References

Allan, R. P., & Soden, B. J. (2008). Atmospheric warming and the amplification of precipitation extremes. Science, 321 (5895), 1481-1484.
Allen, M. R., & Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic cycle. Nature, 419 (6903), 228-232.
Bao, J., & Sherwood, S. C. (2019). The Role of Convective Self‐Aggregation in Extreme Instantaneous Versus Daily Precipitation.Journal of Advances in Modeling Earth Systems, 11 (1), 19-33.
Bony, S., Semie, A., Kramer, R., Soden, B., Tompkins, A., & Emanuel, K. (2020). Observed modulation of the tropical radiation budget by deep convective organization and lower‐tropospheric stability. AGU Advances, 1 (3), e2019AV000155.
Bony, S., Stevens, B., Coppin, D., Becker, T., Reed, K. A., Voigt, A., & Medeiros, B. (2016). Thermodynamic control of anvil cloud amount.Proceedings of the National Academy of Sciences, 113 (32), 8927-8932.
Bretherton, C. S., Blossey, P. N., & Khairoutdinov, M. (2005). An energy-balance analysis of deep convective self-aggregation above uniform SST. Journal of the Atmospheric Sciences, 62 (12), 4273-4292.
Bretherton, C. S., Peters, M. E., & Back, L. E. (2004a). Relationships between water vapor path and precipitation over the tropical oceans.Journal of Climate, 17 (7), 1517-1528.
Bretherton, C. S., Uttal, T., Fairall, C. W., Yuter, S. E., Weller, R. A., Baumgardner, D., et al. (2004b). The EPIC 2001 stratocumulus study.Bulletin of the American Meteorological Society, 85 (7), 967-978.
Brient, F., & Bony, S. (2012). How may low‐cloud radiative properties simulated in the current climate influence low‐cloud feedbacks under global warming? Geophysical Research Letters, 39 (20).
Byrne, M. P., & Schneider, T. (2016). Energetic constraints on the width of the intertropical convergence zone. Journal of Climate, 29 (13), 4709-4721.
Coppin, D., & Bony, S. (2015). Physical mechanisms controlling the initiation of convective self‐aggregation in a general circulation model. Journal of Advances in Modeling Earth Systems, 7 (4), 2060-2078.
Dai, N., & Soden, B. J. (2020). Convective aggregation and the amplification of tropical precipitation extremes. AGU Advances, 1 (4), e2020AV000201.
Emori, S., & Brown, S. (2005). Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophysical Research Letters, 32 (17).
Fermepin, S., & Bony, S. (2014). Influence of low‐cloud radiative effects on tropical circulation and precipitation. Journal of Advances in Modeling Earth Systems, 6 (3), 513-526.
Held, I. M., Hemler, R. S., & Ramaswamy, V. (1993). Radiative-convective equilibrium with explicit two-dimensional moist convection. Journal of Atmospheric Sciences, 50 (23), 3909-3927.
Holloway, C. E., Wing, A. A., Bony, S., Muller, C., Masunaga, H., L’Ecuyer, T. S., et al. (2017). Observing convective aggregation.Surveys in Geophysics, 38 (6), 1199-1236.
Hwang, Y.-T., & Frierson, D. M. (2013). Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proceedings of the National Academy of Sciences, 110 (13), 4935-4940.
Klein, S. A., & Hartmann, D. L. (1993). The seasonal cycle of low stratiform clouds. Journal of Climate, 6 (8), 1587-1606.
Knutson, T. R., Sirutis, J. J., Vecchi, G. A., Garner, S., Zhao, M., Kim, H.-S., et al. (2013). Dynamical downscaling projections of 21st century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenario. J. Climate, 26 , 6591-6617.
Li, Y., Thompson, D. W., & Bony, S. (2015). The influence of atmospheric cloud radiative effects on the large-scale atmospheric circulation. Journal of Climate, 28 (18), 7263-7278.
