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Abstract Estimating changes in the frequency or height of extreme sea levels (ESLs; e.g., the 100-yr event) is
a popular approach for illustrating future coastal flood risk to societies under various climate change scenarios.
However, these metrics only account for physical water levels (i.e., the hazard). They do not consider societal
outcomes (e.g., loss of life, property damage). As a result, physical ESL metrics and associated thresholds may
give misleading estimates of future coastal flood risk. This has implications for climate adaptation decision-
making and risk communication efforts that seek to quantify changes in coastal flood risk under different
climate scenarios. Here, we illustrate how some risk measures can lead to sizable differences in estimates of
future coastal flood risk, relative to when only considering physical impacts by considering 1) projected ESLs
under +2 ◦C and +5 ◦C temperature stabilization scenarios and 2) the current population exposure of 414
cities around the world. For some locations with a modest projected increase in the height of an ESL event,
the corresponding change in local population exposure is substantial. This suggests that physical ESL metrics
may be poor surrogates for capturing some societal impacts. Overall, we find that impacts are highly localized
and depend on the gradient of the population versus elevation profile over the range of elevations between
the current and future ESL height. While population exposure is just one measure, considering a variety of
human system, natural resource, and ecosystem-based outcomes may provide a more complete snapshot of
coastal flood risk under different climate scenarios. Such an approach would improve upon existing methods
used by the Intergovernmental Panel on Climate Change (IPCC).

1 Introduction

Extreme sea levels (ESLs) are the occurrence or the level of a short-lived (hours to days), exceptionally high
local sea-surface height, usually as a result of coastal storms, waves, or astronomical tides (Gregory et al,
2019). Observational studies have shown that ESLs are occurring at tide gauges with increasing frequency,
largely as a result of rising mean sea level (MSL) due to global warming and other non-climatic, local factors
(e.g., ground subsidence; Sweet and Park, 2014; Menéndez and Woodworth, 2010). The Intergovernmental
Panel on Climate Change (IPCC) has conveyed projected changes in ESL events under different climate
scenarios using ESL frequency amplification factors (AFs) and ESL hazard allowances (Church et al, 2013;
Wong et al, 2014; Oppenheimer et al, in press). ESL frequency AFs (also called ‘factors of increase’ or
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’multiplication factors’; Vitousek et al, 2017; Taherkhani et al, 2020; Church et al, 2013) indicate the change
in the expected frequency of a given ESL event (e.g., the 1-in-100-yr ESL event; Hunter, 2012; Buchanan
et al, 2017; Rasmussen et al, 2018; Frederikse et al, 2020). For example, a 0.5 m increase in MSL for San
Juan, Puerto Rico is expected to increase the frequency of the historical 100-yr ESL event from 0.01 events
yr−1 to ∼30 events yr−1, on average (i.e., an AF of 3000; Rasmussen et al, 2018). While frequency AFs
describe how often ESLs are expected to occur under different climate scenarios, ESL hazard “allowances”
correspondingly denote the vertical distance an asset needs to be raised in order to ensure that the expected
number of ESL events is kept constant under uncertain sea level change (Hunter, 2012; Hunter et al, 2013;
Buchanan et al, 2016; Slangen et al, 2017). Closely related to ESL allowances are return level AFs, which
denote the relative change in the height of the water level associated with a given return period (Garner
et al, 2017). ESL AFs (frequency and return level) and allowances have all been used as proxies for coastal
flood risk, broadly speaking (Vitousek et al, 2017; Taherkhani et al, 2020; Buchanan et al, 2017; Vousdoukas
et al, 2018; Kriebel et al, 2015; Frederikse et al, 2020). However, solely focusing on physically-based ESL
metrics and thresholds may give misleading projections of future floods impacts on human systems, natural
resources, and ecosystems.

A critical limitation of both ESL AFs and hazard allowances is that they only consider the physical heights
of water, such as the height of the 100-yr ESL event. They do not consider the corresponding consequences of
the event itself (e.g., population exposure or damage to property and natural resources). This is problematic
for two reasons. First, some locations may be protected to a level above the height of the ESL event in
question (i.e., no flood occurs), and second, there may exist little to no societal exposure at or below the
ESL height (i.e., a flood occurs, but there is no societal impact). In such instances, physical ESL metrics
may be a poor surrogate for both the estimation and management of coastal flood risk. If risk is defined by
not only the probability of a damaging event occurring (e.g., the 100-yr ESL, or 1%/yr) but also by what
the consequences are if it occurs (Kaplan and Garrick, 1981), then some measure of a societal impact should
be accounted for. Otherwise, physical metrics alone may give misleading projections of coastal flood risk.
For example, investigators that have focused on the frequency of exceedances of physical thresholds (e.g.,
the height of the 50-yr ESL event) have claimed that 0.5 m of MSL rise could lead to a doubling of “flood”
events within decades for certain regions (Vitousek et al, 2017) or exponential increases in the frequency of
“floods” (quotes imply authors mean ESLs; Taherkhani et al, 2020). While these claims may be true of the
hazard (i.e., ESLs), they may not apply to the corresponding societal outcome (e.g., “a doubling of population
exposure” or an “exponential increase in the rate of population exposure”). In the San Juan example, while
the historical 100-yr ESL event is projected to occur ∼3000 times as often under a 0.5 m increase in MSL,
there are currently < 1,000 people living below the elevation of the 100-ESL event (< 0.1% of the total
city population; Fig. 1). Furthermore, risk metrics that include societal exposure may also have implications
for adaptation decision-making. For instance, Rasmussen et al (2020) showed that when allowances do not
account for the consequences of ESL events (e.g., property damage or population exposure), they can lead
to sub-optimal design of flood defenses.

In this study, we highlight the limitations of ESL metrics that only consider the physical heights of water
levels, such as ESL AFs (frequency and return level) and ESL allowances. Specifically, we consider how the
current exposure of populations living in coastal cities may change relative to changes in ESL return levels.
To do this, we connect ESLs measured at a global network of tide gauges to present-day population exposure
for 414 coastal cities around the world. Exposure is estimated using the CoastalDEM elevation model (Kulp
and Strauss, 2019). We project future changes in both the frequency and return levels of historical ESLs and
the exposure of populations under two climate change scenarios (Sec. 3.1). We note that because we do not
make future projections of population change, these are not estimates of future population exposure; rather
they are intended to highlight the limitations of physical ESL metrics when quantifying coastal flood risk. We
then also show how ESL allowances may under-predict the necessary design heights of adaptation measures
needed to maintain constant societal exposure under uncertain MSL change (Sec. 3.2). While population
exposure is used as the risk measure in this study, it is just one component of coastal flood risk, broadly
speaking. A diversity of possible metrics exist. We illustrate how using other risk measures could capture
other relevant components of the same “coastal risk story” (Sec. 3.3). This includes impacts to vulnerable
demographics, property damage, critical infrastructure, loss of natural resources, and harm to ecosystem
services (e.g., wetland loss). Future studies could use our framework to further explore these metrics using
other datasets. We note that several studies have already estimated coastal flood risk globally (Hallegatte
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et al, 2013; Hinkel et al, 2014; Diaz, 2016; Hanson et al, 2011), but most do not make explicit comparisons to
physical ESL metrics. However, Hauer et al (2020) recently noted differences between projections of physical
ESL metrics and those that are based on population exposure in the U.S.

2 Framework

An overview of the sources of information used to generate population inundation estimates are given in Fig.
S-1. Additional details and limitations to our approach are given in the supporting information (Secs. S-1.1
to 2.4). First, we estimate the present-day probability of ESLs of various heights at a global network of tide
gauges using extreme value theory and a long-term record of hourly sea level observations (Sec. S-1.1). Second,
we project changes in both the frequency and height of ESLs using local probabilistic projections of relative
sea level change (RSLC)1 that incorporate ice sheet mass loss estimates from structured expert judgment
(Sec. 2.1). Third, we produce 1-dimensional, city-specific functions of population versus ground elevation to
estimate the current population exposure to ESLs (Sec. 2.2). Fourth, by combining the population exposure
damage functions with the future estimates of ESLs, we compute the change in the number of people exposed
to various ESLs for each city using population exposure AFs (Sec. 2.3). Finally, we use damage allowances to
calculate the height of flood defenses needed to maintain the current expected annual population exposure
(Sec. 2.4).

2.1 Relative sea level change projections

Probabilistic, time-varying, local RSLC projections for each tide gauge are taken from the component-based
study of Kopp et al (2014), except that ice sheet contributions are from the structured expert judgement
(SEJ) study of Bamber et al (2019). Projections of RSLC after mid-century are highly dependent on ice sheet
melt because of their potential for substantial contributions to global mean sea-level rise (Oppenheimer et al,
in press; Kopp et al, 2019). However, incomplete understanding of the physical processes that govern ice sheet
melt inhibits realistic representations in process-based models. In such cases of incomplete scientific under-
standing, SEJ using calibrated expert responses is one approach for estimating such uncertain quantities (as
employed here). Each RSLC probability distribution is conditional on a scenario in which global mean surface
air temperature (GSAT) stabilizes in 2100 at either +2 ◦C (consistent with the Paris Agreement; UNFCCC,
2015) or +5 ◦C (consistent with unchecked emissions growth; GSAT relative to 1850–1900; Hausfather and
Peters, 2020). Samples from each RSLC probability distribution are used to shift the ESL return curves in
the direction of the RSLC. Figs. 2A and 2D show the future (2070) ESL return curves for tide gauges located
at San Juan (Puerto Rico) and Sewell’s Point (Norfolk, USA). The “kinks” in the return curves appear as a
result of the highest samples in the RSLC probability distribution causing the expected ESL frequency calcu-
lation to saturate and then subsequently increase the expected number of ESL events. Both the positioning
and the presence of the kinks are sensitive to the choice of where the upper-tail of the RSLC distribution is
truncated (Rasmussen et al, 2020). More details are provided in the supporting information (Sec. S-1.2).

