References
- De Wolf S, Descoeudres A, Holman Z C, et al. High-efficiency silicon
heterojunction solar cells: A review. Green. 2012; 2(1): 7-24.
doi:https://doi.org/10.1515/green-2011-0018
- Louwen A, Van Sark W, Schropp R, et al. A cost roadmap for silicon
heterojunction solar cells. Sol Energy Mater Sol Cells. 2016; 147:
295-314. doi: 10.1016/j.solmat.2015.12.026
- Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction
solar cell with interdigitated back contacts for a photoconversion
efficiency over 26%. Nat Energy. 2017; 2(5): 1-8. doi:
10.1038/nenergy.2017.32
- Ru X, Qu M, Wang J, et al. 25.11% efficiency silicon heterojunction
solar cell with low deposition rate intrinsic amorphous silicon buffer
layers. Sol Energy Mater Sol Cells. 2020; 215: 110643. doi:
10.1016/j.solmat.2020.110643
- Kim J H, Seong T Y, Ahn K J, et al. The effects of film thickness on
the electrical, optical, and structural properties of cylindrical,
rotating, magnetron-sputtered ITO films. Appl Surf Sci. 2018; 440:
1211-1218. doi: 10.1016/j.apsusc.2018.01.318
- Tuna O, Selamet Y, Aygun G, et al. High quality ITO thin films grown
by dc and RF sputtering without oxygen. J Phys D. 2010; 43(5): 055402.
doi: 10.1088/0022-3727/43/5/055402
- Sofi A H, Shah M A, Asokan K. Structural, optical and electrical
properties of ITO thin films. J Electron Mater. 2018; 47(2):
1344-1352. doi: 10.1007/s11664-017-5915-9
- Fallah H R, Ghasemi M, Hassanzadeh A, et al. The effect of annealing
on structural, electrical and optical properties of nanostructured ITO
films prepared by e-beam evaporation. Mater Res Bull. 2007; 42(3):
487-496. doi: 10.1016/j.materresbull.2006.06.024
- Shi J, Shen L, Meng F, et al. Structural, electrical and optical
properties of highly crystalline indium tin oxide films fabricated by
RPD at room temperature. Mater Lett. 2016; 182: 32-35. doi:
10.1016/j.matlet.2016.06.084
- Kim J H, Jeon K A, Kim G H, et al. Electrical, structural, and optical
properties of ITO thin films prepared at room temperature by pulsed
laser deposition. Appl Surf Sci. 2006; 252(13): 4834-4837. doi:
10.1016/j.apsusc.2005.07.134
- Haines W G, Bube R H. Effects of heat treatment on the optical and
electrical properties of indium-tin oxide films. J Appl Phys. 1978;
49(1): 304-307. doi: 10.1063/1.324386
- Shigesato Y, Takaki S, Haranoh T. Electrical and structural properties
of low resistivity tin-doped indium oxide films. J Appl Phys. 1992;
71(7): 3356-3364. doi: 10.1063/1.350931
- Clanget R. Ionized impurity scattering in degenerate
In2O3. Appl Phys. 1973; 2(5): 247-256.
doi: 10.1007/BF00889507
- Bel Hadj Tahar R, Ban T, Ohya Y, et al. Tin doped indium oxide thin
films: Electrical properties. J Appl Phys. 1998; 83(5): 2631-2645.
doi: 10.1063/1.367025
- Abe Y, Ishiyama N. Polycrystalline films of tungsten-doped indium
oxide prepared by dc magnetron sputtering. Mater Lett. 2007; 61(2):
566-569. doi: 10.1016/j.matlet.2006.05.010
- Meng Y, Yang X, Chen H, et al. A new transparent conductive thin film
In2O3: Mo. Thin Solid Films. 2001;
394(1-2): 218-222. doi:
https://doi.org/10.1016/S0040-6090(01)01142-7
- Kobayashi E, Watabe Y, Yamamoto T, et al. Cerium oxide and hydrogen
co-doped indium oxide films for high-efficiency silicon heterojunction
solar cells. Sol Energy Mater Sol Cells. 2016; 149: 75-80. doi:
10.1016/j.solmat.2016.01.005
- Wang G H, Shi C Y, Zhao L, et al. Efficiency improvement of the
heterojunction solar cell using an antireflection Hf-doped
In2O3 thin film prepared via glancing
angle magnetron sputtering technology. Opt Mater. 2020; 109: 110323.
doi: 10.1016/j.optmat.2020.110323
- Wang G H, Shi C Y, Zhao L, et al. Transparent conductive Hf-doped
In2O3 thin films by RF sputtering
technique at low temperature annealing. Appl Surf Sci. 2017; 399:
716-720. doi: 10.1016/j.apsusc.2016.11.239
- Meng F, Shi J, Shen L, et al. Characterization of transparent
conductive oxide films and their effect on amorphous/crystalline
silicon heterojunction solar cells. Japanese J Appl Phys. 2017;
56(4S): 04CS09. doi: 10.7567/JJAP.56.04CS09
- Zhou Z, Zhang Y, Chen X, et al. Innovative wide-spectrum Mg and
Ga-codoped ZnO transparent conductive films grown via reactive plasma
deposition for Si heterojunction solar cells. ACS Appl Energy Mater.