Lilly, D. K. (1968). Models of cloud‐topped mixed layers under a strong inversion. Quarterly Journal of the Royal Meteorological Society, 94 (401), 292-309.
Liu, M., Yang, L., Smith, J., & Vecchi, G. (2020). Response of extreme rainfall for landfalling tropical cyclones undergoing extratropical transition to projected climate change: Hurricane Irene (2011).Earth’s Future, 8 (3), e2019EF001360.
Mauritsen, T., & Stevens, B. (2015). Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. Nature Geoscience, 8 (5), 346.
Medeiros, B., Clement, A. C., Benedict, J. J., & Zhang, B. (2021). Investigating the impact of cloud-radiative feedbacks on tropical precipitation extremes. npj Climate and Atmospheric Science, 4 (1), 1-10.
Muller, C. (2013). Impact of convective organization on the response of tropical precipitation extremes to warming. Journal of Climate, 26 (14), 5028-5043.
Muller, C., & Bony, S. (2015). What favors convective aggregation and why? Geophysical Research Letters, 42 (13), 5626-5634.
Muller, C. J., & Held, I. M. (2012). Detailed investigation of the self-aggregation of convection in cloud-resolving simulations.Journal of the Atmospheric Sciences, 69 (8), 2551-2565.
Neelin, J. D., & Held, I. M. (1987). Modeling tropical convergence based on the moist static energy budget. Monthly Weather Review, 115 (1), 3-12.
Norris, J., Chen, G., & Neelin, J. D. (2019). Thermodynamic versus dynamic controls on extreme precipitation in a warming climate from the Community Earth System Model Large Ensemble. Journal of Climate, 32 (4), 1025-1045.
O’Gorman, P. A., & Schneider, T. (2009). The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences, 106 (35), 14773-14777.
O’Gorman, P. A. (2015). Precipitation extremes under climate change.Current Climate Change Reports, 1 (2), 49-59.
Pall, P., Allen, M., & Stone, D. A. (2007). Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO 2 warming. Climate Dynamics, 28 (4), 351-363.
Pendergrass, A. G., Lehner, F., Sanderson, B. M., & Xu, Y. (2015). Does extreme precipitation intensity depend on the emissions scenario?Geophysical Research Letters, 42 (20), 8767-8774.
Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016). The link between extreme precipitation and convective organization in a warming climate: Global radiative‐convective equilibrium simulations.Geophysical Research Letters, 43 (21), 11,445-411,452.
Pfahl, S., O’Gorman, P. A., & Fischer, E. M. (2017). Understanding the regional pattern of projected future changes in extreme precipitation.Nature Climate Change, 7 (6), 423-427.
Popp, M., & Bony, S. (2019). Stronger zonal convective clustering associated with a wider tropical rain belt. Nature communications, 10 (1), 1-12.
Popp, M., Lutsko, N. J., & Bony, S. (2020a). The relationship between convective clustering and mean tropical climate in aquaplanet simulations. Journal of Advances in Modeling Earth Systems, 12 (8), e2020MS002070.
Popp, M., Lutsko, N. J., & Bony, S. (2020b). Weaker links between zonal convective clustering and ITCZ width in climate models than in observations. Geophysical Research Letters, 47 (22), e2020GL090479.
Raymond, D. J. (2000). Thermodynamic control of tropical rainfall.Quarterly Journal of the Royal Meteorological Society, 126 (564), 889-898.
Rayner, N., Parker, D. E., Horton, E., Folland, C. K., Alexander, L. V., Rowell, D., et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108 (D14).
Stein, T. H., Holloway, C. E., Tobin, I., & Bony, S. (2017). Observed relationships between cloud vertical structure and convective aggregation over tropical ocean. Journal of Climate, 30 (6), 2187-2207.
Stevens, B., Bony, S., & Webb, M. (2012). Clouds on-off klimate intercomparison experiment (COOKIE).
