Xin Zhou

and 4 more

Meng Zhang

and 6 more

This study performs a comprehensive evaluation of the simulated cloud phase in the U.S. Department of Energy (DOE) Energy Exascale Earth System Model (E3SM) atmosphere model version 2 (EAMv2) and version 1 (EAMv1). Enabled by the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) simulator, EAMv2 and EAMv1 predicted cloud phase is compared against the GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) at high latitudes where mixed-phase clouds are prevalent. Our results indicate that the underestimation of cloud ice in simulated high-latitude mixed-phase clouds in EAMv1 has been significantly reduced in EAMv2. The increased ice clouds in the Arctic mainly result from the modification on the WBF (Wegner-Bergeron-Findeisen) process in EAMv2. The impact of the modified WBF process is moderately compensated by the low limit of cloud droplet number concentration (CDNC) in cloud microphysics and the new dCAPE_ULL trigger used in deep convection in EAMv2. Moreover, it is found that the new trigger largely contributes to the better cloud phase simulation over the Norwegian Sea and Barents Sea in the Arctic and the Southern Ocean where large errors are found in EAMv1. However, errors in simulated cloud phase in EAMv1, such as the overestimation of supercooled liquid clouds near the surface in both hemispheres and the underestimation of ice clouds over Antarctica, persist in EAMv2. This study highlights the impact of deep convection parameterizations, which has not been paid much attention, on high-latitude mixed-phase clouds, and the importance of continuous improvement of cloud microphysics in climate models for accurately representing mixed-phase clouds.

Doo Young Lee

and 2 more

Climate variability and change in the Southern Hemisphere (SH) is influenced by the southern annual mode (SAM) and is closely related to changes in the kinematic properties of the SH surface zonal winds. The SAM and SH surface zonal winds have strong effects on the atmospheric and oceanic circulation system. In this study we investigate the variability and trend in the SAM and position and strength of the surface zonal wind stress (TAUX), using two ensembles of simulations covering the historical record from the Energy Exascale Earth System Model (E3SM-HIST and AMIP) for 1979-2014. In addition, performance of two CO2 forcing simulations from the E3SM (E3SM-1pctCO2 and 4xCO2) is assessed to examine the sensitivity of the variability and changes in the SAM and SH surface TAUX to climate forcing. In general, all E3SM simulations tend to capture the dominant feature of the SAM pattern reasonably well. The annual SAM index in the E3SM-HIST simulation shows a significant increasing trend. These features are similar to the trends in the strength (along with poleward shift in the position) of the annual surface TAUX. For the climatological surface TAUX position and strength, the two CO2 forcing simulations show slightly poleward movement and stronger intensity, while the E3SM-HIST is equatorward and weaker than observations. In the relationship between the SAM and surface TAUX, we show that the SAM index exhibits a positive (negative) relationship with the strength (position) of the surface TAUX in the variability for all seasons and annual mean.

Xianwen Jing

and 4 more

Scattering of longwave radiation by cloud particles has been regarded unimportant and hence commonly neglected in global climate models. However, it has been demonstrated by recent studies that cloud longwave scattering plays an unignorable role in modulating the energy budget of the Earth System. Offline radiative transfer calculation showed that excluding cloud longwave scattering could overestimate outgoing longwave radiation and underestimate downward irradiance to the surface, and thus impose excessive cooling onto the atmosphere column. How this physical process interacts with other processes in the Arctic climate system, however, has not been thoroughly evaluated yet. Given the fact that the melting of ice and snow that cover the vast surface of the Arctic region is sensitive to energy budget, and such melting may trigger further feedback mechanisms, the neglection of cloud longwave scattering could bias the regional climate simulations to a considerable extent. We have incorporated cloud longwave scattering into the NCAR CESM and the DoE E3SM and this study analyzed the impact on the simulated polar climates in both earth system models. Cloud longwave scattering leads to a warmer surface air temperature in both models, especially over the wintertime. A detailed surface energy budget analysis is performed, for both the mean state and the temporal variability. Preliminary results suggest that the leading change is downward longwave flux and upward longwave flux, followed by the changes of turbulent heat flux. How the longwave scattering treatments can couple with cloud microphysics and precipitation physics to affect Arctic precipitation is further explored.