2.2 Exposure analysis

We map flood extents for each city using the “bathtub” inundation modeling approach. This approach con-
siders the vertical elevation of two surfaces, 1) the land and 2) a given ESL (e.g., 100-yr event). Here, we use
land elevation from CoastalDEM, a modified version of NASA’s Shuttle Radar Topography Mission (SRTM)
digital elevation model (DEM) that uses a neural network trained using lidar-derived elevation data in the
U.S.2 to reduce SRTM errors (Kulp and Strauss, 2019; Farr et al, 2007). The SRTM is a near-global DEM
commonly used for flood exposure modeling but is known to have large vertical bias (an estimated 3.7 m
in coastal areas in the U.S.; Kulp and Strauss, 2018). This is important because coastal flood risk analysis
is largely performed within this elevation range and these biases are on par with projections of future local

1 Relative sea level change is defined as the change in local mean sea level relative to the sea floor or the underwater surface
of the solid Earth (Gregory et al, 2019).

2 NOAA Digital Coast Coastal Lidar, http://coast.noaa.gov/digitalcoast/data/coastallidar
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RSLC over this century (generally < 2 m relative to 2000; Oppenheimer et al, in press). More details and
limitations are provided in both the supporting information (Sec. S-1.3) and in Kulp and Strauss (2018,
2019). Connected components analysis excludes low-elevation inland areas that are not connected to the
ocean. Return levels are taken from the nearest tide gauge within a 100-km radius of each city.

The vertical population profile of a city and existing flood defenses largely determines population exposure
to a given ESL event. We produce 1-dimensional (vertical) population profiles using CoastalDEM and pop-
ulation density data from the WorldPop 2010 high resolution (3 arc second) gridded global population data
set (Tatem, 2017). We note that this differs from Kulp and Strauss (2019), which uses LandScan population
density. In order to simplify our analysis and also isolate the impact of RSLC on population exposure, we as-
sume that population remains fixed in time. Thus, our results are not literal projections of future population
exposure—which will depend upon population growth, the dynamic response of the population to RSLC, and
new coastal adaptations—but are instead intended to highlight the impact of ESL events relative to changes
in their frequency. Plots of population exposure profiles for San Juan (Puerto Rico) and Norfolk (USA) are
given in Figs. 2B,E. Exposure profiles for all cities are included in the supporting data.

Most populations living in low-lying areas around the world (e.g., deltaic regions) are very likely protected
by flood defenses such as levees, seawalls, and deliberately raised structures (e.g., buildings on stilts; Hallegatte
et al, 2013). However, to our knowledge, location-specific levels of protection are not available at the global
scale3. To account for flood defenses that provide a margin of safety, we make make multiple arbitrary
assumptions regarding the current level of protection for all cities. Specifically, we produce results assuming
spatially uniform “no protection” and protection up to the height of the 1- and 10-yr ESL event. These
assumptions may greatly differ from reality and could lead to gross over-estimates for cities with existing
flood protection that afford a high margin of safety from rare storms, such as London, New Orleans, Tokyo,
Shanghai, and most major cities in the Netherlands (Nicholls et al, 2008; Hallegatte et al, 2013; Xian et al,
2018). Despite this, we still include protection assumptions for all cities to 1) limit the inclusion of the lowest
elevations which are most prone to vertical errors in the DEM (Sec. S-1.3) and 2) to highlight the importance
of the flood protection assumption and the need for accurate estimates thereof.

2.3 Estimating physical and population exposure amplification factors

Following Buchanan et al (2017), the ESL frequency AF for an event of height z∗ under uncertain RSLC is
E[N(z∗ − δ)/N(z∗)], where N(z∗ − δ) is the expected number of exceedances of height z∗ after considering
RSLC δ (Sec. S-1.1). The ESL return level AF is given by 1 + E[δ]/z∗. Here, we extend the ESL return
level AF to changes in population exposure. We define the population exposure AF for an event of height
z∗ under uncertain RSLC as E[D(z∗ + δ)/D(z∗)], where D(·) is a 1-dimensional vertical population profile
of a city (Sec. 2.2). Note that since D(·) is solely a function of z, the frequency amplification of population
exposure events is equivalent to the ESL frequency AFs for the same city. Probability distributions of ESL
AFs (frequency and return level) and population exposure AFs are produced for each tide gauge using the
RSLC samples for each climate scenario (Sec. 2.1). Results are then taken from these distributions (Sec. 3).

2.4 Estimating population exposure allowances

While ESL and population exposure AFs are well suited to identify and communicate local coastal flood
risks, damage allowances are perhaps more useful for informing the design of coastal flood defense efforts
(e.g., determining optimal levee heights or how high to raise a residence to maintain a given margin of
safety; Rasmussen et al, 2020). The damage allowance is the design height of a flood mitigation strategy
(e.g., elevation of structures, levee height, necessary coastal retreat) needed to maintain a given integrated
exposure metric under uncertain RSLC (e.g., current expected annual property damage). Here, we consider
the expected annual population exposure (EAE). An overview of both sea level allowances and the EAE is
given in the SI (Sec. S-1.4).

3 However, Hallegatte et al (2013) give upper and lower estimates of flood protection for 136 major cities around the world
based on surveyed responses from local experts. But these responses have not been verified, and local protection can vary within
a city.
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To offset additional population exposure due to RSLC, we create a “protected” population exposure
function using an idealized representation of how a flood reduction strategy could impact the relationship
between ESLs and population exposure. Specifically, we assume that the city population elevates by an
amount A. This corresponds to a horizontal shift of the unprotected populated exposure function D(z) (Sec.
2.2). This strategy is likely to be impractical in reality. However, it illustrates differences between allowance
frameworks that both do and do not consider societal exposure. More realistic approaches for modeling
protection strategies have been given (Rasmussen et al, 2020).

In order to maintain the historical EAE under uncertain RSLC, the current EAE must equal the projected
EAE that includes both an arbitrary sea level change (δ) and the adjustment A to offset the change in EAE
resulting from RSLC. This can be mathematically represented by:∫ ∞

Amin

∫
δ

D(z −A)f(z − δ)P (δ) dδ dz =
∫ ∞
Amin

D(z)f(z) dz, (1)

where D(z −A) is a protected populated exposure function that elevates all populations within the damage
function by the height A such that the current EAE is maintained under RSLC and Amin is the height of
the assumed current protection level (either no protection, the height of the 1-ESL event or the 10-yr ESL
event; Sec. 2.2).

3 Results

3.1 Extreme sea level metrics may poorly predict population exposure

San Juan (Puerto Rico) illustrates how physical ESL metrics can overestimate local flood risks. By 2070,
the expected frequency of the historical 100-yr ESL event increases from 0.01/yr to a noteworthy 30/yr (+2
◦C) and 102/yr (+5 ◦C), on average (Tables 1,2; Fig. 2A). However, < 1,000 people (< 0.1% of the total
population) are currently exposed to the historical 100-yr ESL event (Figs. 1C and 2B,C). While sea-level
rise is expected to increase the height of the 100-yr ESL event from 0.7 m above MHHW to 1.2 m (+2 ◦C)
and 1.4 m (+5 ◦C), the corresponding population exposure is still < 0.1% of the total population (Tables 1,2;
Figs. 2B,C). This is due to a low gradient in the population profile over the range of increase in the return
level, partially as a result of a steep shoreline around much of San Juan (Figs. 1A and 2B). On the other
hand, Norfolk (USA) has both a much steeper population profile than San Juan over the range of increase in
the expected 100-yr return level (Fig. 2E) and a greater fraction of its total current population is exposed to
the 100-yr ESL event (2.3%; Tables 1,2). By 2070, the expected 100-yr ESL return level increases from 1.5
m above MHHW to 2.1 m (+2 ◦C) and 2.4 m (+5 ◦C). This increases the expected population exposure to
the 100-yr ESL from ∼16,000 to 64,000 (+2 ◦C) and 104,000 (+5 ◦C; Tables 1,2; Figs. 2E,F). Results for an
additional 17 other cities and their uncertainties are given in Tables 1,2.

