Magma emplacement in the top unconsolidated sediments of rift basins is poorly constrained in terms of mechanics and associated hydrothermal activity. Our study compares two shallow sills from the Guaymas Basin (Gulf of California) using core data and analyses from IODP Expedition 385, and high-resolution 2D seismic data. We show that magma stalling in the top uncemented sediment layer is controlled by the transition from siliceous claystone to uncemented silica-rich sediment, promoting flat sill formation. Space is created through a combination of viscous indentation, magma-sediment mingling and fluidization processes. In low magma input regions, sills form above the opal-A/CT diagenetic barrier, while high magma input leads to upward stacking of sills, forming funnel-shaped intrusions near the seafloor. Our petrophysical, petrographic, and textural analyses show that magma-sediment mingling creates significant porosity (up to 20%) through thermal cracking of the assimilated sediment. Stable isotope data of carbonate precipitates indicate formation temperatures of 70−90°C, consistent with the current background geothermal gradient at 250−325 m depth. The unconsolidated, water-rich host sediments produce little thermogenic gas through contact metamorphism, but deep diagenetically formed gas bypasses the low-permeability top sediments via hydrothermal fluids flowing through the magma plumbing system. This hydrothermal system provides a steady supply of hydrocarbons at temperatures amendable for microbial life, acting as a major microbial incubator. Similar hydrothermal systems are expected to be abundant in magma-rich young rift basins and play a key role in sustaining subseafloor ecosystems.
Intensification of the Agulhas Leakage (AL) during glacial terminations has long been proposed as a necessary mechanism for reverting the Atlantic Meridional Overturning Circulation (AMOC) to its interglacial mode. However, lack of records showing the downstream evolution of AL signal and substantial temporal differences between AL intensification and resumption of deep‐water convection have cast doubt on the importance of this mechanism to the AMOC. Here, we analyze a combination of new and previously published data relating to Mg/Ca‐derived temperatures and ice volume‐corrected seawater δ18O records (δ18OIVC‐SW, as a proxy for relative changes in ocean salinity), which demonstrate propagation of AL signal via surface and thermocline waters to the western South Atlantic (Santos Basin) during Termination II and the early Last Interglacial. The saline AL waters were temporally stored in the upper subtropical South Atlantic until they were abruptly released in two stages into the North Atlantic via surface and thermocline waters at ca. 129 and 123 ka BP, respectively. Accounting for age model uncertainties, these two stages are coeval with the resumption of convection in the Labrador and Nordic seas during the Last Interglacial. We propose a mechanism whereby both active AL and a favorable ocean‐atmosphere configuration in the tropical Atlantic were required to allow flux of AL waters into the North Atlantic, where they then contributed to enhancing the AMOC during the Last Interglacial period. Our results provide a framework that connects AL strengthening to the AMOC intensifications that followed glaciations.