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Abstract 1 

Water volume estimates of shallow desert lakes are the basis for water balance calculations, 2 

important both for water resource management and paleohydrology/climatology. Water volumes 3 

are typically inferred from bathymetry mapping; however, being shallow, ephemeral and remote, 4 

bathymetric surveys are scarce in such lakes. We propose a new, remote-sensing based, method 5 

to derive the bathymetry of such lakes using the relation between water occurrence, during >30-6 

yr of optical satellite data, and accurate elevation measurements from the new Ice, Cloud, and 7 

Land Elevation Satellite-2 (ICESat-2). We demonstrate our method at three locations where we 8 

map bathymetries with ~0.3 m error. This method complements other remotely sensed, 9 

bathymetry-mapping methods as it can be applied to: (a) complex lake systems with sub-basins, 10 

(b) remote lakes with no in-situ records, and (c) flooded lakes. The proposed method can be 11 

easily implemented in other shallow lakes as it builds on publically accessible global data sets. 12 

Plain Language Summary 13 

Lakes in desert environments are often remote, shallow, and only get filled once in a long while. 14 

They are an important water resource, and could be used to decipher past environmental 15 

conditions. However, detailed maps of lake-floor terrain, which are required to effectively study 16 

these lakes are typically not available. The deepest parts of the lakes are filled with water more 17 

frequently than their shallow margins. Thus, we suggest here to relate water occurrence in those 18 

lakes with accurate satellite-based elevation measurements, to obtain a valuable lake-floor terrain 19 

map. We demonstrate the usefulness of our method by comparing results with other globally 20 

available data. Previous methods struggle with complex-terrain lakes or lakes that are partially 21 

flooded during their survey; while our method yields high-resolution accurate maps even in such 22 

lakes. 23 

1 Introduction 24 

A major characteristic of drylands is endoreism, internal drainage (de Martonne, 1927). The lower and usually drier 25 

parts of these drylands are often occupied by ephemeral or seasonal shallow desert lakes (Nicholson, 2011). 26 

Thousands of such lakes exist globally with the largest being Lake Eyre (Australia, alias Kati Thanda; surface area 27 

of >9000 km2 when full). Such lakes are significant for opportunistic species that have no other water resources 28 

(e.g., D’Odorico and Porporato, 2006; Noy-Meir, 1973). Mapping of lake floors is key in calculating water balance 29 

(e.g., Cohen et al., 2015; Enzel and Wells, 1997), important in water resources management, and in deciphering 30 

paleoehydrology (e.g., Crétaux et al., 2016; Quade et al., 2018). However, being shallow, dry and remote, 31 

bathymetric surveys (e.g., as in Bye et al., 1978) have been scarce in such lakes.  32 

A different approach to bathymetry mapping is through remote-sensing (Gao, 2015; Jawak et al., 2015). The Shuttle 33 

Radar Topography Mission (SRTM) has provided high resolution (~30m) global digital elevation models (DEMs) 34 

that could, in principal, present bathymetry of such desert lakes. Yet, radar altimetry cannot produce accurate DEMs 35 

if the area is flooded or where lake floors are exceptionally bright and/or smooth (Berry et al., 2007; Brenner et al., 36 

2007), which are common conditions.  37 

To improve lake bathymetry maps, recent studies either integrate remote-sensing with a spatial interpolation of in-38 

situ measurements (Feng et al., 2011; Leon and Cohen, 2012) or combine between optical imaging and radar (e.g., 39 

