Freya Olsson

and 4 more

Water temperature forecasting in lakes and reservoirs is a valuable tool to manage crucial freshwater resources in a changing and more variable climate, but previous efforts have yet to identify an optimal modelling approach. Here, we demonstrate the first multi-model ensemble (MME) reservoir water temperature forecast, a forecasting method that combines individual model strengths in a single forecasting framework. We developed two MMEs: a three-model process-based MME and a five-model MME that includes process-based and empirical models to forecast water temperature profiles at a temperate drinking water reservoir. Our results showed that the five-model MME improved forecast performance by 8-30% relative to individual models and the process-based MME, as quantified using an aggregated probabilistic skill score. This increase in performance was due to large improvements in forecast bias in the five-model MME, despite increases in forecast uncertainty. High correlation among the process-based models resulted in little improvement in forecast performance in the process-based MME relative to the individual process-based models. The utility of MMEs is highlighted by two results: 1) no individual model performed best at every depth and horizon (days in the future), and 2) MMEs avoided poor performances by rarely producing the worst forecast for any single forecasted period (<6% of the worst ranked forecasts over time). This work presents an example of how existing models can be combined to improve water temperature forecasting in lakes and reservoirs and discusses the value of utilising MMEs, rather than individual models, in operational forecasts.

Kamilla Kurucz

and 5 more

Despite the growing use of Aquatic Ecosystem Models (AEMs) for lake modelling, there is currently no widely applicable framework for their configuration, calibration, and evaluation. To date, calibration is generally based on direct data comparison of observed vs. modelled state variables using standard statistical techniques, however, this approach may not give a complete picture of the model’s ability to capture system-scale behaviour that is not prevalent in the state observations, but which may be important for resource management. The aim of this study is to compare the performance of ‘naïve’ calibration and a ‘system-inspired’ calibration, a new approach that augments the standard state-based calibration with a range of system-inspired metrics (e.g. thermocline depth, metalimnetic oxygen minima), in an effort to increase the coherence between the simulated and natural ecosystems. This was achieved by applying a coupled physical-biogeochemical model to a focal site to simulate temperature and dissolved oxygen. The model was calibrated according to the new system-inspired modelling convention, using formal calibration techniques. There was a clear improvement in the simulation using parameters optimised on the additional metrics, which helped to focus calibration on aspects of the system relevant to reservoir management, such as the metalimnetic oxygen minima. Extending the use of system-inspired metrics for the calibration of models of nutrient cycling, algal blooms, and greenhouse gas emissions has the potential to greatly improve the prediction of complex ecosystem dynamics.

Paul C. Hanson

and 5 more

Lake water clarity, phytoplankton biomass, and hypolimnetic oxygen concentration are metrics of water quality that are highly degraded in eutrophic systems. Eutrophication is linked to legacy nutrients stored in catchment soils and in lake sediments. Long lags in water quality improvement under scenarios of nutrient load reduction to lakes indicate an apparent ecosystem memory tied to the interactions between water biogeochemistry and lake sediment nutrients. To investigate how nutrient legacies and ecosystem memory control lake water quality dynamics, we coupled nutrient cycling and lake metabolism in a model to recreate long-term water quality of a eutrophic lake (Lake Mendota, Wisconsin, USA). We modeled long-term recovery of water quality under scenarios of nutrient load reduction and found that the rates and patterns of water quality improvement depended on changes in phosphorus (P) and organic carbon storage in the water column and sediments. Through scenarios of water quality improvement, we showed that water quality variables have distinct phases of change determined by the turnover rates of storage pools – an initial and rapid water quality improvement due to water column flushing, followed by a much longer and slower improvement as sediment P pools were slowly reduced. Water clarity, phytoplankton biomass, and hypolimnetic dissolved oxygen differed in their time responses. Water clarity and algal biomass improved within years of nutrient reductions, but hypolimnetic oxygen took decades to improve. Even with reduced catchment loading, recovery of Lake Mendota to a mesotrophic state may require decades due to nutrient legacies and long ecosystem memory.
Small freshwater reservoirs are ubiquitous and likely play an important role in global greenhouse gas (GHG) budgets relative to their limited water surface area. However, constraining annual GHG fluxes in small freshwater reservoirs is challenging given their footprint area and spatially and temporally variable emissions. To quantify the GHG budget of a small (0.1 km2) reservoir, we deployed an eddy covariance system in a small reservoir located in southwestern Virginia, USA over two years to measure carbon dioxide (CO2) and methane (CH4) fluxes near-continuously. Fluxes were coupled with in situ sensors measuring multiple environmental parameters. Over both years, we found the reservoir to be a large source of CO2 (633-731 g CO2-C m-2 yr-1) and CH4 (1.02-1.29 g CH4-C m-2 yr-1) to the atmosphere, with substantial sub-daily, daily, weekly, and seasonal timescales of variability. For example, fluxes were substantially greater during the summer thermally-stratified season as compared to the winter. In addition, we observed significantly greater GHG fluxes during winter intermittent ice-on conditions as compared to continuous ice-on conditions, suggesting GHG emissions from lakes and reservoirs may increase with predicted decreases in winter ice-cover. Finally, we identified several key environmental variables that may be driving reservoir GHG fluxes at multiple timescales, including, surface water temperature and thermocline depth followed by fluorescent dissolved organic matter. Overall, our novel year-round eddy covariance data from a small reservoir indicate that these freshwater ecosystems likely contribute a substantial amount of CO2 and CH4 to global GHG budgets, relative to their surface area.

