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1. Introduction

- Deglaciation of Iceland caused a large
increase in magmatic activity

- Timing and chemical composition of
erupted lavas can be used to infer rapid
melt extraction from the mantle

- Generally consistent with geochemistry (U-
series disequilibrium) and seismology (low
inferred porosities) but not micro-structural
estimates assuming diffuse flow
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Fig. 1: Geological map of Iceland, including present
day icecap and volcanic zones (Haukur JOhannesson)
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Fig. 2: Simplified history of major deglaciation events.
From Eksinchol et al. (2019)

2. Previous estimates

 Jull & McKenzie (1996), Maclennan et al. (2002)
and Eksinchol et al. (2019)

- Favour melt velocity around 100 m/yr

- Even faster melt velocity excluded by trace element
(La) concentration

- Armitage et al. (2019) used an estimate based on
seismology to study CO2 emissions over 120 ka
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Fig. 3. Observed (dashed) and modelled (curves)
cumulative erupted volume in Western Volcanic Zone.
Black curve: preferred melt velocity (100 m/yr).
From Eksinchol et al. (2019)

3. Methods

3.1 Dynamical model

1D continuum model of porous flow with melting
Mass conservation:
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. Porosity: ¢

. Melt flux from Darcy’s Law: Q = Qy¢", where the
prefactor Q, = Apgk/u

. Melt velocity: w = Q/¢

. Meltrate:I' =17, [1 + Af(t)], where steady melt

rate I ; depends on maximum degree of melting,

mantle upwelling rate and depth of the melting
regionl'y = F_. Wy/H

. Amplification factor A [extra melt from deglaciation],

f(?) is a switch (on during deglaciation, else off)

3.2 Steady-state behaviour
- Variation of melt flux and porosity with depth:
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- Maximum melt velocity (at top of melting region):
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3.3 Transient effect of deglaciation
- Calculate scaled extra emissions:
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» Scale time with transport time for a porosity wave

t = H/w,_,,,, so deglaciation time is A = ¢,/
1 I
Deglaciation
Ak
E' 0.8+ A=10
S — A =30
= 0.6
2
204/
£}
‘S 0.2
0 | | | , .
0 0.5 1 1.9 2 2.9 3

t/x [t (kyr)]

Fig. 4. Calculated extra emissions due to early-
holocene deglaciation with different amplification
factors for . = 0.23,w .. = 30m/yr, ¢, = 1 kyr
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4. Results: deglaciation
versus normal Iceland

4.1 Cumulative emissions

- Field observations can be used to estimate history
of cumulative emissions (e.g. Fig. 3)

- Emissions rise faster when accounting for nonlinear
feedbacks due to amplified melting and porosity
during deglaciation
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Fig. 5. Cumulative extra emissions from Fig. 4. The
dashed black arrow and dashed curve indicate how
previous linear models (small amplification factor) can
be corrected (shifted) to match a nonlinear model, thus
accounting for feedbacks from amplified porosity

4.2 Correction for amplified porosity during
deglaciation

* Previous linear estimates of melt velocity (100 m/yr)
are likely over-estimated by a factor of about 3
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Fig. 6. (a) The true nonlinear velocity required to match
observations is smaller than previous linear estimates.
(b) The resulting correction factor depends fairly
weakly on amplification factor
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5. Results: Iceland
versus ‘normal’ ridges

Iceland is different from other mid-ocean ridges:

 Higher degree of melting due to plume

» Slower spreading rate than fast-spreading ridges
like the East Pacific Rise (EPR)

- Role of ‘active’ upwelling due to plume

5.1 Conversion from Icelandic results

- Use equation (%) from Sec. 3.2 for maximum melt
velocity and assume (J, constant and n = 2

. Superscript ! denotes the Icelandic version of a
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5.2 Role of mantle upwelling

- Two competing effects:

(i) For passive mantle upwelling (i.e. driven by
plate spreading alone), the slow-spreading rate
at Iceland (7 times slower than the EPR)
means that faster spreading ridges would have
faster melt velocity by a factor of about 2.6

(ii) If Iceland is influenced by very fast active
upwelling (10 times faster than passive), an
otherwise equivalent ridge would have slower
melt velocity by a factor of about 3.2

5.3 Role of degree of melting

- |celand has a higher degree of melting than
elsewhere due to role of plume (e.g. elevated
crustal thickness)

- |If Iceland has double the degree of melting, an
otherwise equivalent ridge would have slower melt
velocity by a factor of about 1.4
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Fig. 7. Possible melt velocity at other ridges
accounting for differences relative to Iceland. The EPR
value iIs the product of all the effects considered.
Typically, geodynamic models use a much slower melt
velocity
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Conclusions

- We account for nonlinear feedbacks due to
porosities higher than their steady-state
values during deglaciation

- Melt velocities have been overestimated by
a factor of about 3 because previous
studies did not account for this feedback

- But melt velocity is still fast (30 m/yr)

- Globally, other ridges are still relatively fast
(more than 10 m/yr), even accounting for
plume influence in Iceland

6. Discussion

6.1 Two-dimensional effects

quasi-2D (slow) quasi-2D (fast)
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Fig. 8. Geometrical effects in quasi-2D models with
different models of melt extraction along a sub-
lithospheric channel: (a) slow melt extraction and (b)
fast (instant)

Quasi-2D models can be constructed from a series
of 1D column models

Results depend on assumptions about how fast
melt is extracted along sub-lithospheric channel
1D model is intermediate

True 2D/3D models could include channelized flow

6.2 Other effects (partly considered by
previous studies)

- Crustal system response to deglaciation
(Maclennan et al., 2002, argued that trace element
geochemistry shows that signal is not mainly
coming from release from crustal magma chambers
triggered by deglaciation)

- Elastic response and post-glacial rebound were
considered by several studies

- More complex melting behaviour (e.g. the role of
volatiles like CO2) and complex deglaciation history
were both considered by Armitage et al. (2019)

« Geographic variations were studied by Eksinchol et
al. (2019) using an axisymmetric ice sheet and
linear ridge
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