loading page

The Ocean Mesoscale Regime of the Reduced-Gravity Quasi-Geostrophic Model
  • Roger Samelson,
  • Dudley Chelton,
  • Michael Schlax
Roger Samelson
Oregon State Univ

Corresponding Author:rsamelson@coas.oregonstate.edu

Author Profile
Dudley Chelton
Oregon State University
Author Profile
Michael Schlax
Oregon State University
Author Profile

Abstract

A statistical-equilibrium, geostrophic-turbulence regime of the stochastically forced, one-layer, reduced-gravity, quasi-geostrophic model is identified in which the numerical solutions are representative of global mean, mid-latitude, open-ocean mesoscale variability. A nominal best fit to observed SSH variance, autocorrelation, eddy, and spectral statistics is obtained for dimensional SSH stochastic-forcing variance production rate 1/4 cm^2/d, an SSH damping rate 1/62 1/wk, and a stochastic forcing autocorrelation timescale near or greater than 1 wk. This ocean mesoscale regime is nonlinear and appears to fall near the stochastic limit, at which wave-mean interaction is just strong enough to begin to reduce the local mesoscale variance production, but is still weak relative to the overall nonlinearity. Comparison of linearly-inverted wavenumber-frequency spectra shows that a strong effect of nonlinearity, the removal of energy from the resonant linear wave field, is resolved by the gridded altimeter SSH data. These inversions further suggest a possible signature in the merged altimeter SSH dataset of signal propagation characteristics from the objective analysis procedure.