Abigail S. L. Lewis

and 8 more

Water level drawdowns are increasingly common in lakes and reservoirs worldwide as a result of both climate change and water management. Drawdowns can have direct effects on physical properties of a waterbody (e.g., by altering stratification and light dynamics), which can interact to modify the waterbody’s biology and chemistry. However, the ecosystem-level effects of drawdown remain poorly characterized in small, thermally-stratified reservoirs, which are common in many regions of the world. Here, we intensively monitored a small eutrophic reservoir for two years, including before, during, and after a month-long drawdown that reduced total reservoir volume by 36%. During drawdown, stratification strength (maximum buoyancy frequency) and surface phosphate concentrations both increased, contributing to a substantial surface phytoplankton bloom. The peak in phytoplankton biomass was followed by cascading changes in surface water chemistry associated with bloom degradation, with sequential peaks in dissolved organic carbon, dissolved carbon dioxide, and ammonium concentrations that were up to an order of magnitude higher than the previous year. Dissolved oxygen concentrations substantially decreased in the surface waters during drawdown (to 41% saturation), which was associated with increased total iron and manganese concentrations. Combined, our results illustrate how changes in water level can have cascading effects on coupled physical, chemical, and biological processes. As climate change and water management continue to increase the frequency of drawdowns in lakes worldwide, our results highlight the importance of characterizing how water level variability can alter complex in-lake ecosystem processes, thereby affecting water quality.

Abigail Lewis

and 7 more

Freshwater lakes and reservoirs play a disproportionate role in the global organic carbon (OC) budget, as active sites for carbon processing and burial. Associations between OC and iron (Fe) are hypothesized to contribute substantially to the stabilization of OC in sediment, but the magnitude of freshwater Fe-OC complexation remains unresolved. Moreover, global declines in bottom-water oxygen concentrations have the potential to alter OC and Fe cycles in multiple ways, and the net effects of low-oxygen (hypoxic) conditions on OC and Fe are poorly characterized. Here, we measured the pool of Fe-bound OC (Fe-OC) in surficial sediments from two eutrophic reservoirs, and we paired whole-ecosystem experiments with sediment incubations to determine the effects of hypoxia on OC and Fe cycling over multiple timescales. Our experiments demonstrated that short (2–4 week) periods of hypoxia can increase aqueous Fe and OC concentrations while decreasing OC and Fe-OC in surficial sediment by 30%. However, exposure to seasonal hypoxia over multiple years was associated with a 57% increase in sediment OC and no change in sediment Fe-OC. These results suggest that the large sediment Fe-OC pool (~30% of sediment OC in both reservoirs) contains both oxygen-sensitive and oxygen-insensitive fractions, and over multiannual timescales OC respiration rates may play a more important role in in determining the effect of hypoxia on sediment OC than Fe-OC dissociation. Consequently, we anticipate that global declines in oxygen concentrations will alter OC and Fe cycling, with the direction and magnitude of effects dependent upon the duration of hypoxia.

Dexter W Howard

and 5 more

Temperate reservoirs and lakes worldwide are experiencing decreases in ice cover, which will likely alter the net balance of gross primary production (GPP) and respiration (R) in these ecosystems. However, most metabolism studies to date have focused on summer dynamics, thereby excluding winter dynamics from annual metabolism budgets. To address this gap, we analyzed six years of year-round high-frequency dissolved oxygen data to estimate daily rates of net ecosystem production (NEP), GPP, and R in a eutrophic, dimictic reservoir that has intermittent ice cover. Over six years, the reservoir exhibited slight heterotrophy during both summer and winter. We found winter and summer metabolism rates to be similar: summer NEP had a median rate of -0.06 mg O2 L-1 day-1 (range: -15.86 to 3.20 mg O2 L-1 day-1), while median winter NEP was -0.02 mg O2 L-1 day-1 (range: -8.19 to 0.53 mg O2 L-1 day-1). Despite large differences in the duration of ice cover among years, there were minimal differences in NEP among winters. Overall, the inclusion of winter data had a limited effect on annual metabolism estimates, likely due to short winter periods in this reservoir (ice durations 0–35 days) relative to higher-latitude lakes. Our work reveals a smaller difference between winter and summer NEP than in lakes with continuous ice cover. Ultimately, our work underscores the importance of studying full-year metabolism dynamics in a range of aquatic ecosystems to help anticipate the effects of declining ice cover across lakes worldwide.