Relationships between physical and societal metrics vary by city in part due to differences in RSLC and
the shape of both the ESL return curves and population profiles (Fig. S-2). Globally, population exposure AFs
vary from < 1 to > 10 (Fig. 3A). Cities are sorted by geographic region to look for more localized patterns
(Fig. 3B; the region/city mapping is given in the supporting data files). Across most regions examined, ESL
return level AFs generally underestimate risks related to population exposure. Notable exceptions are the
western coasts of North America and South America. Within these regions, there is a greater fraction of
cities with a stronger correlation between ESL return level AFs and population exposure AFs. This suggests
that population profiles are more linear over the range of increases in the height of the 100-yr ESL, perhaps
due to a smaller variance in ESLs as a result of 1) a narrower continental shelf that leads to a smaller tidal
range (Pugh and Woodworth, 2014) and 2) fewer tropical cyclones (Knapp et al, 2010). Plots for 2100 and
for the +5 ◦C scenario are given in the supporting information and results for all cities are tabulated in the
supporting data files.

The 100-yr ESL is just one of many possible hazards. Integrated metrics, like the EAE (Section 2.4),
considers the probability and consequence of all ESLs. The San Juan and Norfolk EAE for the historical
(1991–2009) and future scenarios is denoted as filled colored circles on the x-axis in Figs. 2C,F. For both
cities, the historical EAE is small, < 1,000 (assumes protection from the 10-yr ESL), but differences emerge
under RSLC. By 2070, the EAE for Norfolk increases to ∼16,000 (+2 ◦C) and 45,000 (+5 ◦C), while the EAE
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for San Juan remains < 1,000 for both scenarios. However, flood protection assumptions can greatly change
the EAE and the EAE AF. For instance, assuming that Norfolk has no flood protection, the EAE AF for
2070 is 3.4, but if assuming protection from the 10-yr event, it increase to 13.7 (Table S-5). The current and
future EAE at cities around the globe under different protection assumptions are tabulated in the supporting
data files.

3.2 Extreme sea level allowances versus population exposure allowances

The map in Fig. 4 shows the expected population exposure allowance needed to maintain the historical EAE
for each city under projected 2070 RSLC (+2 ◦C). The population exposure allowance assumes all cities are
currently protected against the 10-yr ESL (i.e., Amin = z10, where z10 is the local return level of the 10-yr
event) and that the historical EAE is maintained by elevating all populations within each city by the same
amount A (Sec. 2.4). Globally, the exposure allowance ranges from < 0 m (i.e., where expected RSLC is
negative) to > 2 m. For some regions, the 100-yr ESL allowance is quite similar to the population exposure
allowance (Western North America, Europe, and Eastern South America), but for others, the relationship
between the two is less strong (e.g., Eastern North America). The 100-yr ESL allowance sometimes both
over- and under-predicts the allowance needed to maintain the current EAE. For most cities, the population
exposure allowance for 2070 is larger than the expected RSLC (Tables 3 and 4; Fig. S-3).

3.3 The choice of the metric may impact estimates of flood risk

Many consequences can result from the same hazard, and most risk metrics only consider one consequence.
For example, using a population exposure risk metric in New York City would not account for two major
airports that are currently exposed to the 100-yr ESL event (LaGuardia and John F. Kennedy International;
Fig. S-6B). Furthermore, risks estimated using population exposure may vary when considering specific
population subgroups. For example, low household income residents of New York City (<$50,000 yr−1) are
projected to have expected exposure increases ∼4-6% greater than when considering all household incomes
(2100; Table S-1; Fig. S-5). While these differences are small, those that emerge when considering property
damage are much larger. In New York City, the current expected damage from a 100-yr ESL event is roughly
$4 billion. By 2100, this number is expected to grow by roughly 3 and 4 fold under a +2 ◦C and +5 ◦C GSAT
stabilization scenario, respectively (assumes constant 2017 US$; Table S-2).

4 Discussion and Conclusion

Physical ESL metrics do not consider the harms of a particular ESL event to human systems, natural
resources, and to ecosystem services. As such, they may misrepresent projected changes in coastal flood risk.
Despite this, physical ESL metrics continue to be used in assessment reports and the scientific literature
as proxies for estimating coastal flood risk under different climate change scenarios. This could lead to
inaccuracies in risk communication and poor planning. Our analysis specifically considers ESL AFs (frequency
and return level), ESL hazard allowances, and the impact of choosing different risk metrics. First, ESL return
level AFs may both over- and under-estimate flood risks as shown by the city-level examples of San Juan
and Norfolk, as well as within and across regions (Sec. 3.1). Both the current population exposure and the
gradient of the population profile play a crucial role in determining the amplification of population exposure.
Second, we show that sub-optimal flood protection design could occur if ESL allowances do not consider
a specific consequence (e.g., population exposure; Sec. 3.2). However, within some regions, the population
exposure allowance does not appreciably differ from the ESL allowance (Fig. 4). Third, we illustrate how
coastal flood risk assessments can be strongly dependent on the chosen risk metric by considering household
income, the siting of critical infrastructure, and property damage (Sec. 3.3).

All risk metrics have limitations in what they are able to communicate. Choosing what consequences to
include in a risk assessment is subjective. There is no “best” metric. Many measures of risk are possible and
all tell a part of the same “risk story”. However, risk metric choice is critical for determining what kinds of
information can come from a risk assessment, including that which can inform decision-making (Kunreuther
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and Slovic, 1996; Slovic et al, 1982; Slovic, 1987). Such limitations point to the importance of choosing a
broad and balanced set of risk metrics. While hazard metrics are essentially value-free, different stakeholders
may have different opinions about what risk metric is most relevant. These factors may include practicality
(i.e., ease of calculation) and suitability (i.e., informing specific risk management decisions) (NRC, 1996). In
this paper we use current population exposure as an example of a viable metric for estimating coastal flood
risk, but have noted that others are possible.

We acknowledge a number of caveats. First—and perhaps most importantly—we emphasize that we do not
make literal estimates of future population exposure to ESLs. Results presented in this paper are primarily
intended to highlight the importance of including societal impacts when quantifying coastal flood risk. Second,
almost all coastal cities have developed over time with some margin of safety against ESLs, but including
these defenses and any spatial variation within cities is challenging without obtaining detailed and accurate
data. In the absence of this information, we make multiple assumptions regarding uniform protection for
each city. The protection assumptions do not impact AFs above the height of the protection level, but can
significantly impact integrated metrics that consider all ESLs and impacts, such as the EAE (Table S-5). We
encourage future efforts to compile accurate information on urban flood protection levels around the world.
Third, exposure analyses are most sensitive to spatially-autocorrelated vertical errors in the DEM at local
scales and when assessing population vulnerability at low elevations (e.g., < 0.5 m; Kulp and Strauss, 2019).
The higher the elevation that population exposure is being assessed at (e.g., longer return periods, such as
the 100-yr event), the less of an impact these errors will have on exposure (Kulp and Strauss, 2019). To
assess the impact of elevation errors on population exposure AFs, we use the example of the 100-year ESL
event in New York City (Fig. S-6A). Considering lidar topography as ground truth, we find that the EAE
AFs are generally insensitive to errors in CoastalDEM; small differences only appear by 2100 for the +5 ◦C
scenario (2.3 vs 2.6; Table S-4). This is despite CoastalDEM underestimating population exposure relative
to lidar (connected components analysis not performed for this test; Tables S-3,S-4). Fourth, there exists no
single, expertly agreed upon PDF of late-century ice sheet melt (Oppenheimer et al, in press). ESL metrics
and allowances are sensitive to the characterization of this parameter and its uncertainty (Rasmussen et al,
2020). Choosing multiple plausible ice melt scenarios may better illustrate risks in cases where there exists
no single, mutually agreed upon PDF (e.g., after mid-century; Oppenheimer et al, in press).

In conclusion, we suggest that future studies should avoid using physical ESL metrics as proxies for
coastal flood risk. This includes avoiding language that conflates physical metrics with societal impacts (e.g.,
calling ESLs “floods”). Not doing so may miss important societal aspects that are overlooked when only
viewing through a physical science lens. Additionally, to better illustrate coastal flood risk, broadly speaking,
multiple risk metrics should be presented when possible.
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Fig. 1: A. A map of San Juan (Puerto Rico) showing the expected number of extreme sea level (ESL) events per year as estimated using 1) ESL return levels from the
San Juan tide gauge (indicated), 2) ground elevation from CoastalDEM, and 3) the “bathtub” flood inundation method (Sec. S-1.3). B. Map showing population density
(people per km2) from the 2010 WorldPop global gridded population database (Tatem, 2017). C. Map showing the annual expected population exposure (people per km2