Sun and Ma, 2019) or laser altimetry (Arsen et al., 2013; Li et al., 2019; Ma et al., 2019). These satellite imaging 40 

methods are based on determining isobaths (equal depth lines) of a lake, through snapshots during different lake 41 

stages. Then, shorelines in each specific image are assigned a height through accurate elevation measurements; such 42 

as laser altimetry. This determines bathymetry only to the depth of the lowest shoreline identified, using a spatial 43 

interpolation of a few isobaths. It also overlooks the possible variance in elevation of a specific shoreline, which can 44 

be significant in large lakes (Arsen et al., 2013; Feng et al., 2011). Li et al. (2019) suggested using a long-term (410 45 

images during >30-yr) water occurrence index, instead of a few specific isobaths, and relating it with measurements 46 

from a limited dataset of airborne lidar altimetry. This overcomes shoreline elevation variations and makes spatial 47 
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interpolation unnecessary. However, they assumed a linear relation between isobath areas, sampled at specific 48 

points, and elevation. Applying their methodology to a deep reservoir (Lake Mead; >100m deep) only revealed the 49 

bathymetry of the upper part of the lake; the deeper bathymetry was extrapolated with geometrical considerations, 50 

calibrated using in-situ data (Li et al., 2019). A further complication arises where water occurrence is not based 51 

directly on elevation, primarily where a lake is composed of a few sub-basins, which yields more than one possible 52 

relation between water occurrence and elevation. Accordingly, present-day methodologies and freely available 53 

datasets cannot provide accurate, high-resolution bathymetry of often-flooded, shallow desert lakes, especially for 54 

lakes having more than one sub-basin. 55 

Thus, to derive the bathymetry of desert lakes, there is a need for: (a) an efficient and reliable way to recognize the 56 

water occurrence at a high resolution, (b) a technique to overcome diverse water occurrences-elevation relations in 57 

different sub-basins, (c) a way to derive the bathymetry when lakes are inundated, (d) a robust method to validate 58 

the resulted bathymetry. To tackle these challenges, we developed a simple and easily implemented methodology 59 

that derives bathymetry of shallow desert lakes. This paper focuses on three desert lakes, ranging in area from 60 

0.2×103 km2 to 6×103 km2. Lake bathymetries are acquired using the relation between globally-available high-61 

resolution (30 m) water occurrence maps, and elevation data from NASA’s new Ice, Cloud, and Land Elevation 62 

Satellite-2 (ICESat-2). 63 

Following is a description of the methodology and its application over Lake Eyre, which consists of a few sub-64 

basins. We show the derivation of a bathymetric map for the lake and validate it versus the global SRTM and the 65 

best bathymetric map available for the region (Section 3). Having better results than the SRTM, we set to derive the 66 

bathymetry of a remote lake in the Sahara (Sabkhat El-Mellah) that has no other bathymetric map (Section 4) and of 67 

Lago Coipasa in the Altiplano for which we separately derive the bathymetry under dry and inundated conditions. 68 

2 Methodology 69 

Desert lakes are often fed by floods with monthly to decadal frequencies. Most of the coarser particles are deposited 70 

upstream, and thus, lake floors are mainly covered with fine low-permeability sediments, making evaporation the 71 

primary output (Nicholson, 2011). Water occurrence in these lakes is <100% of the time, and often <30%. Thanks to 72 

a detailed analysis of 3×106 Landsat images by Pekel et al. (2016), the frequency of water occurrence over 30 m 73 

pixels between 1984 and 2015 is easily accessible worldwide. Water occurs more often over the deeper parts of the 74 

lake, where complete evaporation takes longer, and less often over the higher lake margins. Thus, there should be a 75 

straightforward relation between water occurrences (i.e., the relative frequency of water in a pixel) and lake floor 76 

elevation over such lakes. This, in turn, allows measuring height over specific locations within the lake, from which 77 

we can infer the lake floor elevation. 78 

ICESat-2 provides dense and accurate elevation measurements (0.7 m point spacing; accuracy and precision of <5 79 

cm and <13 cm, respectively) over land, and even underwater. Thus it yields accurate, narrow height profiles of 80 

lakes, since its launch in September 2018, with a 91-day revisiting frequency (Brunt et al., 2019; Markus et al., 81 

2017). Underwater measurements can penetrate up to ~1 Secchi depth (Parrish et al., 2019), i.e. up to a few meters 82 

or even a few dozens of meters (Ma et al., 2019), depending on the optical properties of the water.  83 

