References
Adhami, E., Maftoun, M., Ronaghi, A., Karimian, N., Yasrebi, J., Assad, M.T. (2006). Inorganic phosphorus fractionation of highly calcareous soils of Iran. Communications in Soil Science and Plant Analysis , 37, 1877-1888. https://doi.org/10.1080/00103620600767116
Almeida, D. S., Delai, L. B., Sawaya, A. C. H. F., Rosolem, C. A. (2020). Exudation of organic acid anions by tropical grasses in response to low phosphorus availability. Sciecetific Reports , 10, 16955. https://doi.org/10.1038/s41598-020-73398-1
Augusto, L., Achat, D. L., Jonard, M., Vidal, D., Ringeval, B. (2017). Soil parent material-a major driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biology , 23, 3808-3824. https://doi.org/10.1111/gcb.13691
Bai, J. H., Yu, L., Ye, X. F., Yu, Z. B., Wang, D. W., Guan, Y. N., Cui, B. S., Liu, X. H. (2019). Dynamics of phosphorus fractions in surface soils of different flooding wetlands before and after flow-sediment regulation in the Yellow River Estuary, China. Journal of Hydrology , 580, 124-256. https://doi.org/10.1016/j.jhydrol.2019.124256
Bai, Y., Ma L., Degen A. A., Rafiq, M. K., Kuzyakov, Y., Zhao, J., Zhang, R., Zhang, T., Wang, W., Li., X., Long, R., Shang, Z. (2020). Long-term restoration of extremely degraded alpine grassland accelerated turnover and increased stability of soil carbon. Global Change Biology. 26: 7217-7228. https://doi:10.1111/gcb.15361
Barrow, N. J. (2015). A mechanistic model for describing the sorption and desorption of phosphate by soil. European Journal of Soil Science , 66, 9-18. https://doi.org/10.1111/ejss.12198_2
Bremner, J. M., Mulvaney, C. S. (1982). Nitrogen-Total. In: Page, A. L., Ed., Methods of Soil Analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Madison.
Cheesman, A. W., Dunne, E. J., Reddy, K. R. (2010). Soil phosphorus forms in hydrologically isolated wetlands and surrounding pasture uplands. Journal of Environmental Quality , 39, 1517-1525. https://doi.org/10.2134/jeq2009.0398
Cheesman, A. W., Turner, B. L., Reddy, K. R., (2012). Soil Phosphorus Forms along a Strong Nutrient Gradient in a Tropical Ombrotrophic Wetland. Soil Science Society of America Journal , 76, 1496-1506. https://doi.org/10.2136/sssaj2011.0365
Chen, J., Van Groenigen, K. J., Hungate, B. A., Terrer, C., Van Groenigen, J-W., Maestre, F. T., Ying, S., Luo, Y., Jørgensen, U., Sinsabaugh, R. L., Olesen, J. E., Elsgaard, L. (2020). Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Global change biology, 26: 5077-5086. https://doi.org/10.1111/gcb.15218.
Cheng, Y. R., Zha, Y., Tong, C., Hu, M. J., Du, D. D., Fan, Y. X., Chen, L. J. (2020). Plant Population Dynamics in a Degraded Coastal Wetland and Implications for the Carbon Cycle. Wetlands, 40, 1-9. https://doi.org/10.1007/s13157-020-01268-7
Cooperative research group on Chinese soil taxonomy (2001). Chinese Soil Taxonomy (pp. 112-116, 146-147). Beijing, Chian: science press.