per year)
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Fig. 2: A. Expected number of extreme sea level (ESL) events per year as a function of ESL height (meters above local mean higher high water; MHHW) calculated by
fitting a generalized Pareto distribution (GPD) to tide gauge observations (open grey circles) at San Juan (Puerto Rico) for 1991–2009 mean sea level (MSL; thick grey
line), projected relative sea-level rise (RSLR) in 2070 under a scenario in which global mean surface air temperature (GSAT) is stabilized in 2100 at +2 ◦C (orange line)
and +5 ◦C (red line; GSAT relative to 1850–1900). Thin grey lines are the historical ESL return curves for the 5/50/95 percentiles of the GPD parameter uncertainty
range (dotted/solid/dotted lines, respectively). B. A population exposure function that estimates the total population (left y-axis) and percent of total population (right
y-axis) currently as risk of inundation as a function of ESL height (meters above MHHW) for San Juan (total population: 1.82 million). Filled black circles are population
data from the 2010 WorldPop global gridded population database (Tatem, 2017) applied to the elevation surfaces of CoastalDEM (Kulp and Strauss, 2018). Linear
interpolation is used to produce a continuous curve between the WorldPop data (black line). City boundaries are those as defined by Kelso and Patterson (2012) and
may differ from actual political boundaries. Populations are assumed to remain constant in time. Denoted is the current level of protection (Amin), assumed to be the
10-yr ESL event, the height of the historical 100-yr ESL event (grey), and the expected heights of the 100-yr ESL event under a +2 ◦C (orange) and +5 ◦C (red) climate
scenario. C. As for top left, but for the population exposed per event under 1991–2009 MSL (grey lines) and RSLR in 2070 under +2 ◦C (orange line) and +5 ◦C 2100
GSAT stabilization scenarios (red line). The projected future inundated population estimates assume that San Juan’s population remains constant in time. Denoted are
the assumptions of arbitrarily assuming that populations are protected below the height of the 10-yr ESL event. The expected annual population exposure (assuming
protection from a 10-yr ESL event) is denoted with a filled colored circle on the x-axis for the historical period (grey) and for the +2 ◦C (orange) and +5 ◦C (red)
scenarios. Second Row: As for Top Row, but for Norfolk (USA; total population: 695,000) using the expected number of ESL events from a tide gauge located at Sewell’s
Point (USA).
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Fig. 3: Map: Population exposure AFs for cities for 2070 under a climate scenario where the global mean
surface air temperature is stabilized in 2100 at +2 ◦C (relative to 1850–1900). Populations are assumed to
remain constant in time. Regional scatter plots: Extreme sea level (ESL) return level AFs plotted against
population exposure AFs for the 100-yr ESL event for 2070 for the same climate scenario as the map. A list
of the cities in each defined region is given in the supporting data files. Note that some cities may not appear
in the scatter plots if 1) current and future population inundation is zero, 2) the current inundation is zero
but future inundation is non-zero (i.e., a population exposure AF of infinity), or 3) the population exposure
AF is more than two times the standard deviation of all other cities within each region. Cities are not shown
in the scatter plots if the population exposure AF is greater than two standard deviations from the mean of
each region.
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Fig. 4: Map: Population exposure allowances (also the design height of a flood protection strategy) for cities
for 2070 under a climate scenario where the global mean surface air temperature is stabilized in 2100 at +2
◦C (relative to 1850–1900). The population exposure allowance (also the design height of a flood protection
strategy) maintains the historical annual expected population inundation exposure from extreme sea levels
(ESLs) and assumes population distributions remain constant in time and that cities are protected from the
current 10-yr extreme sea-level (ESL) event (1991–2009). Careful consideration should be given for cities
in the Baltic and North Sea region. Difference of sign in modeled changes in ocean dynamics can lead to
anomalously large allowances in comparison to relative sea level change (Fig. S-3). Regional scatter plots:
ESL allowances for the 100-yr ESL event plotted against population exposure allowances for 2070 for the same
climate scenario as the map. A list of the cities in each defined region is given in the supporting data files.
Cities are not shown in the scatter plots if the population exposure allowance is greater than two standard
deviations from the mean of each region.
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100-yr ESL event 2070 (2.0 ◦C)

Historical Physical metrics Societal metrics

City (Total population in thousands) 100-yr ESL (m) % Pop exposed RSLC (m) ESL frequency AF ESL level AF Pop exposure AF Pop exposed (thousands) % increase
Buenos Aires, Argentina (11,980) 2.6 (2.1-3.3) 7.5% 0.4 (0.2-0.7) 3 (2-7) 1.2 (1.1-1.3) 1.5 (1.2-1.7) 1,321 (1,111-1,520) 3.5% (1.8-5.2%)
Copenhagen, Denmark (1,337) 1.1 (1.0-1.1) 1.5% 0.2 (-0.8-1.1) 991 (0-9677) 1.2 (0.3-2.1) 1.3 (0.0-3.2) 26 (0-63) 0.4% (-1.5-3.2%)
Dar es Salaam, Tanzania (2,322) 0.7 (0.6-0.7) 1.0% 0.5 (0.2-0.8) 2441 (254-6678) 1.7 (1.3-2.2) 1.7 (1.1-2.6) 39 (25-59) 0.7% (0.1-1.6%)
Hamburg, Germany (1,854) 4.0 (3.6-4.4) 14.9% 0.4 (0.1-0.7) 4 (2-9) 1.1 (1.0-1.2) 1.1 (1.0-1.2) 301 (285-320) 1.3% (0.4-2.3%)
Hong Kong, China (22,232) 1.8 (1.2-2.5) 32.9% 0.4 (0.1-0.8) 5 (1-12) 1.2 (1.1-1.4) 1.2 (1.1-1.4) 8,988 (7,788-10,111) 7.5% (2.1-12.6%)
Honolulu, HI, USA (466) 0.4 (0.3-0.4) 0.5% 0.5 (0.2-0.9) 12385 (942-14455) 2.4 (1.6-3.4) 4.6 (2.1-8.5) 11 (5-20) 1.8% (0.6-3.7%)
London, England (9,878) 0.9 (0.7-1.1) 1.8% 0.4 (0.2-0.7) 61 (4-188) 1.4 (1.2-1.7) 2.1 (1.4-2.9) 368 (252-515) 1.9% (0.8-3.4%)
Manila, Philippines (5,782) 0.8 (0.7-0.9) 36.5% 0.9 (0.6-1.2) 15443 (3322-*) 2.1 (1.8-2.5) 1.1 (1.1-1.2) 2,336 (2,249-2,440) 3.9% (2.4-5.7%)
New Orleans, LA, USA (711) 2.3 (1.2-4.1) 77.7% 1.0 (0.7-1.3) 4 (2-7) 1.4 (1.3-1.6) 1.2 (1.1-1.2) 643 (623-663) 12.7% (9.9-15.5%)
New York, NY, USA (12,520) 1.9 (1.5-2.3) 3.7% 0.6 (0.3-0.9) 11 (2-29) 1.3 (1.1-1.5) 1.4 (1.2-1.7) 654 (543-799) 1.5% (0.6-2.7%)
Norfolk, VA, USA (695) 1.5 (1.1-2.0) 2.3% 0.6 (0.4-1.0) 32 (4-81) 1.4 (1.3-1.6) 4.1 (2.2-7.3) 64 (35-114) 6.9% (2.8-14.2%)
Phuket, Thailand (159) 0.9 (0.8-1.0) 9.0% 0.5 (0.2-0.8) 1723 (37-7875) 1.5 (1.2-1.9) 1.2 (1.1-1.4) 17 (16-20) 1.9% (0.9-3.5%)
Rio de Janeiro, Brazil (9,110) 0.9 (0.8-1.1) 0.3% 0.5 (0.2-0.8) 992 (8-5242) 1.5 (1.2-1.9) 1.8 (1.3-2.5) 59 (43-80) 0.3% (0.1-0.5%)
San Diego, CA, USA (2,323) 0.7 (0.7-0.7) 0.2% 0.5 (0.2-0.8) 4726 (298-15431) 1.7 (1.4-2.2) 3.0 (1.6-5.7) 13 (7-25) 0.4% (0.1-0.9%)
San Juan, Puerto Rico (1,821) 0.7 (0.5-1.1) 0.0% 0.5 (0.2-0.8) 2918 (4-*) 1.7 (1.3-2.1) 1.4 (1.1-1.9) 0 (0-0) 0.0% (0.0-0.0%)
Shenzhen, China (12,518) 1.8 (1.2-2.6) 17.5% 0.4 (0.1-0.8) 5 (1-12) 1.2 (1.1-1.4) 1.2 (1.1-1.3) 2,651 (2,327-2,938) 3.6% (1.1-5.9%)
Sydney, Australia (3,483) 0.7 (0.7-0.7) 0.2% 0.4 (0.2-0.8) 3213 (60-16480) 1.6 (1.3-2.1) 1.2 (1.1-1.3) 9 (9-11) 0.0% (0.0-0.1%)
Tokyo, Japan (25,339) 1.5 (1.0-2.1) 5.5% 0.4 (0.1-0.7) 8 (1-18) 1.2 (1.1-1.5) 1.9 (1.1-3.0) 2,656 (1,610-4,278) 4.9% (0.8-11.3%)
Vancouver, Canada (1,810) 1.3 (1.1-1.6) 11.8% 0.2 (0.0-0.5) 28 (1-94) 1.2 (1.0-1.4) 1.0 (1.0-1.0) 218 (214-223) 0.2% (0.0-0.5%)