Relying on the relation between Water Occurrence and Laser Profile elevation (hereon WOLP), we derive 84 

bathymetry maps using four (to five) steps: (a) acquiring the water occurrence from the global map by Pekel et al. 85 

(2016), (b) extracting ICESat-2 data (ATL03 product) that coincide with the lake (defined as regions with >0% 86 

water occurrence) in the water occurrence map (Figure 1a), (c) fitting a mathematical function describing the 87 

relation between the two (Figure 1b), and (d) applying this function to translate water occurrence to lake-floor 88 

elevation for the entire lake basin (Figure 1d). Where sub-basins exist, an additional step is needed between steps c 89 

and d, in which we identify lake sub-basins from water occurrence, as detailed in Section 3 (e.g., Figure 1c). This 90 

methodology provides a bathymetric map of lakes that were flooded to some extent between 1984 and 2015, with a 91 

resolution of ~30 m. 92 

To evaluate our methodology, we use available topographic data to demonstrate differences between our results and 93 

available bathymetric (or topographic) maps. Where the SRTM is the best external source, we use cross-validation, 94 

putting aside one ICESat-2 scan each time and validating the bathymetry based on all other scans. Owing to the high 95 

accuracy of the ICESat-2 data, we demonstrate the small expected error using our methodology.  96 
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Figure 1. An example of bathymetry derivation in Lake Eyre North. (a) Water occurrence from 98 

Pekel et al. (2016) and ten ICESat-2 scans over the lake (labeled) used to derive elevations. 99 

Scans are colored by the 5 identified pseudo-watersheds (SI1). (b) The relation between water 100 

occurrence and elevation measurements from ICESat-2 scan #1 with a two-term gaussian fit and 101 

its 95% prediction boundaries. Colors represent latitude. (c) The same as in b, but for scan #3. 102 

The fit here is divided according to the watersheds. (d) Derived bathymetry map based on the 103 

methodology presented in Section 2. Gray dots represent regions in which water occurrence is 104 

greater than the highest occurrence overpassed by ICESat-2. B = Belt Bay. M = Madigan Gulf. 105 

 106 

3 Lake Eyre 107 

Lake Eyre (Figure 2c, e) has a watershed covering almost 1% of the global land area (>1.1×106 km2). It has a 108 

complex lake floor with a minimum elevation of -15.2 m relative to the Australian Height Datum (AHD) (Kotwicki 109 

and Isdale, 1991). The great flood of 1974 was utilized to perform bathymetric surveys over the lake, yielding a 0.5-110 

m-contour-interval bathymetric map and detailing features >1 km2 (Bye et al., 1978). Leon & Cohen (2012) (hereon 111 

LC12) combined data from this bathymetric map with SRTM data and ICESat-1 laser altimetry (with 170 m point 112 

spacing) to form the best bathymetric map of the lake that we are aware of. Because of its vast size, complex 113 

bathymetry, and a good reference map, we chose to apply our methodology over Lake Eyre. To have a continuous 114 

map, we only mapped Lake Eyre North (the larger and more frequently flooded part of the lake). 115 

To overcome complexity arising from the different relations of water occurrence and elevation in each of the sub-116 

basins (Figure 1b), we divided Lake Eyre North into five sub-basins using the water occurrence map (Figure 1a; 117 

Supporting Information Figure 1 [S1]). This enabled identification of pseudo watersheds, similar to determining 118 

watersheds in a topographic map (SI1; Schwanghart and Scherler (2014)). We then performed steps b to d of our 119 

methodology, separately for each sub-basin (as exampled in Figure 1c). If more than one ICESat-2 scan intersected a 120 

watershed, we used data from all available scans. To form a single map out of the different sub-basins, regions close 121 

to the pseudo water divide were assigned values using step c from all neighboring sub-basins, inversely weighted 122 

according to their distance from the divide (SI1).  123 
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Figure 2. Comparisons of WOLP bathymetries with SRTM data in Lake Eyre (a), Sabkhat El-125 

