References
  1. De Wolf S, Descoeudres A, Holman Z C, et al. High-efficiency silicon heterojunction solar cells: A review. Green. 2012; 2(1): 7-24. doi:https://doi.org/10.1515/green-2011-0018
  2. Louwen A, Van Sark W, Schropp R, et al. A cost roadmap for silicon heterojunction solar cells. Sol Energy Mater Sol Cells. 2016; 147: 295-314. doi: 10.1016/j.solmat.2015.12.026
  3. Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy. 2017; 2(5): 1-8. doi: 10.1038/nenergy.2017.32
  4. Ru X, Qu M, Wang J, et al. 25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers. Sol Energy Mater Sol Cells. 2020; 215: 110643. doi: 10.1016/j.solmat.2020.110643
  5. Kim J H, Seong T Y, Ahn K J, et al. The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtered ITO films. Appl Surf Sci. 2018; 440: 1211-1218. doi: 10.1016/j.apsusc.2018.01.318
  6. Tuna O, Selamet Y, Aygun G, et al. High quality ITO thin films grown by dc and RF sputtering without oxygen. J Phys D. 2010; 43(5): 055402. doi: 10.1088/0022-3727/43/5/055402
  7. Sofi A H, Shah M A, Asokan K. Structural, optical and electrical properties of ITO thin films. J Electron Mater. 2018; 47(2): 1344-1352. doi: 10.1007/s11664-017-5915-9
  8. Fallah H R, Ghasemi M, Hassanzadeh A, et al. The effect of annealing on structural, electrical and optical properties of nanostructured ITO films prepared by e-beam evaporation. Mater Res Bull. 2007; 42(3): 487-496. doi: 10.1016/j.materresbull.2006.06.024
  9. Shi J, Shen L, Meng F, et al. Structural, electrical and optical properties of highly crystalline indium tin oxide films fabricated by RPD at room temperature. Mater Lett. 2016; 182: 32-35. doi: 10.1016/j.matlet.2016.06.084
  10. Kim J H, Jeon K A, Kim G H, et al. Electrical, structural, and optical properties of ITO thin films prepared at room temperature by pulsed laser deposition. Appl Surf Sci. 2006; 252(13): 4834-4837. doi: 10.1016/j.apsusc.2005.07.134
  11. Haines W G, Bube R H. Effects of heat treatment on the optical and electrical properties of indium-tin oxide films. J Appl Phys. 1978; 49(1): 304-307. doi: 10.1063/1.324386
  12. Shigesato Y, Takaki S, Haranoh T. Electrical and structural properties of low resistivity tin-doped indium oxide films. J Appl Phys. 1992; 71(7): 3356-3364. doi: 10.1063/1.350931
  13. Clanget R. Ionized impurity scattering in degenerate In2O3. Appl Phys. 1973; 2(5): 247-256. doi: 10.1007/BF00889507
  14. Bel Hadj Tahar R, Ban T, Ohya Y, et al. Tin doped indium oxide thin films: Electrical properties. J Appl Phys. 1998; 83(5): 2631-2645. doi: 10.1063/1.367025
  15. Abe Y, Ishiyama N. Polycrystalline films of tungsten-doped indium oxide prepared by dc magnetron sputtering. Mater Lett. 2007; 61(2): 566-569. doi: 10.1016/j.matlet.2006.05.010
  16. Meng Y, Yang X, Chen H, et al. A new transparent conductive thin film In2O3: Mo. Thin Solid Films. 2001; 394(1-2): 218-222. doi: https://doi.org/10.1016/S0040-6090(01)01142-7
  17. Kobayashi E, Watabe Y, Yamamoto T, et al. Cerium oxide and hydrogen co-doped indium oxide films for high-efficiency silicon heterojunction solar cells. Sol Energy Mater Sol Cells. 2016; 149: 75-80. doi: 10.1016/j.solmat.2016.01.005
  18. Wang G H, Shi C Y, Zhao L, et al. Efficiency improvement of the heterojunction solar cell using an antireflection Hf-doped In2O3 thin film prepared via glancing angle magnetron sputtering technology. Opt Mater. 2020; 109: 110323. doi: 10.1016/j.optmat.2020.110323
  19. Wang G H, Shi C Y, Zhao L, et al. Transparent conductive Hf-doped In2O3 thin films by RF sputtering technique at low temperature annealing. Appl Surf Sci. 2017; 399: 716-720. doi: 10.1016/j.apsusc.2016.11.239
  20. Meng F, Shi J, Shen L, et al. Characterization of transparent conductive oxide films and their effect on amorphous/crystalline silicon heterojunction solar cells. Japanese J Appl Phys. 2017; 56(4S): 04CS09. doi: 10.7567/JJAP.56.04CS09
  21. Zhou Z, Zhang Y, Chen X, et al. Innovative wide-spectrum Mg and Ga-codoped ZnO transparent conductive films grown via reactive plasma deposition for Si heterojunction solar cells. ACS Appl Energy Mater. 2020; 3(2): 1574-1584. doi: 10.1021/acsaem.9b02064