Cui, H., Ou, Y., Wang, L. X., Wu, H. T., Yan, B. X., Li, Y. X. (2019a). Distribution and release of phosphorus fractions associated with soil aggregate structure in restored wetlands. Chemosphere , 223, 319-329. https://doi.org/10.1016/j.chemosphere.2019.02.046
Cui, H., Ou, Y., Wang, L. X., Wu, H. T., Yan, B. X., Han, L., Li, Y. X. (2019b). Identification of environmental factors controlling phosphorus fractions and mobility in restored wetlands by multivariate statistics.Environmental Science and Pollution Research , 26, 16014-16025. https://doi.org/10.1007/s11356-019-05028-x
Cui, Y., Xiao, R., Xie, Y., Zhang, M. X., 2018. Phosphorus fraction and phosphate sorption-release characteristics of the wetland sediments in the Yellow River Delta. Physics and Chemistry of the Earth , 103, 19-27. https://doi.org/10.1016/j.pce.2017.06.005
DeBusk, W. F., Newman, S., Reddy, K. R. (2001). Spatio-temporal patterns of soil phosphorus enrichment in Everglades Water Conservation Area 2A.Journal of Environmental Quality , 30, 1438-1446. https://doi.org/10.2134/jeq2001.3041438x
Ding, S. M., Wang, Y., Wang, D., Li, Y. Y., Gong, M. D., Zhang, C. S. (2016). In situ, high-resolution evidence for iron-coupled mobilization of phosphorus in sediments. Sciecetific Reports , 6, 24341. https://doi.org/10.1038/srep24341
Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., Lissa C. J. V., Zhao X., Xia, N., Wu X., Jackson, R. B., (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience , 13, 221-226. https://doi.org/10.1038/s41561-019-0530-4
Duhamel, S., Nogaro, G., Steinman, A. D. (2017). Effects of water level fluctuation and sediment–water nutrient exchange on phosphorus biogeochemistry in two coastal wetlands. Aquatic Sciences , 79, 57-72. https://doi.org/10.1007/s00027-016-0479-y
Dunne, E. J., Clark, M. W., Corstanje, R. (2011). Legacy phosphorus in subtropical wetland soils: Influence of dairy, improved and unimproved pasture land use. Ecological Engineering , 37, 1481-1491. https://doi.org/10.1016/j.ecoleng.2011.04.003
Fan, Y. X., Lu, S. X., He, M., Yang, L. M., Hu, W. F., Yang, Z. J., Liu, X. F., Hui, D. F., Guo, J. F., Yang, Y. S. (2021). Long-term throughfall exclusion decreases soil organic phosphorus associated with reduced plant roots and soil microbial biomass in a subtropical forest.Geoderma , 404, 115309. https://doi.org/10.1016/j.geoderma.2021.115309
Gama-Rodrigues, A.C., Sales, M.V.S., Silva, P.S.D., Comerford, N.B., Cropper, W.P. (2014). An exploratory analysis of phosphorus transformations in tropical soils using structural equation modeling.Biogeochemistry , 118, 453-469. https://doi.org/10.1007/s10533-013-9946-x
Ganjegunte, G., Ulery, A., Niu, G.H., Wu, Y.Q. (2018). Organic carbon, nutrient, and salt dynamics in saline soil and switchgrass (Panicum virgatum L.) irrigated with treated municipal wastewater. Land Degradation & Development , 29, 80-90. https://doi.org/10.1002/ldr.2841
Gao, P., Liu, Y. G., Wang, Y., Liu, X., Wang, Z. Q., Ma, L. Q. (2019). Spatial and temporal changes of P and Ca distribution and fractionation in soil and sediment in a karst farmland-wetland system.Chemosphere , 220, 644-650. https://doi.org/10.1016/j.chemosphere.2018.12.183
Gatiboni, L. C., Schmitt, D. E., Tiecher, T., Veloso, M. G., Santos, D. R. D., Kaminski, J., Brunetto, G. (2021). Plant uptake of legacy phosphorus from soils without P fertilization. Nutr Cycl Agroecosyst , 119, 139-151. https://doi.org/10.1007/s10705-020-10109-2
Grace, J. B., Bollen, K. A., (2005). Interpreting the results from multiple regression and structural equation models. Bulletin of the American Society for Information Science , 86, 283-295. https://doi.org/10.1890/0012-9623(2005)86[283: ITRFMR]2.0.CO;2
Gyaneshwar, P., Kumar, G. N., Parekh, L. J., Poole, P. S. (2002). Role of soil microorganisms in improving P nutrition of plants. Plant and Soil , 245, 83-93. https://doi.org/10.1023/A:1020663916259
Hallama, M., Pekrun, C., Lambers, H., Kandeler, E. (2019). Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems. Plant and Soil , 434, 7-45. https://doi.org/10.1007/s11104-018-3810-7
Hamdan, R., El-Rifai, H. M., Cheesman, A. W., Turner, B. L., Reddy, K. R., Cooper, W. T. (2012). Linking phosphorus sequestration to carbon humification in wetland soils by 31P and 13C NMR spectroscopy.Environmental Science & Technology , 46, 4775. https://doi.org/10.1021/es204072k
Hedley, M. J., Stewart, J. W. B., Chauhan, B. S. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America 46(5), 970–976. http://doi.org/ 10.2136/sssaj1982.03615995004600050017x.