Mellah (d), and Lago Coipasa (g). (b) Comparison of Lake Eyre bathymetry with the map of 126 

Leon & Cohen (2012). (e) Location map of the three lakes, and aridity index (UNEP, 1992) from 127 

the Climatic Research Unit of the University of ‎East Anglia (New et al., 2002). True-color 128 

satellite imagery of the lakes from Esri\Digitalglobe, and maximum extent of water occurrence 129 

(in black) from Pekel et al. (2016) (c, f, i). (h) Difference between the “wet” and “dry” 130 

bathymetries of Lago Coipasa.  131 

 132 

We validated the WOLP bathymetry map (Figure 1d) against SRTM data and the LC12 bathymetry over the entire 133 

region (Table 1, Figures 2a, 2b), and against ICESat-2 scans over the measured profiles (Figure S2). The WOLP 134 

bathymetry lies within ±0.5 m of LC12 elevations For 74% of the region (90% is within ±1 m), i.e., it lies within one 135 

elevation contour of Bye et al. (1978). Most of the remaining areas (deviating >1 m) are situated next to the lake 136 

margins, where the LC12 map is mostly based on SRTM data, which were acquired during a lake inundation 137 

interval, and are therefore not reliable over major parts of the lake (Leon and Cohen, 2012). In ~83% of the area 138 

SRTM data were replaced by a constant elevation value (-15 m AHD). The root mean square difference (RMSD) of 139 

the SRTM data versus the LC12 map is 1.77 m, and only 25% of the SRTM data are within ±0.5 m of LC12, 140 

whereas the WOLP bathymetry has a RMSD of 0.52 m (Table 1). Moreover, the mean RMSD for each of the sub-141 

basins using cross-validation of the different ICESat-2 scans is 0.21-0.57 m (Figure S3), indicating that the WOLP 142 

map error is even smaller than it seems when comparing it to the LC12 map.  143 

Hypsometric curves emphasize differences between these analyzed bathymetries (Figure 3), and are important for 144 

water volume estimates (SI2). Whereas the SRTM wet area sharply increases above the minimum elevation, because 145 

of the constant (-15 m) elevation polygon, the WOLP and the LC12 wet area curves present a gradual increase with 146 

depth (Figure 3a). Accordingly, water volumes are lower by ~75% both in the WOLP and LC12 bathymetries 147 



Confidential manuscript submitted to Geophysical Research Letters 

compared to the SRTM. Both the WOLP and the LC12 exhibit similar hypsometry in depths of <1 m (dissimilar to 148 

the SRTM). According to these maps, the southwestern sub-basin (Belt Bay) is the first to be filled (in accordance 149 

with MODIS imagery of floods, Supplementary movie 1 [SM1]). Differences between WOLP and LC12 150 

bathymetries increase above lake depths of 1 m, when the southeastern sub-basin (Madigan Gulf) fills according to 151 

WOLP bathymetry. In the LC12 map, the sill between the southern sub-basins is higher and therefore the flooded 152 

area increases only above water depth of 2 m. Large differences exist between WOLP and LC12 at the lake’s 153 

margins; there, LC12 bathymetry rises ~5 m above the lake bottom (Figure 3a). These differences seem to be related 154 

to the SRTM-dependent mapping of the lake margins in LC12. At a depth of 3.1 m, the WOLP flooded area reaches 155 

its maximum extent, featuring an area of 6.1×103 km2 and a volume of 8.9 km3, ~33% higher than the respective 156 

area and volume calculated based on the LC12 map (Figure 3a). Nevertheless, it is important to note that WOLP 157 

bathymetry represents only regions that were flooded between 1984 and 2015, and that the largest flood in recent 158 

history occurred in the 1970’s. Therefore higher shorelines, as in LC12 or Cohen et al. (2018), could not be mapped 159 

with WOLP. 160 

Table 1. Validation results across the lakes  161 

Lake Validated map Reference 
Regional / Profile 

validation 
RMSD [m] 