2020; 3(2): 1574-1584. doi: 10.1021/acsaem.9b02064
- Shi J, Meng F, Bao J, et al. Surface scattering effect on the
electrical mobility of ultrathin Ce doped
In2O3 film prepared at low
temperature. Mater Lett. 2018; 225: 54-56. doi:
10.1016/j.matlet.2018.04.102
- Lu Z, Meng F, Cui Y, et al. High quality of IWO films prepared at room
temperature by reactive plasma deposition for photovoltaic devices. J
Phys D. 2013; 46(7): 075103. doi: 10.1088/0022-3727/46/7/075103
- Huang W, Shi J, Liu Y, et al. High-performance Ti and W co-doped
indium oxide films for silicon heterojunction solar cells prepared by
reactive plasma deposition. J Power Sources. 2021; 506: 230101. doi:
10.1016/j.jpowsour.2021.230101
- Tark S J, Ok Y W, Kang M G, et al. Effect of a hydrogen ratio in
electrical and optical properties of hydrogenated Al-doped ZnO films.
J Electroceramics. 2009; 23(2): 548-553. doi:
10.1007/s10832-008-9532-0
- King P D C, Lichti R L, Celebi Y G, et al. Shallow donor state of
hydrogen in In2O3 and
SnO2: Implications for conductivity in transparent
conducting oxides. Phys Rev B. 2009; 80(8): 081201. doi:
10.1103/PhysRevB.80.081201
- Huang W, Shi J, Liu Y, et al. Effect of crystalline structure on
optical and electrical properties of IWOH films fabricated by
low-damage reactive plasma deposition at room temperature. J Alloys
Compd. 2020; 843: 155151. doi:
10.1016/j.jallcom.2020.155151
- Gan T, Li J, Wu L, et al. High carrier mobility tungsten-doped indium
oxide films prepared by reactive plasma deposition in pure argon and
post annealing. Mater Sci Semicond Process. 2022; 138: 106257. doi:
10.1016/j.mssp.2021.106257
- Chen M, Pei Z L, Wang X, et al. Intrinsic limit of electrical
properties of transparent conductive oxide films. J Phys D. 2000;
33(20): 2538. doi: 10.1088/0022-3727/33/20/304
- Lee D J, Kim H M, Kwon J Y, et al. Structural and electrical
properties of atomic layer deposited Al-doped ZnO films. Adv Funct
Mater. 2011; 21(3): 448-455. doi: 10.1002/adfm.201001342
- Limpijumnong S, Reunchan P, Janotti A, et al. Hydrogen doping in
indium oxide: An ab initio study. Phys Rev B. 2009; 80(19): 193202.
doi: 10.1103/PhysRevB.80.193202
- Han C, Yang G, Montes A, et al. Realizing the potential of
RF-sputtered hydrogenated fluorine-doped indium oxide as an electrode
material for ultrathin SiOx/poly-Si passivating
contacts. ACS Appl Energy Mater. 2020; 3(9): 8606-8618. doi:
https://doi.org/10.1021/acsaem.0c01206
- Addonizio M L, Gambale E, Antonaia A. Microstructure evolution of
room-temperature-sputtered ITO films suitable for silicon
heterojunction solar cells. Curr Appl Phys. 2020; 20(8): 953-960. doi:
10.1016/j.cap.2020.06.007
- Koida T, Kondo M, Tsutsumi K, et al. Hydrogen-doped
In2O3 transparent conducting oxide
films prepared by solid-phase crystallization method. J Appl Phys.
2010; 107(3): 033514. doi: 10.1063/1.3284960
- Koida T, Ueno Y, Shibata H.
In2O3-based transparent conducting
oxide films with high electron mobility fabricated at low process
temperatures. Phys Status Solidi A. 2018; 215(7): 1700506. doi:
10.1002/pssa.201700506
- Shi C Y, Wang G H. Hafnium Oxide and Hydrogen Co-Doped Indium Oxide
Films Deposited by Magnetron Sputtering Technology. Adv Mat Res. Trans
Tech Publications Ltd. 2021; 1160: 51-55. doi:
10.4028/www.scientific.net/AMR.1160.51
- Gulen M, Yildirim G, Bal S, et al. Role of annealing temperature on
microstructural and electro-optical properties of ITO films produced
by sputtering. J Mater Sci Mater Electron. 2013; 24(2): 467-474. doi:
10.1007/s10854-012-0768-8
- Dong G, Sang J, Peng C W, et al. Power conversion efficiency of
25.26% for silicon heterojunction solar cell with transition metal
element doped indium oxide transparent conductive film as front
electrode. Prog Photovolt. 2022. doi: 10.1002/pip.3565
- Zhu F, Huan C H A, Zhang K, et al. Investigation of annealing effects
on indium tin oxide thin films by electron energy loss spectroscopy.
Thin Solid Films. 2000; 359(2): 244-250. doi:
https://doi.org/10.1016/S0040-6090(99)00882-2
Table 1
Relative intensities of the three XPS peaks of OA,
OB, and OC obtained by integrating the
peak area of the IHfO:H films with different H2concentrations.