Nicolas Theys

and 10 more

Nitrous acid (HONO) is a key tropospheric species, primarily as a source of the hydroxyl radical (OH), which is pivotal in breaking down pollutants and greenhouse gases and is also a key ingredient to photochemical air pollution. Recent HONO measurements from space in fresh biomass burning plumes offer the potential to inform about HONO formation mechanisms globally. However, research is needed to further develop, interpret and evaluate the satellite retrievals. Here, we present a new global HONO column data set of 5.5 years from the TROPOspheric Monitoring Instrument (TROPOMI). We leverage the Covariance-Based Retrieval Algorithm (COBRA) to significantly improve the sensitivity to weak HONO signals, over all biomass burning regions. Radiative transfer simulations for retrieving HONO columns indicate a strong dependence on plume height and smoke aerosols. Such information is mostly inaccessible from space for thick plumes but can be obtained from sub-orbital measurements during dedicated campaigns. We compare the TROPOMI HONO columns to aircraft observations from the BB-FLUX campaign. When explicitly accounting for aerosols, the satellite and aircraft data are in good agreement, albeit with significant comparison uncertainty. We also evaluate the TROPOMI retrievals against HONO columns measured by IASI and discuss the differences. Next, we demonstrate the potential of geostationary satellites like the Geostationary Environment Monitoring Spectrometer (GEMS) to provide temporally resolved information on pyrogenic HONO. Finally, we find a close relation between satellite HONO detections and fire intensity both in space and time, highlighting the likely dominance of HONO production during the flaming phase of the fires.

Zolal Ayazpour

and 31 more

This study presents the Ozone Monitoring Instrument (OMI) Collection 4 formaldehyde (HCHO) retrieval developed with the Smithsonian Astrophysical Observatory’s (SAO) Making Earth System Data Records for Use in Research Environments (MEaSUREs) algorithm. The retrieval algorithm updates and makes improvements to the NASA operational OMI HCHO (OMI Collection 3 HCHO) algorithm, and has been transitioned to use OMI Collection 4 Level-1B radiances. This paper describes the updated retrieval algorithm and compares Collection 3 and Collection 4 data products. The OMI Collection 4 HCHO exhibits remarkably improved stability over time in comparison to the OMI Collection 3 HCHO product, with better precision and the elimination of artificial trends present in the Collection 3 during the later years of the mission. We validate the OMI Collection 4 HCHO data product using Fourier-Transform Infrared (FTIR) ground-based HCHO measurements. The climatological monthly averaged OMI Collection 4 HCHO vertical column densities (VCDs) agree well with the FTIR VCDs, with a correlation coefficient of 0.83, root-mean-square error (RMSE) of 2.98 × 1015 molecules cm-2, regression slope of 0.79, and intercept of 8.21 × 1014 molecules cm-2. Additionally, we compare the monthly averaged OMI Collection 4 HCHO VCDs to OMPS Suomi NPP, OMPS NOAA-20, and TROPOMI HCHO VCDs in overlapping years for twelve geographic regions. This comparison demonstrates high correlation coefficients of 0.98 (OMPS Suomi NPP), 0.97 (OMPS NOAA-20), and 0.90 (TROPOMI).

Karn Vohra

and 6 more

Caroline R. Nowlan

and 14 more

We describe new publicly-available, multi-year formaldehyde (HCHO) data records from the Ozone Mapping and Profiler Suite (OMPS) nadir mapper (NM) instruments on the Suomi NPP and NOAA-20 satellites. The OMPS-NM instruments measure backscattered UV light over the globe once per day, with spatial resolutions close to nadir of 50 × 50 km² (OMPS/Suomi-NPP) and 17 × 17 km² or 12 × 17 km² (OMPS/NOAA-20). After a preliminary instrument line shape and wavelength calibration using on-orbit observations, we use the backscatter measurements in a direct spectral fit of radiances, in combination with a nadir reference spectrum collected over a clean area, to determine slant columns of HCHO. The slant columns are converted to vertical columns using air mass factors derived through scene-by-scene radiative transfer calculations. Finally, a correction is applied to account for background HCHO in the reference spectrum, as well as any remaining high-latitude biases. We investigate the consistency of the OMPS products from Suomi NPP and NOAA-20 using long-term monthly means over 12 geographic regions, and also compare the products with publicly-available TROPOMI HCHO observations. OMPS/Suomi-NPP and OMPS/NOAA-20 monthly mean HCHO vertical columns are highly consistent (r = 0.98), with low proportional (2 %) and offset (2×10¹⁴ molecules cm⁻²) biases. OMPS HCHO monthly means are also well-correlated with those from TROPOMI (r = 0.92), although they are consistently 10±16 % larger in polluted regions (columns >8×10¹⁵ molecules cm⁻²). These differences result primarily from differences in air mass factors.