Table 1: Table listing both physical and societal extreme sea level (ESL) metrics for select major coastal cities. Given are the heights of the historical 100-yr ESL return
period (meters relative to mean higher high water; expected/5th/95th percentile), the percent of the total population exposed to the expected 100-yr ESL event, 2070
probabilistic relative sea-level change (RSLC) (meters, relative to 1991–2009) from a climate scenario in which global mean surface air temperature (GSAT) is stabilized
in 2100 at +2 ◦C (relative to 1850–1900; Bamber et al, 2019), ESL return period amplification factors (AFs) for the 100-yr ESL event, ESL return level AFs for the
100-yr ESL event, the population exposure AF, the estimated total population exposed to the future 100-yr ESL event (thousands), and the percent increase in the latter,
relative the historical population exposure. The expected value and the 5/95 percentile of the estimate are given for each. The 5/95 percentile for the current ESL return
period considers the uncertainty in the generalized Pareto distribution (GPD) parameters, while the 5/95 percentile for RSLC and AFs reflect the uncertainty from both
contributions to local RSLC and from the GPD. The * denotes instances of when the height of the current 100-yr ESL event occurs more often than the present-day
frequency of exceeding MHHW (given for each tide gauge in the supporting information). The mapping of tide gauges to cities is given in the supporting information.
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100-yr ESL event 2070 (5.0 ◦C)

Historical Physical metrics Societal metrics

City (Total population in thousands) 100-yr ESL (m) % Pop exposed RSLC (m) ESL frequency AF ESL level AF Pop exposure AF Pop exposed (thousands) % increase
Buenos Aires, Argentina (11,980) 2.6 (2.1-3.3) 7.5% 0.6 (0.3-1.1) 8 (2-20) 1.2 (1.1-1.4) 1.6 (1.4-1.9) 1,449 (1,241-1,682) 4.6% (2.9-6.6%)
Copenhagen, Denmark (1,337) 1.1 (1.0-1.1) 1.5% 0.5 (0.1-1.0) 841 (10-5575) 1.5 (1.1-1.9) 1.6 (1.1-2.5) 31 (21-51) 0.9% (0.1-2.3%)
Dar es Salaam, Tanzania (2,322) 0.7 (0.6-0.7) 1.0% 0.7 (0.3-1.2) 4720 (620-6678) 2.1 (1.5-2.9) 2.3 (1.1-3.1) 52 (26-70) 1.3% (0.1-2.0%)
Hamburg, Germany (1,854) 4.0 (3.6-4.3) 14.9% 0.6 (0.3-1.1) 9 (2-22) 1.2 (1.1-1.3) 1.1 (1.1-1.2) 314 (293-338) 2.0% (0.9-3.3%)
Hong Kong, China (22,232) 1.8 (1.2-2.6) 32.9% 0.6 (0.2-1.2) 120 (2-155) 1.4 (1.1-1.7) 1.3 (1.2-1.5) 9,636 (8,437-10,847) 10.4% (5.0-15.9%)
Honolulu, HI, USA (466) 0.4 (0.3-0.4) 0.5% 0.8 (0.4-1.3) 14017 (14455-14455) 3.1 (2.0-4.7) 8.1 (3.2-18.4) 19 (7-43) 3.5% (1.1-8.6%)
London, England (9,878) 0.9 (0.7-1.1) 1.8% 0.6 (0.3-1.0) 223 (12-1242) 1.6 (1.3-2.1) 2.6 (1.8-4.1) 468 (310-728) 2.9% (1.3-5.6%)
Manila, Philippines (5,782) 0.8 (0.7-0.9) 36.5% 1.1 (0.7-1.6) 17547 (8662-*) 2.4 (1.9-3.0) 1.1 (1.1-1.2) 2,402 (2,276-2,597) 5.0% (2.8-8.4%)
New Orleans, LA, USA (711) 2.3 (1.2-4.2) 77.7% 1.2 (0.8-1.7) 94 (3-27) 1.5 (1.4-1.7) 1.2 (1.1-1.2) 655 (634-677) 14.4% (11.5-17.6%)
New York, NY, USA (12,520) 1.9 (1.5-2.3) 3.7% 0.8 (0.4-1.3) 228 (3-296) 1.4 (1.2-1.7) 1.6 (1.2-2.1) 738 (578-957) 2.2% (0.9-3.9%)
Norfolk, VA, USA (695) 1.5 (1.1-1.9) 2.3% 0.9 (0.5-1.4) 343 (7-1660) 1.6 (1.3-1.9) 6.6 (2.7-13.9) 104 (42-219) 12.6% (3.9-29.2%)
Phuket, Thailand (159) 0.9 (0.8-1.0) 9.0% 0.7 (0.3-1.2) 6012 (208-*) 1.7 (1.3-2.3) 1.4 (1.1-1.8) 19 (16-26) 3.2% (1.3-7.1%)
Rio de Janeiro, Brazil (9,110) 0.9 (0.8-1.1) 0.3% 0.7 (0.3-1.2) 3951 (30-14619) 1.7 (1.4-2.3) 2.2 (1.5-3.5) 71 (49-110) 0.4% (0.2-0.9%)
San Diego, CA, USA (2,323) 0.7 (0.7-0.7) 0.2% 0.7 (0.3-1.2) 9611 (798-15431) 2.0 (1.5-2.8) 4.5 (2.0-8.6) 20 (9-38) 0.7% (0.2-1.4%)
San Juan, Puerto Rico (1,821) 0.7 (0.5-1.1) 0.0% 0.7 (0.3-1.2) 10225 (10-*) 2.0 (1.5-2.7) 3.3 (1.2-5.4) 0 (0-1) 0.0% (0.0-0.0%)
Shenzhen, China (12,518) 1.8 (1.2-2.7) 17.4% 0.6 (0.2-1.2) 120 (2-155) 1.4 (1.1-1.7) 1.3 (1.1-1.4) 2,813 (2,496-3,131) 5.0% (2.5-7.6%)
Sydney, Australia (3,483) 0.7 (0.7-0.7) 0.2% 0.7 (0.3-1.1) 8942 (374-16480) 2.0 (1.5-2.7) 1.4 (1.1-2.6) 11 (9-21) 0.1% (0.0-0.4%)
Tokyo, Japan (25,339) 1.5 (1.0-2.2) 5.5% 0.6 (0.2-1.2) 455 (2-914) 1.4 (1.1-1.8) 2.6 (1.4-4.3) 3,635 (1,880-5,935) 8.9% (1.9-17.9%)
Vancouver, Canada (1,810) 1.3 (1.1-1.6) 11.8% 0.4 (0.1-0.9) 436 (2-1065) 1.3 (1.0-1.6) 1.0 (1.0-1.1) 221 (215-229) 0.4% (0.1-0.8%)

Table 2: As for Table 1, but for a climate scenario in which global mean surface air temperature (GSAT) is stabilized in 2100 at +5 ◦C (relative to 1850–1900; Bamber
et al, 2019).
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Allowances 2070 (2.0 ◦C)

Historical Physical metrics Societal metrics

City (Total population in thousands) 100-yr ESL (m) % Pop exposed EAE (thousands) RSLC (m) 100-yr ESL allowance EAE (thousands) % increase Pop exposure allowance
Buenos Aires, Argentina (11,980) 2.6 (2.1-3.3) 7.5% 23 0.4 (0.2-0.7) 0.5 85 269.4% 0.5
Copenhagen, Denmark (1,337) 1.1 (1.0-1.1) 1.5% 2 0.2 (-0.8-1.1) 2.4 89 5481.4% 2.2
Dar es Salaam, Tanzania (2,322) 0.7 (0.6-0.7) 1.0% 1 0.5 (0.2-0.8) 1.0 46 3058.5% 0.8
Hamburg, Germany (1,854) 4.0 (3.6-4.4) 14.9% 24 0.4 (0.1-0.7) 0.5 73 207.1% 0.5
Hong Kong, China (22,232) 1.8 (1.2-2.5) 32.9% 524 0.4 (0.1-0.8) 0.5 5,611 970.8% 0.6
Honolulu, HI, USA (466) 0.4 (0.3-0.4) 0.5% 0 0.5 (0.2-0.9) 1.2 22 14353.0% 1.1
London, England (9,878) 0.9 (0.7-1.1) 1.8% 11 0.4 (0.2-0.7) 0.6 174 1504.1% 0.5
Manila, Philippines (5,782) 0.8 (0.7-0.9) 36.5% 156 0.9 (0.6-1.2) 1.3 2,350 1408.9% 1.2
New Orleans, LA, USA (711) 2.3 (1.2-4.1) 77.7% 36 1.0 (0.7-1.3) 1.0 475 1231.2% 1.1
New York, NY, USA (12,520) 1.9 (1.5-2.3) 3.7% 34 0.6 (0.3-0.9) 0.6 391 1056.1% 0.7
Norfolk, VA, USA (695) 1.5 (1.1-2.0) 2.3% 1 0.6 (0.4-1.0) 0.7 16 1271.2% 0.7
Phuket, Thailand (159) 0.9 (0.8-1.0) 9.0% 1 0.5 (0.2-0.8) 0.9 17 1541.3% 0.8
Rio de Janeiro, Brazil (9,110) 0.9 (0.8-1.1) 0.3% 3 0.5 (0.2-0.8) 0.8 50 1803.1% 0.8
San Diego, CA, USA (2,323) 0.7 (0.7-0.7) 0.2% 0 0.5 (0.2-0.8) 1.0 18 5635.2% 0.9
San Juan, Puerto Rico (1,821) 0.7 (0.5-1.1) 0.0% 0 0.5 (0.2-0.8) 0.7 0 232.5% 0.8
Shenzhen, China (12,518) 1.8 (1.2-2.6) 17.5% 160 0.4 (0.1-0.8) 0.5 1,730 980.7% 0.6
Sydney, Australia (3,483) 0.7 (0.7-0.7) 0.2% 1 0.4 (0.2-0.8) 0.9 9 1395.9% 0.8
Tokyo, Japan (25,339) 1.5 (1.0-2.1) 5.5% 98 0.4 (0.1-0.7) 0.5 1,104 1025.8% 0.6
Vancouver, Canada (1,810) 1.3 (1.1-1.6) 11.8% 18 0.2 (0.0-0.5) 0.4 177 866.2% 0.4

