Stephen M Griffies

and 27 more

We present the GFDL-CM4X (Geophysical Fluid Dynamics Laboratory Climate Model version 4X) coupled climate model hierarchy. The primary application for CM4X is to investigate ocean and sea ice physics as part of a realistic coupled Earth climate model. CM4X utilizes an updated MOM6 (Modular Ocean Model version 6) ocean physics package relative to CM4.0, and there are two members of the hierarchy: one that uses a horizontal grid spacing of $0.25^{\circ}$ (referred to as CM4X-p25) and the other that uses a $0.125^{\circ}$ grid (CM4X-p125). CM4X also refines its atmospheric grid from the nominally 100~km (cubed sphere C96) of CM4.0 to 50~km (C192). Finally, CM4X simplifies the land model to allow for a more focused study of the role of ocean changes to global mean climate.   CM4X-p125 reaches a global ocean area mean heat flux imbalance of $-0.02~\mbox{W}~\mbox{m}^{-2}$ within $\mathcal{O}(150)$ years in a pre-industrial simulation, and retains that thermally equilibrated state over the subsequent centuries. This 1850 thermal equilibrium is characterized by roughly $400~\mbox{ZJ}$ less ocean heat than present-day, which corresponds to estimates for anthropogenic ocean heat uptake between 1850 and present-day. CM4X-p25 approaches its thermal equilibrium only after more than 1000 years, at which time its ocean has roughly $1100~\mbox{ZJ}$ {\it more} heat than its early 21st century ocean initial state. Furthermore, the root-mean-square sea surface temperature bias for historical simulations is roughly 20\% smaller in CM4X-p125 relative to CM4X-p25 (and CM4.0). We offer the {\it mesoscale dominance hypothesis} for why CM4X-p125 shows such favorable thermal equilibration properties.

Elizabeth Yankovsky

and 2 more

We develop a parameterization for representing the effects of submesoscale symmetric instability (SI) in the ocean interior. SI is an important contributor to water mass modification and mesoscale energy dissipation throughout the World Ocean. Dense gravity currents forced by surface buoyancy loss over shallow shelves are a particularly compelling test case, as they are characterized by density fronts and shears susceptible to a wide range of submesoscale instabilities. We present idealized experiments of Arctic shelf overflows employing the GFDL-MOM6 in z* and isopycnal coordinates. At the highest resolutions, the dense flow undergoes geostrophic adjustment and forms bottom- and surface-intensified jets. The density front along the topography combined with geostrophic shear initiates SI, leading to the onset of secondary shear instability, dissipation of geostrophic energy, and turbulent mixing. We explore the impact of vertical coordinate, resolution, and parameterization of shear-driven mixing on the representation of water mass transformation. We find that in isopycnal and low-resolution z* simulations, limited vertical resolution leads to inadequate representation of diapycnal mixing. This motivates our development of a parameterization for SI-driven turbulence. The parameterization is based on identifying unstable regions through a balanced Richardson number criterion and slumping isopycnals towards a balanced state. The potential energy extracted from the large-scale flow is assumed to correspond to the kinetic energy of SI which is dissipated through shear mixing. Parameterizing submesoscale instabilities by combining isopycnal slumping with diapycnal mixing becomes crucial as ocean models move towards resolving mesoscale eddies and fronts but not the submesoscale phenomena they host.