loading page

Late Pleistocene Palaeo Environment Reconstruction from 3D Seismic data, NW Australia.The ACROSS project - Australasian Research: Origins of Seafaring to Sahul.
  • Anthony Fogg,
  • Justin Dix,
  • Helen Farr
Anthony Fogg
University of Southampton, UK

Corresponding Author:a.n.fogg@soton.ac.uk

Author Profile
Justin Dix
University of Southampton, UK
Author Profile
Helen Farr
University of Southampton, UK
Author Profile

Abstract

The earliest human migration from Sunda (South-East Asian archipelago) to Sahul (Australia and New Guinea) is still heavily debated with proposed timings between c.65-45kaBP depending on the evidence base and interpretation of the data. As part of the EU funded ACROSS project, focused on the mode and route of early migration in to SAHUL, we are undertaking an integrated interpretative study of the evolving submerged landscapes for the Late Pleistocene of the NW Australian Shelf. Oil and gas industry 3D and 2D seismic data, with some core/borehole data, are being used to determine lowstand palaeo-environments and shoreline positions. This information is informing modelling of ocean tide and current patterns that may have been influenced. The seismic is being interpreted supplemented by using time-slices on relative impedance inverted post-stack data. Layer stripping, seismic geomorphology, sequence boundary and depth analysis are being applied to datasets in the Bonaparte Basin, Kimberley Shelf and Arafura regions of Australia’s North-West Shelf area. Interpretation of the seismic data is constrained by dated stratigraphy in shallow cores with lower bounds determined from oil/gas well bores. MIS stages 1-4 are identified, however, the seismic response is a composite of time periods due to varying sedimentation rates, non-depositional hiatuses and minimal vertical seismic travel time covering this interval which limits the analysis to the top 50ms TWT (c. 40-45 m) of events below the seabed. This paper reviews the workflows that have been developed to maximise the fine scale detail that can be recovered for a range of terrestrial and marine environments. Procedures include inverse-Q, impedance inversion, spectral decomposition and time-slicing relative to seabed. High resolution 2D seismic data is also being used to augment and inform the interpretation of the conventional oil/gas 3D seismic data. Data examples will be presented showing the geomorphological characteristics (river channels, avulsions, levees, drainage channels, dunes and near shore carbonate reefs) of the lowstand and transgressive landscapes during this period. The palaeo-reconstructions are now being developed from the interpreted seismic geomorphology for the specific consideration of human seaborne travel.