Table 3: Table listing both physical and societal extreme sea level (ESL) metrics for select major coastal cities. Given are the heights of the current 100-yr ESL return
period [meters relative to mean higher high water (MHHW); expected/5th/95th percentile], the percent of the total population exposed to the expected 100-yr ESL
events, the expected annual population exposure (EAE; thousands of people), 2070 probabilistic relative sea-level change (RSLC) (meters, relative to 1991–2009) from
a climate scenario in which global mean surface air temperature (GSAT) is stabilized in 2100 at +2 ◦C (relative to 1850–1900; Bamber et al, 2019), the ESL allowance
that maintains the frequency of the historical 100-yr event (meters above MHHW), the projected EAE (thousands), the percent increase in the EAE, and the population
exposure allowance (meters above MHHW).
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Allowances 2070 (5.0 ◦C)

Historical Physical metrics Societal metrics

City (Total population in thousands) 100-yr ESL (m) % Pop exposed EAE (thousands) RSLC (m) 100-yr ESL allowance EAE (thousands) % increase Pop exposure allowance
Buenos Aires, Argentina (11,980) 2.6 (2.1-3.3) 7.5% 23 0.6 (0.3-1.1) 0.7 213 830.6% 0.8
Copenhagen, Denmark (1,337) 1.1 (1.0-1.1) 1.5% 2 0.5 (0.1-1.0) 1.1 32 1896.1% 0.9
Dar es Salaam, Tanzania (2,322) 0.7 (0.6-0.7) 1.0% 1 0.7 (0.3-1.2) 1.7 68 4493.5% 1.5
Hamburg, Germany (1,854) 4.0 (3.6-4.3) 14.9% 24 0.6 (0.3-1.1) 0.7 119 397.9% 0.7
Hong Kong, China (22,232) 1.8 (1.2-2.6) 32.9% 525 0.6 (0.2-1.2) 0.9 7,855 1396.5% 1.1
Honolulu, HI, USA (466) 0.4 (0.3-0.4) 0.5% 0 0.8 (0.4-1.3) 2.0 71 46941.1% 2.0
London, England (9,878) 0.9 (0.7-1.1) 1.8% 11 0.6 (0.3-1.0) 1.0 324 2888.1% 1.0
Manila, Philippines (5,782) 0.8 (0.7-0.9) 36.5% 156 1.1 (0.7-1.6) 2.0 2,563 1545.9% 1.9
New Orleans, LA, USA (711) 2.3 (1.2-4.2) 77.7% 36 1.2 (0.8-1.7) 1.3 559 1470.4% 1.7
New York, NY, USA (12,520) 1.9 (1.5-2.3) 3.7% 34 0.8 (0.4-1.3) 1.0 547 1517.9% 1.2
Norfolk, VA, USA (695) 1.5 (1.1-1.9) 2.3% 1 0.9 (0.5-1.4) 1.2 45 3745.6% 1.3
Phuket, Thailand (159) 0.9 (0.8-1.0) 9.0% 1 0.7 (0.3-1.2) 1.6 24 2152.5% 1.5
Rio de Janeiro, Brazil (9,110) 0.9 (0.8-1.1) 0.3% 3 0.7 (0.3-1.2) 1.4 83 3053.1% 1.4
San Diego, CA, USA (2,323) 0.7 (0.7-0.7) 0.2% 0 0.7 (0.3-1.2) 1.8 38 12326.7% 1.6
San Juan, Puerto Rico (1,821) 0.7 (0.5-1.1) 0.0% 0 0.7 (0.3-1.2) 1.5 1 995.1% 1.5
Shenzhen, China (12,518) 1.8 (1.2-2.7) 17.4% 160 0.6 (0.2-1.2) 0.9 2,336 1363.1% 1.1
Sydney, Australia (3,483) 0.7 (0.7-0.7) 0.2% 1 0.7 (0.3-1.1) 1.5 20 2995.9% 1.4
Tokyo, Japan (25,339) 1.5 (1.0-2.2) 5.5% 98 0.6 (0.2-1.2) 1.0 2,846 2809.1% 1.2
Vancouver, Canada (1,810) 1.3 (1.1-1.6) 11.8% 18 0.4 (0.1-0.9) 1.0 221 1107.6% 0.9

Table 4: As for Table 3, but for a climate scenario in which global mean surface air temperature (GSAT) is stabilized in 2100 at +5 ◦C (relative to 1850–1900; Bamber
et al, 2019).
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Fig. S-1: Flow of information used in this study to produce projected local population inundation estimates
(white hexagon). Green rectangles are for extreme sea level estimation. Red rectangles are for sea-level rise
projections. Yellow rectangles are for local population inundation estimates. B19 is Bamber et al (2019);
SLR is sea-level rise; GIC are glaciers and ice caps; GRD are gravitational, rotational, and deformational
effects; “Other sea level components” includes land water storage, oceanographic processes, and non-climatic
background changes, such as glacial-isostatic adjustment.

S-1.1 Estimating extreme sea levels

We use long-term records of hourly or sub-hourly sea level observations from quality controlled tide gauges
from the University of Hawaii Sea Level Center4 and also supplement with other tide gauges from the
GESLA2 data set (Woodworth et al, 2016). We limit our use of tide gauge records to only those that have
record lengths > 30 consecutive years in which each year has > 80 percent of observations available. In total,
we use 360 unique tide gauges, with median and average record lengths of 48 and ∼54 years, respectively (a
list of the tide gauges used is given in the supporting information). For each day in the tide gauge record
with >12 hours of data, we estimate the daily maximum sea level. We note that this temporal resolution
only facilitates the estimation of still-water heights and is likely not sufficient to capture wave setup and
swash contributions, which can be significant (Melet et al, 2018; Arns et al, 2017). To isolate the variation in
ESL, we remove the effect of MSL change by subtracting the annual MSL from each daily maximum value
(i.e., values are de-trended). The de-trended daily maximum tide values are then referenced to local mean
higher high water (MHHW; relative to the de-trended mean sea level), defined as the average highest high
tide at the tide gauge over a given period (here, either 1993–2012 or the last available 19-year period in the
record). Daily maximum sea levels that are 1) above the 99th percentile and 2) within 3 days of each other
are de-clustered to meet the statistical independence assumption of the extreme value approach (below).

4 retrieved from: https://uhslc.soest.hawaii.edu, January 2020; (Caldwell et al, 2015)
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We estimate the present-day probability of ESLs by applying extreme value theory to long-term hourly
tide gauge records. Extreme value theory is a statistical extrapolation method that fits an extreme value dis-
tribution to empirical data in order to estimate the likelihood of events too rare to appear in an observational
record (e.g., determining the height of 100-yr ESL event from a 30-yr record of tide gauge data). Following
previous studies (Tebaldi et al, 2012; Buchanan et al, 2017; Rasmussen et al, 2018; Frederikse et al, 2020;
Wahl et al, 2017), we estimate the annual expected number of ESL events of various heights at each tide gauge
using a generalized Pareto distribution (GPD; Coles, 2001b,a). The GPD is a peaks over threshold modeling
approach that describes the probability of a given ESL height conditional on the exceedance of a threshold
(assumed to be Poisson distributed with mean λ). Various extreme value distributions and approaches to
implement them have been proposed (Coles, 2001a), but in the case of ESL estimation there currently is not
an agreed upon “best approach”. Depending on the specific project goals, a particular extreme value modeling
strategy may be preferred over another. For example, if the tide gauge record is short, a peaks over threshold
approach that uses sub-annual extremes may be preferred over an approach that only uses annual maximums
(Lang et al, 1999; Cunnane, 1973). The GPD has the advantage over other generalized extreme value mod-
els in that 1) unlike the annual maximum flood value modeling approach, it can accommodate sub-annual
observations (i.e., retain more information), 2) unlike the more restrictive Gumbel distribution (Buchanan
et al, 2017), it includes a parameter that allows for the flexibility for the distribution to take on different
shapes (shape parameter, ξ, and its value depends on the characteristics of the underlying data), and 3) it
can be combined with a Poisson rate parameter (λ) to translate ESL exceedance probabilities into expected
numbers of annual ESL exceedances. The latter may be more intuitive and thus better for communicating
the frequency of ESL events. Increases or decreases in storminess could change λ, but is not considered in
this study. For a given tide gauge, the annual expected number of exceedances of height z is given by N(z):

N(z) =

λ
(
1 + ξ(z−µ)

σ

)− 1
ξ

for ξ 6= 0

λ exp(− z−µσ ) for ξ = 0
(S-1)

where the shape parameter (ξ) governs the curvature and upward statistical limit of N(z), the scale parameter
(σ) characterizes the variability in the exceedances, and the location parameter (µ) is the threshold water-
level above which return levels are estimated with the GPD—here the 99th percentile of daily maximum sea
levels. Observed GPD threshold exceedances and the fitted GPD N(z) for tide gauges located at San Juan
(Puerto Rico) and Sewell’s Point (Norfolk, USA) are given in Figs. 2A,D. The GPD parameters for all tide
gauges are given in the supporting data files.