Lake depth 

[m] 

Lake Eyre 

SRTM LC12 Regional 1.77 

3.2 (WOLP) §, 

4.1 (LC12) § 

WOLP (this 

study) 
LC12 Regional 0.52 

SRTM ICESat-2‎ Profile 0.95-2.30* 

LC12 ICESat-2‎ Profile 0.20-0.69* 

WOLP ICESat-2‎ 
Profile, cross-

validation 
0.21-0.57* 

Sabkhat El-Mellah‎ 

SRTM ICESat-2‎ Profile 2.04# 

5.0 (WOLP)§ 
WOLP ICESat-2‎ 

Profile, cross-

validation 
0.32# 

Lago Coipasa 

SRTM ICESat-2‎ Profile 2.84# 
1.2 (WOLP: 

“dry”)§ WOLP (“dry”) ICESat-2‎ 
Profile, cross-

validation 
0.28# 

WOLP (“wet”) WOLP (“dry”) Regional 0.39 
2.2 (WOLP: 

“wet”)§ 
WOLP (“wet”) ICESat-2‎ 

Profile, cross-

validation 
0.47# 

*Range denotes the average RMSD for each sub-basin, averaged between the different ICESat-2 profiles in it. 162 
#Average among the different ICESat-2 profiles. 163 
§Estimated (see SI2). 164 
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Figure 3. Hypsometric curves, extent maps and cross-sections for Lake Eyre (a), Sabkhat El-166 

Mellah (b), and Lago Coipasa (c). The maps show filling extent at heights (denoted by a gray 167 

line on the hypsometric curves) that exert major differences between bathymetries. Details of the 168 

preparation of the hypsometries are in SI2. 169 

 170 

4 Application for non-mapped and inundated lakes 171 

Sabkhat El-Mellah is a small, northwestern Sahara ephemeral lake (~170 km2) (Figure 2e, f). It is fed in the High 172 

Atlas Mountains and is flooded only once every few years (Mabbutt, 1977). There is no bathymetric map of this lake 173 

that we are aware of. A comparison of the WOLP bathymetry (Figure S4) to the SRTM data (Figures 2d, S5) 174 

indicates generally a similar pattern (location of the deepest part of the lake and its margins, large scale slopes, etc.). 175 

However, variations of the SRTM data over Sabkhat El-Mellah are approximately ±2 m (Figures 3b, S5), while lake 176 

depth is ~5 m, yielding an uncharacteristic discontinuous and rough lake floor (e.g., Quade et al., 2018). The mean 177 

cross-validation RMSD of WOLP bathymetry is much lower (0.32 m; Table 1, Figure S6). The WOLP map exhibits 178 

a much higher flooded area in comparison with the SRTM data (Figure 3b). E.g., at a 1 m lake depth, the WOLP 179 

lake area is 0.15×103 km2 versus 0.08×103 km2 according to SRTM data. 180 

The same methodology was applied over Lago Coipasa (or Salar de Coipasa; surface area up to 2400 km2), which is 181 

a high altitude (3660 m), shallow saline lake, occasionally filled with water (Placzek et al., 2006) (Figure 2e, i). 182 

However, during February 2019, the lake was flooded (SM2), thus, ICESat-2 scans taken afterward exhibit both the 183 

water surface and the lake floor in its inundated region.  184 

Recent studies highlight the ability of ICESat-2 scans to penetrate water and yield bathymetric profiles (Forfinski-185 

Sarkozi and Parrish, 2016; Ma et al., 2019; Parrish et al., 2019). Therefore, we derived two different bathymetric 186 

maps of Lago Coipasa, one using all available “dry” scans (i.e., before February 2019; Figure S7), and the other 187 

(Figure S8) using only post-flood scans (“wet” scans), manually omitting the ICESat-2’s water surface readings 188 

(SI3). The difference between the “dry” bathymetry and the SRTM data, and the difference between the “dry” and 189 

