 825-831.
https://doi.org/10.1039/B921835A
Rossi, C., Kneubühler, M., Schütz, M., Schaepman, M. E., Haller, R. M.,
& Risch, A. C. (2022). Spatial resolution, spectral metrics and biomass
are key aspects in estimating plant species richness from spectral
diversity in species‐rich grasslands. Remote Sensing in Ecology
and Conservation , 8 (3), 297-314.
https://doi.org/10.1002/rse2.244
Russo, L., Fitzpatrick, Ú., Larkin, M., Mullen, S., Power, E., Stanley,
D., … & Stout, J. C. (2022). Conserving diversity in Irish
plant–pollinator networks. Ecology and Evolution , 12 (10),
e9347. https://doi.org/10.1002/ece3.9347
Schmidtlein, S., & Fassnacht, F. E. (2017). The spectral variability
hypothesis does not hold across landscapes. Remote Sensing of
Environment , 192 , 114-125.
https://doi.org/10.1016/j.rse.2017.01.036
Schweiger, A. K., Schütz, M., Risch, A. C., Kneubühler, M., Haller, R.,
& Schaepman, M. E. (2017). How to predict plant functional types using
imaging spectroscopy: Linking vegetation community traits, plant
functional types and spectral response. Methods in Ecology and
Evolution , 8 (1), 86-95.
https://doi.org/10.1111/2041-210X.12642
Shoko, C., Mutanga, O., & Dube, T. (2020). Optimal season for
discriminating C3 and C4 grass functional types using multi-date
Sentinel 2 data. GIScience & Remote Sensing , 57 (1),
127-139. https://doi.org/10.1080/15481603.2019.1675286
Stroh, P. A., Walker, K. J., Humphrey, T. A., Pescott, O. L., &
Burkmar, R. J. Plant Atlas 2020. In Plant Atlas 2020 . Princeton
University Press.
Sun, Y., Yi, S., & Hou, F. (2018). Unmanned aerial vehicle methods
makes species composition monitoring easier in
grasslands. Ecological Indicators , 95 , 825-830.
https://doi.org/10.1016/j.ecolind.2018.08.042
Tang, Z., Zhang, Y., Cong, N., Wang, L., Zhu, Y., Li, Z., & Zhao, G.
(2021). Remotely piloted aircraft systems remote sensing can effectively
retrieve ecosystem traits of alpine grasslands on the Tibetan Plateau at
a landscape scale. Remote Sensing in Ecology and
Conservation , 7 (3), 382-396.
https://doi.org/10.1002/rse2.196
Thornley, R. H., Gerard, F. F., White, K., & Verhoef, A. (2023).
Prediction of grassland biodiversity using measures of spectral
variance: a meta-analytical review. Remote Sensing , 15 (3),
668. https://doi.org/10.3390/rs15030668
Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E.
(1997). The influence of functional diversity and composition on
ecosystem processes. Science , 277(5330), 1300-1302.
https://doi.org/10.1126/science.277.5330.1300
Vitousek, P. M. (2015). Grassland ecology: Complexity of nutrient
constraints. Nature Plants, 1(7), 1-2.
http://dx.doi.org/10.1038/nplants.2015.98
Wang, R., Gamon, J. A., Emmerton, C. A., Li, H., Nestola, E.,
Pastorello, G. Z., & Menzer, O. (2016). Integrated analysis of
productivity and biodiversity in a southern Alberta
prairie. Remote Sensing , 8 (3), 214.
https://doi.org/10.3390/rs8030214
Wang, R., Gamon, J. A., Cavender‐Bares, J., Townsend, P. A., &
Zygielbaum, A. I. (2018). The spatial sensitivity of the spectral
diversity–biodiversity relationship: an experimental test in a prairie
grassland. Ecological Applications , 28 (2), 541-556.
https://doi.org/10.1002/eap.1669
Wang, R., & Gamon, J. A. (2019). Remote sensing of terrestrial plant
biodiversity. Remote Sensing of Environment , 231 , 111218.
https://doi.org/10.1016/j.rse.2019.111218
Wang, Z., Townsend, P. A., Schweiger, A. K., Couture, J. J., Singh, A.,
Hobbie, S. E., & Cavender-Bares, J. (2019). Mapping foliar functional
traits and their uncertainties across three years in a grassland
experiment. Remote Sensing of Environment , 221 , 405-416.
https://doi.org/10.1016/j.rse.2018.11.016
Wijesingha, J., Astor, T., Schulze-Brüninghoff, D., Wengert, M., &
Wachendorf, M. (2020). Predicting forage quality of grasslands using
UAV-borne imaging spectroscopy. Remote Sensing , 12 (1),
126. https://doi.org/10.3390/rs12010126
Wilson, J. B., Peet, R. K., Dengler, J., & Pärtel, M. (2012). Plant
species richness: the world records. Journal of vegetation
Science , 23(4), 796-802.
https://doi.org/10.1111/j.1654-1103.2012.01400.x
Wingler A., Sandel B. (2023). Relationships of the CSR functional
strategies of grass species with lifespan, photosynthetic type,
naturalization and climate. AoB PLANTS , 15, plad021.
https://doi.org/10.1093/aobpla/plad021
Xu, C., Zeng, Y., Zheng, Z., Zhao, D., Liu, W., Ma, Z., & Wu, B.
(2022). Assessing the impact of soil on species diversity estimation
based on UAV imaging spectroscopy in a natural alpine
steppe. Remote Sensing , 14 (3), 671.
https://doi.org/10.3390/rs14030671
Yang, H., & Du, J. (2021). Classification of desert steppe species
based on unmanned aerial vehicle hyperspectral remote sensing and
continuum removal vegetation indices. Optik , 247 , 167877.
https://doi.org/10.1016/j.ijleo.2021.167877
Yang, M., Chen, A., Zhang, M., Gu, Q., Wang, Y., Guo, J., … & Yang,
X. (2023). Relationship between plant species diversity and aboveground
biomass in alpine grasslands on the Qinghai–Tibet Plateau: Spatial
patterns and the factors driving them. Frontiers in Ecology and
Evolution , 11 , 1138884.
https://doi.org/10.3389/fevo.2023.1138884
Zhang, Y. W., Wang, T., Guo, Y., Skidmore, A., Zhang, Z., Tang, R., …
& Tang, Z. (2022). Estimating community-level plant functional traits
in a species-rich alpine meadow using UAV image
spectroscopy. Remote Sensing , 14 (14), 3399.
https://doi.org/10.3390/rs14143399
Zhao, Y., Sun, Y., Lu, X., Zhao, X., Yang, L., Sun, Z., & Bai, Y.
(2021a). Hyperspectral retrieval of leaf physiological traits and their
links to ecosystem productivity in grassland
monocultures. Ecological Indicators , 122 , 107267.
https://doi.org/10.1016/j.ecolind.2020.107267
Zhao, Y., Sun, Y., Chen, W., Zhao, Y., Liu, X., & Bai, Y. (2021b). The
potential of mapping grassland plant diversity with the links among
spectral diversity, functional trait diversity, and species
diversity. Remote Sensing , 13 (15), 3034.
https://doi.org/10.3390/rs13153034
Zhao, Y., Wu, Z., Zhao, Y., Zheng, Z., Lu, X., Sun, W., … & Bai, Y.
(2024). Inferring scalable productivity-related grassland functional
diversity in combination with in-situ leaf spectra and Sentinel-2
data. Fundamental Research .
https://doi.org/10.1016/j.fmre.2024.01.012
Table 2: List of the main grassland biodiversity and functional trait
remote sensing studies used for this review