Selecting the threshold µ is critical element of the peaks over threshold approach. If the threshold is too
low, it could bias in the estimates because the included values may not be extreme enough. On the other
hand, if the threshold is too high, the variance might be too large because too few points are being included
in the analysis (Lang et al, 1999). Here, the 99th percentile is used because it generally is above the highest
seasonal tide, balances the bias-variance trade-off in the GPD parameter estimation (Tebaldi et al, 2012) and
has been found to perform well at global scales (Wahl et al, 2017). The location parameter µ shifts as MSL
changes. The storm climates and hydrodynamic characteristics of each site result in differences in the shape
parameter (ξ) across sites. ESL frequency distributions with ξ > 0 are “heavy tailed”, due to a larger variation
in extremes (e.g., existence of tropical and extra-tropical cyclones). Distributions with ξ < 0 are “thin tailed”
and have a statistical upper bound on ESLs. The GPD parameters are estimated using maximum likelihood,
and their uncertainty is calculated from their estimated covariance matrix and is sampled using a Latin
hypercube sampling of 1000 normally distributed GPD parameter pairs. Note that the fit of the GPD and
the uncertainty bounds may not always well capture the observed exceedances (e.g., San Juan; Fig 2A). While
we extrapolate estimates for ESL events up to the frequency of the 1000-yr event, we caution in using any
estimate of ESL that exceeds four times the length of the observation record (Pugh and Woodworth, 2014).
Events that occur with a frequency greater than λ (i.e., the expected number of exceedances of the GPD
threshold per year) are outside of the support of the GPD and are modeled with a Gumbel distribution. Other
probability mixture model approaches have been proposed that combine a GPD with another distribution
(e.g., a Normal distribution; Ghanbari et al, 2019).
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S-1.2 Relative sea level change projections

The other RSLC component contributions are from ocean thermal expansion, glaciers and ice caps, and land-
water storage. General circulation model (GCM) output is used to generate the steric and glacial ice melt
sea level components for each global mean surface air temperature (GSAT) stabilization scenario. The +2 ◦C
scenario used the GCM outputs specified for the same GSAT scenario in Rasmussen et al (2018) and the +5
◦C scenario used GCM outputs from the representative concentration pathway (RCP) 8.5 from Kopp et al
(2014). Also accounted for are regional effects such as ocean dynamics (from GCM output), gravitational and
rotational effects of ice mass redistribution, glacial isostatic adjustment, and other local vertical land motion
factors (e.g., sediment compaction and ground water withdrawal). Probability distributions of local RSLC
are produced using 10,000 Latin hypercube samples of each individual sea level component contribution.
The probability distributions are truncated at the 99.9th percentile to remove samples that are deemed to
be physically implausible (Oppenheimer et al, in press). As noted by Rasmussen et al (2020), both ESL
frequencies and allowances are sensitive to truncation selection. More details and limitations to the RSLC
projections are provided elsewhere (Kopp et al, 2014; Bamber et al, 2019; Rasmussen et al, 2020).

S-1.3 Exposure analysis

Both ESLs and CoastalDEM are referenced to local mean higher high water (MHHW), however, ESLs use
tide gauge data for estimating MHHW, while CoastalDEM uses an estimation technique from National
Oceanic and Atmospheric Administration’s (NOAA) VDatum tool (version 3.7; Parker et al, 2003). This
leads to differences in estimates of MHHW for some locations. To convert both data sets to a common vertical
reference, an adjustment is made to the tide gauge ESLs to account for differences between the tide gauge
estimates and the CoastalDEM ground elevations (adjustments are provided in the supporting data files).

When mapping tide gauges to cities there may be more than one tide gauge with in a 100-km radius (e.g.,
Willet’s Point and the Battery in NYC, Fig. S-6A). In such instances, the tide gauge with the longest record is
used (the tide gauges assigned to each city are listed in the supporting data files). While the height of a given
ESL return period may vary within a city, in part due to complicated bathymetry and coastlines, Kulp and
Strauss (2017) has shown that ESL population exposure results for the U.S. are generally insensitive to tide
gauge assignment within a 100-km radius. In any case, more complex hydrodynamic inundation models that
account for complex local geomorphology and include additional variables could be used to estimate local
floods for cities across the globe. However, such an approach is out of the scope of this study. Moreover, more
complex models may also not necessarily outperform simpler approaches, especially in active tropical cyclone
regions (Hunter et al, 2017; Muis et al, 2016, 2017; Wahl et al, 2017), in part due to poor representation
of tide-surge interactions (Arns et al, 2020) and short simulation periods that are less likely to produce
rare, extreme events found in multi-decadal tide gauge records. For some locations, the height of the 100-yr
ESL event can be under-predicted by up to 3 meters compared to tide gauge-derived estimates (supporting
information of Muis et al, 2017).

The WorldPop population data are resampled to align with CoastalDEM raster (for more details, see
Kulp and Strauss, 2019), integrated over select elevations (-2 to 13 m above MHHW, either 0.25 or 0.5 m
increments), and then tabulated according to the satellite-derived urban footprint for each city from Natural
Earth (which may differ from the actual administrative boundary; Kelso and Patterson, 2012). Coastal cities
are only included in the analysis if there are populations with in the defined boundary at any elevation < 13
m above local MHHW. Linear interpolation is used between each select elevation to produce a 1-dimensional
continuous population exposure profile D(z), where z is the ESL height. We note that z could be a vector
to account for spatial differences in ESL height for the same return period within a city and also spatial
variation in flood protection.
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Fig. S-2: Population exposure functions that estimate the total population currently as risk of inundation as a function of ESL height (meters above MHHW) for cities given
in Tables 1-4. Filled black circles are population data from the 2010 WorldPop global population database (Tatem, 2017) applied to the elevation surfaces of CoastalDEM
(Kulp and Strauss, 2018, 2019). Linear interpolation is used to produce a continuous curve between the WorldPop data (black line). City boundaries are those as defined by
Kelso and Patterson (2012) and may differ from actual political boundaries. Populations are assumed to remain constant in time. Denoted is the current level of protection
(Amin), assumed to be the 10-yr ESL event, the height of the historical 100-yr ESL event (grey), and the expected heights of the 100-yr ESL event under a +2 ◦C
(orange) and +5 ◦C (red) climate scenario. Also shown for New York City is a population profile generated using a 0.3-m horizontal resolution light detection and ranging
(LiDAR)-derived digital elevation model for the City of New York (https://data.cityofnewyork.us/City-Government/1-foot-Digital-Elevation-Model-DEM-/dpc8-z3jc).
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S-1.4 Estimating hazard allowances and annual population exposure

While ESL and population exposure AFs are well suited to identify and communicate local coastal flood risks,
allowances are perhaps more useful for informing the design of coastal flood defense efforts (e.g., determining
optimal levee heights or how high to raise a residence to maintain a given margin of safety; Rasmussen et al,
2020). Following Buchanan et al (2016), we calculate the ESL hazard allowance A that maintains a given
annual exceedance probability (AEP) under uncertain RSLC δ, whose uncertainty is given by the PDF, P (δ),

f(z∗) =

∫
δ

f(z∗ − δ +A(z∗))P (δ) dδ, (S-2)

where f(z∗) is the current AEP of a given ESL event with height z∗ (e.g., the 100-yr event). For a given
AEP, the hazard allowance can be interpreted as the horizontal distance between the expected historical and
future ESL return curve (Fig. 2A). If δ is known, then A = δ, but if δ is unknown, A > δ for mathematical
reasons given previously (Hunter, 2012; Buchanan et al, 2016; Buchanan et al, 2017). Rasmussen et al (2020)
extend the ESL hazard allowance concept to account for the societal impacts of ESL events by employing
a simple, time-invariant damage function D(z) that describes the relationship between ESLs and a societal
impact (e.g., property damage or population exposure). The damage allowance is the design height of a flood
mitigation strategy (e.g., elevation of structures, levee height, necessary coastal retreat) needed to maintain
a given integrated exposure metric under RSLC (e.g., current expected annual property damage).