“wet” maps are shown in Figures 2g and 2h, respectively. Given the difficulty in determining water density, we did 190 

not correct the effect of the changing refraction coefficient between water and air on underwater elevation 191 

measurements. However, to avoid location errors, we used only nadir data, which are expected to have the least 192 

spatial error. The expected vertical error where water depth is ~0.7 m (SI3), as in this 2019 flood, is <0.18 m 193 

(Parrish et al., 2019) or even less (as shown in Ma et al., 2019).  194 

Similar to Lake Eyre, the WOLP-SRTM difference map (Figure 2g) illustrates that Lago Coipasa was inundated 195 

during the SRTM scan, and the wet part of the scan was replaced with a fixed elevation value. The SRTM data over 196 

the lake area varies within ~±5 m (RMSD=2.84 m; Figures 3c and S9), meaning that over a ~1.5 m deep lake, such 197 

as Lago Coipasa, SRTM-based water volume calculations for all practical matters are absurd. In contrast, both the 198 

“dry” and the “wet” WOLP bathymetries yield a much smaller mean cross-validation RMSD value (0.28 m and 0.47 199 

m, respectively; Table 1, Figures S10, S11). 200 

The fixed-elevation polygon in the SRTM data for Lago Coipasa is bounded by high (>2 m) artificial walls. This is 201 

exhibited in the hypsometry by a sharp increase and then a fixed wetted area of 0.87×103 km2 (Figure 3c). In lake 202 

depths of <1 m, the “dry” bathymetry presents a detailed gradual increase in lake area and volume, filling most of 203 

the maximum lake extent. The “wet” WOLP area at 1 m depth is smaller than the “dry” area due to a 1.3 m deeper 204 

lake bottom in the “wet” bathymetry (Figure 3c; SI2). Both the “dry” and “wet” scans did not cross the northernmost 205 

part of the lake, which is characterized by the highest water occurrence (and presumably deepest water column). For 206 

this reason, we stress that future crossing of ICESat-2 over this specific region of the lake could improve its 207 

bathymetry.  208 

Compared with the “dry” bathymetry, 58% of the “wet” lake area lies within ±0.5 m of the “dry” bathymetry 209 

(RMSD = 0.39 m). Thus, relying on the “dry” bathymetric map, which seems reasonable in light of the results 210 

shown for Lake Eyre, we suggest that even when using only the “wet” scans, the WOLP bathymetry yields better 211 

results than the currently available global product (SRTM). This leads us to propose the usage of the methodology 212 

presented here for any of the world’s shallow desert lakes. 213 

5 Discussion 214 

The largest source of uncertainty in the WOLP bathymetry stems from the selected fitting equation between water 215 

occurrence and elevation (step c). However, this selection affects mainly the extremities of data, i.e., the 216 

extrapolation of elevation to values that were not observed by the ICESat-2 (areas with gray dots in Figures 1c, S4, 217 
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S7, S8). Thus, in cases where ICESat-2 data covers the water frequency extremities, WOLP bathymetry is accurate, 218 

as demonstrated by the cross-validation results. Large enough lakes should be covered by at least a few ICESat-2 219 

scans (e.g., Figure 1a) and therefore, scans are expected to cover a wide range of water occurrences. This wide range 220 

can yield an accurate bathymetry for almost all of the lake extent.  221 

Laser altimetry errors, estimated to be ~0.3 m for a single photon return, and much lower (0.05-0.07 m) for an 222 

average of neighboring photon returns (Jasinski et al., 2016), are not expected to impact our results significantly. A 223 

larger uncertainty lies between points that have a similar water occurrence but different elevation, as is the case if 224 

there are small and local topographic minima. Using more scans may decrease the variations, although some of them 225 

may be intrinsic, e.g., where transmission-losses or springs are common. Water occurrence minima can be too small 226 

to be identified as a different sub-basin. Thus, our method is limited to sub-basins that are large enough to be 227 

resolved with ICESat-2, as in Lake Eyre (Figure 1, SI1). In deriving the Lake Eyre bathymetry, we used at least four 228 

scans for each sub-basin, yielding an error of only 0.2-0.6 m (Table 1, Figure S3). 229 