  22. Shi J, Meng F, Bao J, et al. Surface scattering effect on the electrical mobility of ultrathin Ce doped In2O3 film prepared at low temperature. Mater Lett. 2018; 225: 54-56. doi: 10.1016/j.matlet.2018.04.102
  23. Lu Z, Meng F, Cui Y, et al. High quality of IWO films prepared at room temperature by reactive plasma deposition for photovoltaic devices. J Phys D. 2013; 46(7): 075103. doi: 10.1088/0022-3727/46/7/075103
  24. Huang W, Shi J, Liu Y, et al. High-performance Ti and W co-doped indium oxide films for silicon heterojunction solar cells prepared by reactive plasma deposition. J Power Sources. 2021; 506: 230101. doi: 10.1016/j.jpowsour.2021.230101
  25. Tark S J, Ok Y W, Kang M G, et al. Effect of a hydrogen ratio in electrical and optical properties of hydrogenated Al-doped ZnO films. J Electroceramics. 2009; 23(2): 548-553. doi: 10.1007/s10832-008-9532-0
  26. King P D C, Lichti R L, Celebi Y G, et al. Shallow donor state of hydrogen in In2O3 and SnO2: Implications for conductivity in transparent conducting oxides. Phys Rev B. 2009; 80(8): 081201. doi: 10.1103/PhysRevB.80.081201
  27. Huang W, Shi J, Liu Y, et al. Effect of crystalline structure on optical and electrical properties of IWOH films fabricated by low-damage reactive plasma deposition at room temperature. J Alloys Compd. 2020; 843: 155151. doi: 10.1016/j.jallcom.2020.155151
  28. Gan T, Li J, Wu L, et al. High carrier mobility tungsten-doped indium oxide films prepared by reactive plasma deposition in pure argon and post annealing. Mater Sci Semicond Process. 2022; 138: 106257. doi: 10.1016/j.mssp.2021.106257
  29. Chen M, Pei Z L, Wang X, et al. Intrinsic limit of electrical properties of transparent conductive oxide films. J Phys D. 2000; 33(20): 2538. doi: 10.1088/0022-3727/33/20/304
  30. Lee D J, Kim H M, Kwon J Y, et al. Structural and electrical properties of atomic layer deposited Al-doped ZnO films. Adv Funct Mater. 2011; 21(3): 448-455. doi: 10.1002/adfm.201001342
  31. Limpijumnong S, Reunchan P, Janotti A, et al. Hydrogen doping in indium oxide: An ab initio study. Phys Rev B. 2009; 80(19): 193202. doi: 10.1103/PhysRevB.80.193202
  32. Han C, Yang G, Montes A, et al. Realizing the potential of RF-sputtered hydrogenated fluorine-doped indium oxide as an electrode material for ultrathin SiOx/poly-Si passivating contacts. ACS Appl Energy Mater. 2020; 3(9): 8606-8618. doi: https://doi.org/10.1021/acsaem.0c01206
  33. Addonizio M L, Gambale E, Antonaia A. Microstructure evolution of room-temperature-sputtered ITO films suitable for silicon heterojunction solar cells. Curr Appl Phys. 2020; 20(8): 953-960. doi: 10.1016/j.cap.2020.06.007
  34. Koida T, Kondo M, Tsutsumi K, et al. Hydrogen-doped In2O3 transparent conducting oxide films prepared by solid-phase crystallization method. J Appl Phys. 2010; 107(3): 033514. doi: 10.1063/1.3284960
  35. Koida T, Ueno Y, Shibata H. In2O3-based transparent conducting oxide films with high electron mobility fabricated at low process temperatures. Phys Status Solidi A. 2018; 215(7): 1700506. doi: 10.1002/pssa.201700506
  36. Shi C Y, Wang G H. Hafnium Oxide and Hydrogen Co-Doped Indium Oxide Films Deposited by Magnetron Sputtering Technology. Adv Mat Res. Trans Tech Publications Ltd. 2021; 1160: 51-55. doi: 10.4028/www.scientific.net/AMR.1160.51
  37. Gulen M, Yildirim G, Bal S, et al. Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering. J Mater Sci Mater Electron. 2013; 24(2): 467-474. doi: 10.1007/s10854-012-0768-8
  38. Dong G, Sang J, Peng C W, et al. Power conversion efficiency of 25.26% for silicon heterojunction solar cell with transition metal element doped indium oxide transparent conductive film as front electrode. Prog Photovolt. 2022. doi: 10.1002/pip.3565
  39. Zhu F, Huan C H A, Zhang K, et al. Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy. Thin Solid Films. 2000; 359(2): 244-250. doi: https://doi.org/10.1016/S0040-6090(99)00882-2
Table 1
Relative intensities of the three XPS peaks of OA, OB, and OC obtained by integrating the peak area of the IHfO:H films with different H2concentrations.