Here we consider the damage (population exposure) allowance needed to maintain the current expected
annual population exposure (EAE). The projected EAE under RSLC is given by:

EAE =

∫ ∞
Amin

∫
δ

D(z)f(z − δ)P (δ) dδ dz (S-3)

where f(z − δ) is the PDF of ESLs after considering RSLC δ, P (δ) is the PDF of RSLC δ, D(z) is the
populated exposure function (Sec. 2.2), and Amin is the height of the assumed current protection level
(either no protection, the height of the local 1-yr or 10-yr ESL event; Sec. 2.2).
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Fig. S-3: Map: Expected relative sea level (RSL) change (meters, relative to 1991–2009) for 2070 under a
climate scenario where the global mean surface air temperature is stabilized in 2100 at +2 ◦C (relative to
1850–1900). Regional scatter plots: Expected RSL change plotted against population exposure allowances
for 2070 that integrate over the entire RSL change probability distribution for the same climate scenario as
the map. A list of the cities in each defined region is given in the supporting data files.
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New York City Population Exposure AF
Population 2070 2100

Household income Total (millions) % Exposed (Current 100-yr ESL) 2.0 ◦C 5.0 ◦C 2.0 ◦C 5.0 ◦C
All incomes 8.05 2.8% 1.5 (1.2-1.9) 1.8 (1.3-2.4) 1.8 (1.3-2.6) 2.6 (1.6-4.4)
<$50,000 yr−1 3.54 2.6% 1.5 (1.2-1.9) 1.8 (1.3-2.4) 1.9 (1.3-2.7) 2.7 (1.6-4.7)
$50,000-$100,000 yr−1 2.06 2.9% 1.5 (1.2-1.9) 1.8 (1.3-2.4) 1.8 (1.3-2.6) 2.6 (1.6-4.4)
>$100,000 yr−1 2.32 3.0% 1.5 (1.2-1.9) 1.8 (1.3-2.4) 1.8 (1.3-2.6) 2.5 (1.6-4.2)

Table S-1: Population exposure amplification factors for New York City by household income for 2070 and
2100 under climate scenarios in which global mean surface air temperature is stabilized in 2100 at +2 ◦C
and +5 ◦C (relative to 1850–1900; Bamber et al, 2019). The expected value and the 5/95 percentile (in
parentheses) of the estimate are given for each and reflects the uncertainty in both relative sea level change
and the generalized Pareto distribution parameters. Also given are the total populations for each income
group and the percent of the group population currently exposed to the 100-yr ESL event. Median household
income is given by New York City census tract from the American Community Survey (2014-2018).

Under $20,000
$20,000 to $30,000
$30,000 to $40,000
$40,000 to $50,000
$50,000 to $60,000
$60,000 to $70,000
$70,000 to $80,000
$80,000 to $90,000

$90,000 to $100,000
Over $100,000

Median Household Income

Source: American Community Survey (2014-2018) 

Fig. S-4: Median Household income by New York City census tract from the American Community Survey
(2014-2018).
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New York City Property Damage AF
2070 2100

Current 100-yr ESL 2.0 ◦C 5.0 ◦C 2.0 ◦C 5.0 ◦C
Property Damage $4 billion ($2-$7 billion) 2.0 (1.4-2.9) 2.6 (1.6-3.9) 2.7 (1.5-4.3) 4.2 (2.0-7.8)

Table S-2: Property damage amplification factors for New York City for 2070 and 2100 under climate scenarios
in which global mean surface air temperature is stabilized in 2100 at +2 ◦C and +5 ◦C (relative to 1850–1900;
Bamber et al, 2019). The expected value and the 5/95 percentile (in parentheses) of the estimate are given
for each and reflects the uncertainty in both relative sea level change and the generalized Pareto distribution
(GPD) parameters. Also given is the current expected damage from the 100-yr ESL event with the 5/95
percentile estimates in parentheses (samples uncertainty in the GPD parameters only). Monetary amounts
assume constant 2017 US$. The methods for calculating the damage function are given in Rasmussen et al
(2020).

Property Value ($ ft-2)

15

300

600

450

150

< 15

Fig. S-5: The estimated density of property for New York City (excludes land value) given as the tax assessed
building value per square foot of building lot area (2017 US$ ft−2). Data are from the NYC Department of
City Planning (NYC Planning, 2018).
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2.0 ◦C 2010 2070 2100

Population (thousands) Population (thousands) Pop Exposure AF Population (thousands) Pop Exposure AF
Lidar 399 (293-564) 607 (488-745) 1.5 (1.2-1.9) 708 (518-938) 1.8 (1.3-2.4)
CoastalDEM 229 (168-324) 351 (280-440) 1.5 (1.2-1.9) 421 (297-596) 1.8 (1.3-2.6)

Table S-3: Estimated total population exposure and amplification factors for the 100-yr extreme sea level
(ESL) event for New York City using 1) a 0.3-m horizontal resolution light detection and ranging (LiDAR)-
derived digital elevation model for the City of New York (https://data.cityofnewyork.us/City-Government/1-
foot-Digital-Elevation-Model-DEM-/dpc8-z3jc) and 2) CoastalDEM. Future projections assume a climate
scenarios in which global mean surface air temperature is stabilized in 2100 at +2 ◦C (relative to 1850–1900;
Bamber et al, 2019).

5.0 ◦C 2010 2070 2100

Population (thousands) Population (thousands) Pop Exposure AF Population (thousands) Pop Exposure AF
Lidar 399 (293-564) 687 (529-880) 1.7 (1.3-2.2) 917 (617-1,398) 2.3 (1.5-3.5)
CoastalDEM 229 (168-324) 405 (303-548) 1.8 (1.3-2.4) 589 (355-1,010) 2.6 (1.6-4.4)

Table S-4: As for Table S-3, but for a climate scenarios in which global mean surface air temperature is
stabilized in 2100 at +5 ◦C (relative to 1850–1900; Bamber et al, 2019).

2.0 ◦C

2010 EAE (millions) 2050 EAE AF 2070 EAE AF 2100 EAE AF

City Population (millions) None 1-yr 10-yr None 1-yr 10-yr None 1-yr 10-yr None 1-yr 10-yr
Shenzhen, China 12.52 1.07 0.70 0.70 1.3 2.0 2.0 1.6 2.5 2.5 2.3 3.5 3.5
Vancouver, Canada 1.81 0.20 0.13 0.13 1.0 1.6 1.6 1.0 1.7 1.7 1.1 1.8 1.8
New York, USA 12.52 0.22 0.15 0.15 1.4 2.1 2.1 1.8 2.6 2.6 2.8 4.1 4.1
London, UK 9.88 0.04 0.03 0.03 3.0 3.6 3.6 5.0 5.9 5.9 9.9 11.7 11.6
Buenos Aires, Argentina 11.98 0.03 0.03 0.03 2.0 2.1 2.1 3.4 3.5 3.5 11.7 12.1 12.2
San Diego, USA 2.32 <0.01 <0.01 <0.01 2.4 4.3 4.3 5.2 9.1 9.1 12.5 21.8 21.8
Rio de Janeiro, Brazil 9.11 0.03 0.02 0.02 1.3 2.2 2.2 2.0 3.3 3.3 4.1 6.7 6.7
Hong Kong, China 22.23 3.99 2.53 2.53 1.2 1.9 1.9 1.4 2.2 2.2 2.1 3.3 3.3
Manila, Philippines 5.78 2.06 1.24 1.24 1.1 1.8 1.8 1.1 1.9 1.9 1.3 2.2 2.2
Copenhagen, Denmark 1.34 0.02 0.01 0.01 2.3 3.8 3.8 4.9 7.8 7.8 15.1 24.4 24.4
Dar es Salaam, Tanzania 2.32 0.02 0.01 0.01 1.2 2.3 2.3 2.2 3.9 3.9 3.3 5.9 5.9
Sydney, Australia 3.48 0.01 <0.01 <0.01 1.1 1.8 1.8 1.2 2.0 2.0 3.2 5.2 5.2
Phuket, Thailand 0.16 0.01 0.01 0.01 2.0 2.3 2.3 2.3 3.4 2.3 3.4 3.4 3.4
Tokyo, Japan 25.34 0.55 0.38 0.38 1.4 2.1 2.1 2.0 2.9 2.9 5.9 8.7 8.7
New Orleans, USA 0.71 0.17 0.13 0.13 2.2 3.0 3.0 2.8 3.7 3.7 3.6 4.7 4.7
Norfolk, USA 0.69 <0.01 <0.01 <0.01 2.0 2.7 6.9 3.4 4.7 13.7 13.9 19.0 55.5
San Juan, Puerto Rico 1.82 <0.01 <0.01 <0.01 2.5 2.6 2.7 3.0 3.1 3.3 16.6 17.3 18.3

Table S-5: Expected annual population exposure (EAE; millions) under different assumptions of existing
coastal flood protection (no protection and protection against the 1-yr and 10-yr events) and amplification
factors (AFs) for the EAE for 2050, 2070, and 2100 under the same coastal flood protection assumptions and
under a climate scenario in which global mean surface air temperature is stabilized in 2100 at +2 ◦C (relative
to 1850–1900; Bamber et al, 2019).
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100-yr Extreme Sea Level Population (people km-2)

No sea-level rise
0.5 m sea-level rise
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Fig. S-6: A. The estimated spatial flood extent for New York City as a result of the 100-yr extreme sea
level (ESL) event under 1991–2009 mean sea level (blue) and with 0.5 m of sea-level rise (red; extent above
1991–2009 levels). The “bathtub” approach (Sec. 2.2) is used to model flood inundation using the height of the
current and projected future 100-yr ESL event at a tide gauge located at the Battery. Topography data are
CoastalDEM (Kulp and Strauss, 2018). B. The estimated population density (people km−2) for New York
City from the 2010 WorldPop global population database (Tatem, 2017). Highlighted are the locations of
John F. Kennedy International and LaGuardia Airports, critical infrastructure at risk that is not represented
using population data.
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