Another limitation to our methodology comes from the maximum water penetration of the ICESat-2 laser. This 230 

limits the ability to derive bathymetry in lakes that have a water depth of tens of meters or more. In such 231 

circumstances, a partial bathymetry could still be derived for the outskirts of the lakes using our methodology, or as 232 

presented in Li et al. (2019) or in Ma et al. (2019) for the shoulders of Lake Mead. However, we focus here on 233 

shallow desert lakes, in which, by definition, this is not a major obstacle.  234 

Sediment deposition could also increase the uncertainty of the derived bathymetry. Here, we use satellite imaging 235 

water occurrence from >30-yr period (Pekel et al., 2016), implying that if the lake floor was altered during this time 236 

interval, present-day ICESat-2 scans can yield only an averaged bathymetry of this period. However, newer global 237 

water occurrence datasets could emerge in the near future, enabling both derivation of newer bathymetries, and 238 

higher resolution maps (e.g., 10-20 m pixels from Sentinel-2). 239 

Apart from these limitations, taking a long series of satellite imagery extends a great opportunity. If only specific 240 

dates are used to identify isobaths (or shorelines), the error propagates to the bathymetric map. Using statistics based 241 

on many years, single image errors diminish. Such errors include water piling-up on one side of the lake due to 242 

winds (Arsen et al., 2013), misclassification of water boundaries or crossing isobaths (Long et al., 2019), and 243 

specific date imaging having only partial coverage of a lake, because of imaging geometry or cloud obscuration. 244 

Moreover, the use of specific date imagery requires a spatial interpolation between isobaths, thus concealing small 245 

features in between isobaths.  246 

Out of the three lakes analyzed above, Lake Eyre is probably the most closely monitored, yet the nearest river gauge 247 

is situated many hundreds of kilometers upstream. Therefore, there is no accurate in-situ data for water input 248 

volumes. ICESat-2’s high spatial resolution (~70 cm) combined with high-resolution water occurrence map (e.g., 30 249 

m in the map of Pekel et al., 2016) yields an accurate, high-resolution bathymetry, even over flooded or complex 250 

desert lakes. Such maps could help in determining the water discharge into remote desert lakes and their evaporative 251 

losses, providing much-needed data in remote areas, serving as a basis for mass and energy balance calculations 252 

over such lakes, and for water management strategies.  253 

6 Conclusions 254 

Using a new methodology which links long-term water occurrence and accurate height measurements, each 255 

independently derived from satellite remote-sensing, we mapped the bathymetry of three shallow lakes in drylands 256 

across the globe. We verified the bathymetries using a previous bathymetric map, SRTM data, and through cross-257 

validation. This easy-to-implement methodology yields a high-resolution bathymetry of shallow desert lakes that 258 

were flooded sometime during 1984-2015, using globally available datasets.  259 

- As an example of a complex shallow lake system, we used Lake Eyre, consisting of multiple sub-basins. 260 

Despite its complexity, verification versus the best available DEM showed that the methodology is 261 

successful, as long as each sub-basin is covered by an elevation measurement scan. 262 

- The methodology was also applied to two lakes with no previous bathymetry maps, one in the Sahara 263 

(Sabkhat El-Mellah) and the other in the Altiplano (Lago Coipasa). Results proved low cross-validation 264 

RMSD values (~0.3 m) compared with the SRTM data (~2.5 m).  265 

- Applying the methodology in Lago Coipasa separately to “dry” and to “wet” ICESat-2 scans, relying on 266 

laser penetrability, we showed that bathymetry can even be produced during lake inundation. 267 

The presented methodology can be applied to a large portion of the shallow lakes around the globe. It enables 268 

mapping of inundated lakes (a major obstacle for widely used methods), small lakes, and large and complex lake 269 

systems. 270 
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