Mary E Lofton

and 3 more

Near-term freshwater forecasts, defined as sub-daily to decadal future predictions of a freshwater variable with quantified uncertainty, are urgently needed to improve water quality management as freshwater ecosystems exhibit greater variability due to global change. Shifting baselines in freshwater ecosystems due to land use and climate change prevent managers from relying on historical averages for predicting future conditions, necessitating near-term forecasts to mitigate freshwater risks to human health and safety (e.g., flash floods, harmful algal blooms). To assess the current state of freshwater forecasting and identify opportunities for future progress, we synthesized freshwater forecasting papers published in the past five years. We found that freshwater forecasting is currently dominated by near-term forecasts of water quantity and that near-term water quality forecasts are fewer in number and in early stages of development (i.e., non-operational), despite their potential as important preemptive decision support tools. We contend that more freshwater quality forecasts are critically needed, and that near-term water quality forecasting is poised to make substantial advances based on examples of recent progress in forecasting methodology, workflows, and end user engagement. For example, current water quality forecasting systems can predict water temperature, dissolved oxygen, and algal bloom/toxin events five days ahead with reasonable accuracy. Continued progress in freshwater quality forecasting will be greatly accelerated by adapting tools and approaches from freshwater quantity forecasting (e.g., machine learning modeling methods). In addition, future development of effective operational freshwater quality forecasts necessitates substantive engagement of end users throughout the forecast process, funding, and training opportunities. Looking ahead, near-term forecasting provides a hopeful future for freshwater management in the face of increased variability and risk due to global change, and we encourage the freshwater scientific community to incorporate forecasting approaches in water quality research and management.

Whitney M Woelmer

and 4 more

TITLE : Embedding communication concepts in forecasting training increases students’ understanding of ecological uncertainty Submitted as an Article to Ecosphere , Eco-Education TrackAUTHOR LIST: Whitney M. Woelmera*, Tadhg N. Moorea,b11Present address: School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland, Mary E. Loftona, R. Quinn Thomasa,b, and Cayelan C. CareyaaDepartment of Biological Sciences, Virginia Tech, Blacksburg, VA, USAbDepartment of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, USA*Corresponding author: wwoelmer@vt.eduOPEN RESEARCH STATEMENT : This study collected and analyzed human subject data and was approved by the Virginia Tech Institutional Review Board (19-669) and the Carleton College Institutional Review Board (19-20 065). Data for this study have been anonymized and aggregated and can be found at Woelmer (2023) along with all code to reproduce the analysis and figures within this study.Woelmer, W. 2023. Wwoelmer/module8_public_ecosphere: Ecosphere submission March 2023 (v1.0). Zenodo. https://doi.org/10.5281/zenodo.7733965KEYWORDS : active learning, ecology education, ecological forecast, Macrosystems EDDIE, R Shiny, teaching modules, translational ecology, undergraduate curricula, visualization literacyABSTRACT : Communicating and interpreting uncertainty in ecological model predictions is notoriously challenging, motivating the need for new educational tools which introduce ecology students to core concepts in uncertainty communication. Ecological forecasting, an emerging approach to estimate future states of ecological systems with uncertainty, provides a relevant and engaging framework for introducing uncertainty communication to undergraduate students, as forecasts can be used as decision support tools for addressing real-world ecological problems and are inherently uncertain. To provide critical training on uncertainty communication and introduce undergraduate students to the use of ecological forecasts for guiding decision-making, we developed a hands-on teaching module within the Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration; MacrosystemsEDDIE.org) educational program. Our module used an active learning approach by embedding forecasting activities in an R Shiny application to engage introductory students in data science, ecological modeling, and forecasting without needing advanced computational or programming skills. Pre- and post-module assessment data from >250 undergraduate ecology students indicate that the module significantly increased students’ ability to interpret forecast visualizations with uncertainty, identify different ways to communicate forecast uncertainty for diverse users, and correctly define ecological forecasting terms. Specifically, students were more likely to describe visual, numeric, and probabilistic methods of uncertainty communication following module completion. Students were also able to identify more benefits of ecological forecasting following module completion, with the key benefits of using forecasts for prediction and decision-making most commonly described. These results show promise for introducing ecological model uncertainty, data visualizations, and forecasting into undergraduate ecology curricula via software-based learning, which can increase students’ ability to engage and understand complex ecological concepts.