Su, H., Wu, L., Zhai, C., Jiang, J. H., Neelin, J. D., & Yung, Y. L. (2020). Observed tightening of tropical ascent in recent decades and linkage to regional precipitation changes. Geophysical Research Letters, 47 (3), e2019GL085809.
Su, H., Zhai, C., Jiang, J. H., Wu, L., Neelin, J. D., & Yung, Y. L. (2019). A dichotomy between model responses of tropical ascent and descent to surface warming. npj Climate and Atmospheric Science, 2 (1), 1-8.
Sugiyama, M., Shiogama, H., & Emori, S. (2010). Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proceedings of the National Academy of Sciences, 107 (2), 571-575.
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93 (4), 485-498.
Tobin, I., Bony, S., Holloway, C. E., Grandpeix, J. Y., Seze, G., Coppin, D., et al. (2013). Does convective aggregation need to be represented in cumulus parameterizations? Journal of Advances in Modeling Earth Systems, 5 (4), 692-703.
Tobin, I., Bony, S., & Roca, R. (2012). Observational evidence for relationships between the degree of aggregation of deep convection, water vapor, surface fluxes, and radiation. Journal of Climate, 25 (20), 6885-6904.
Tompkins, A. M. (2001). Organization of tropical convection in low vertical wind shears: The role of cold pools. Journal of the Atmospheric Sciences, 58 (13), 1650-1672.
Tompkins, A. M., & Semie, A. G. (2017). Organization of tropical convection in low vertical wind shears: Role of updraft entrainment.Journal of Advances in Modeling Earth Systems, 9 (2), 1046-1068.
Trenberth, K. E. (1999). Conceptual framework for changes of extremes of the hydrological cycle with climate change. In Weather and climate extremes (pp. 327-339): Springer.
Vecchi, G. A., & Soden, B. J. (2007). Global warming and the weakening of the tropical circulation. Journal of Climate, 20 (17), 4316-4340.
Westra, S., Alexander, L. V., & Zwiers, F. W. (2013). Global increasing trends in annual maximum daily precipitation. Journal of Climate, 26 (11), 3904-3918.
Wing, A. A., & Cronin, T. W. (2016). Self‐aggregation of convection in long channel geometry. Quarterly Journal of the Royal Meteorological Society, 142 (694), 1-15.
Wing, A. A., Emanuel, K., Holloway, C. E., & Muller, C. (2017). Convective self-aggregation in numerical simulations: A review. InShallow Clouds, Water Vapor, Circulation, and Climate Sensitivity(pp. 1-25): Springer.
Wing, A. A., & Emanuel, K. A. (2014). Physical mechanisms controlling self‐aggregation of convection in idealized numerical modeling simulations. Journal of Advances in Modeling Earth Systems, 6 (1), 59-74.
Wing, A. A., Stauffer, C. L., Becker, T., Reed, K. A., Ahn, M. S., Arnold, N. P., et al. (2020). Clouds and Convective Self‐Aggregation in a Multi‐Model Ensemble of Radiative‐Convective Equilibrium Simulations.Journal of Advances in Modeling Earth Systems , e2020MS002138.
Wood, R. (2012). Stratocumulus clouds. Monthly Weather Review, 140 (8), 2373-2423.
Wood, R., & Bretherton, C. S. (2006). On the relationship between stratiform low cloud cover and lower-tropospheric stability.Journal of Climate, 19 (24), 6425-6432.
Yang, D. (2018). Boundary Layer Diabatic Processes, the Virtual Effect, and Convective Self‐Aggregation. Journal of Advances in Modeling Earth Systems, 10 (9), 2163-2176.
Zhang, B., Soden, B. J., Vecchi, G. A., & Yang, W. (2021). The role of radiative interactions in tropical cyclone development under realistic boundary conditions. Journal of Climate, 34 (6), 2079-2091.
Zhao, M., Held, I. M., Lin, S.-J., & Vecchi, G. A. (2009). Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. Journal of Climate, 22 (24), 6653-6678.