Xiaoli Zhou

and 4 more

Marine boundary layer clouds tend to organize into closed or open mesoscale cellular convection (MCC). Here, two-dimensional wavelet analysis is applied for the first time to passive microwave retrievals of cloud water path (CWP), water vapor path (WVP), and rain rate from AMSR-E in 2008 over the Northeast and Southeast Pacific, and the Southeast Atlantic subtropical stratocumulus to cumulus transition regions. The (co-)variability between CWP, WVP, and rain rate in 160x160 km2 analysis boxes is partitioned between four mesoscale wavelength octaves (20, 40, 80, and 160 km). The cell scale is identified as the wavelength of the peak CWP variance. Together with a machine-learning classification of cell type, this allows the statistical characteristics of open and closed MCC of various scales, and its relation to WVP, rain rate and potential environmental controlling factors to be analyzed across a very large set of cases. The results show that the cell wavelength is most commonly 40-80 km. Cell-scale CWP perturbations are good predictors of the WVP and rain rate perturbations. A universal cubic dependence of rain rate on CWP is found in closed and open cells of all scales. This suggests that aerosol control on precipitation susceptibility is not as important for open cell formation as are processes that cause increases in cloud water. For cells larger than 20 km, there is no obvious dependence of cell scale on the environmental controlling factors tested, suggesting that the cell scale may depend more on its historical evolution than the current environmental conditions.

Michael Diamond

and 4 more

The influence of aerosol particles on cloud reflectivity remains one of the largest sources of uncertainty in our understanding anthropogenic climate change. Commercial shipping constitutes a large and concentrated aerosol perturbation in a meteorological regime where clouds have a disproportionally large effect on climate. Yet, to date, studies have been unable to detect climatologically-relevant cloud radiative effects from shipping, despite models indicating that the cloud response should produce a sizable negative radiative forcing (perturbation to Earth’s energy balance). We attribute a significant increase in cloud reflectivity to enhanced cloud droplet number concentrations within a major shipping corridor in the southeast Atlantic. Prevailing winds constrain emissions around the corridor, which cuts through a climatically-important region of expansive low-cloud cover. We use universal kriging, a classic geostatistical method, to estimate what cloud properties would have been in the absence of shipping. In the morning, cloud brightening is consistent with changes in microphysics alone, whereas in the afternoon, increases in cloud brightness from microphysical changes are offset by decreases in the total amount of cloud water. We find a radiative forcing in the southeast Atlantic shipping corridor two orders of magnitude greater than previous observational estimates. Approximately five years of data are required to identify a clear signal. Extrapolating our results globally, we calculate an effective radiative forcing due to aerosol-cloud interactions in low clouds of -0.62 W/m2 (-1.23 to -0.08 W/m2). The unique setup in the southeast Atlantic could be an ideal test for the representation of aerosol-cloud interactions in climate models.