Hooper, D., Coughlan, J., Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods , 6, 53-60. https://doi.org/10.0000/PMID35188134
Hou, E. Q., Chen, C. R., Kuang, Y. W., Zhang, Y. G., Heenan, M., Wen, D. Z. (2016). A structural equation model analysis of phosphorus transformationsin global unfertilized and uncultivated soils.Global Biogeochemical Cycles , 30, 1300-1309. https://doi.org/10.1002/2016GB005371
Huang, L. D., Zhang, Y. H., Shi, Y. M., Liu, Y. B., Wang, L., Yan, N. (2015a). Comparison of phosphorus fractions and phosphatase activities in coastal wetland soils along vegetation zones of Yancheng National Nature Reserve, China. Estuarine, Coastal and Shelf Science , 157, 93-98. https://doi.org/10.1016/j.ecss.2014.09.027
Huang, W., Chen, Q. W., Ren, K. X., Chen, K. N. (2015b). Vertical distribution and retention mechanism of nitrogen and phosphorus in soils with different macrophytes of a natural river mouth wetland.Environmental Monitoring & Assessment , 187, 97. https://doi.org/10.1007/s10661-015-4276-1
Huisman, H., Ismail-Meyer, K., Sageidet, B. M., Joosten, I. (2017). Micromorphological indicators for degradation processes in archaeological bone from temperate European wetland sites. Journal of Archaeological Science , 85, 13-29. https://doi.org/10.1016/j.jas.2017.06.016
Hu, M. J., Sardans, J., Le, Y. X., Wang, Y. F., Penuelas, J., Tong, C., (2021). Phosphorus mobilization and availability across the freshwater to oligohaline water transition in subtropical estuarine marshes.Catena , 201, 105195. https://doi.org/10.1016/j.catena.2021.105195
Huo, L. L., Chen, Z. K., Zou, Y. C., Lu, X. G., Guo, J. W., Tang, X. G. (2013). Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon. Ecological Engineering , 51, 287-295. https://doi.org/10.1016/j.ecoleng.2012.12.020
Hu, Y., Chen, J., Hui, D., Wang, Y-P., Li J., Chen, J., Chen, G., Zhu, Y., Zhang, L., Zhang, D., Deng, Q. (2022). Mycorrhizal fungi alleviate acidification-induced phosphorus limitation: Evidence from a decade-long field experiment of simulated acid deposition in a tropical forest in south China. Global change biology, 28:3605-3619. https://doi. org/10.1111/gcb.16135
Jamil, S., Mehmood, A., Akhter, M. S., Memon, M., Imran, M., Rukh, S., Qqyyum, A., Jenks, M. A. (2016). Changes in soil phosphorus fractions across a toposequence in the estuary plains of Pakistan. Archives of Agronomy and Soil Science , 62, 1567-1577. https://doi.org/10.1080/03650340.2016.1155701
Jiang, B. F., Gu, Y. C. (1989). A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Fertilizer Research , 20, 159-165. https://doi.org/10.1007/BF01054551
Jones, D. L. (1998). Organic acids in the rhizosphere - a critical review. Plant and Soil , 205, 25-44. https://doi.org/10.1023/A:1004356007312
Khosa, S. A., Ernile, K. O., Khan, K. S., Akmal, M. (2021). Phosphorus mineralization in response to organic and inorganic amendment in a semi-arid pasture soil. Eurasian Journal Soil Science , 10, 26-31. https://doi.org/10.18393/ejss.801099
Kim, H.Y., (2013). Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Edod. 38, 52–54. https://doi.org/10.5395/rde.2013.38.1.52
Kjaergaard, C., Heiberg, L., Jensen, H. S., Hansen, H. C. B. (2012). Phosphorus mobilization in rewetted peat and sand at variable flow rate and redox regimes. Geoderma , 173-174, 311–321. https://doi.org/10.1016/j.geoderma.2011.12.029
Kröger, R., Lizotte, R. E., Shields, F. D., Usborne, E. (2012). Inundation Influences on Bioavailability of Phosphorus in Managed Wetland Sediments in Agricultural Landscapes. Journal of Environmental Quality , 41, 604-614. https://doi.org/10.2134/jeq2011.0251
Lefcheck, J. S. (2016). Piecewisesem: Piecewise structural equation modelling in R for ecology, evolution, and systematics, Methods in Ecology and Evolution, 7: 573–579. https://doi:10.1111/2041-210X.12512
Li, J. B., Lai, Y.T., Xie, R. R., Ding, X. Y., Wu, C. S. (2018). Sediment phosphorus speciation and retention process affected by invasion time of Spartina alterniflora in a subtropical coastal wetland of China. Environmental Science and Pollution Research , 25, 35365-35375. https://doi.org/10.1007/s11356-018-3447-3
Li, Z. W., Gao, P., Hu, X. Y., Yi, Y. J, Pan, B. Z., You, Y. C. (2019). Coupled impact of decadal precipitation and evapotranspiration on peatland degradation in the Zoige basin, China. Physical Geography , 41, 145-168. https://doi.org/10.1080/02723646.2019.1620579
Li, Z. W., Wang, Z. Y., Brierley, G., Nicoll, T., Pan, B. Z., Li, Y. F. (2015). Shrinkage of the Ruoergai swamp and changes to landscape connectivity, Qinghai-Tibet Plateau. Catena , 126, 155-163. https://doi.org/10.1016/j.catena.2014.10.035
Li, M., Hao, Y. B., Yan, Z. Q., Kang, E., Wang, J. Z., Zhang, K. R., Li, Y., Wu, H. D., Kang, X. M. (2022). Long-term degradation from marshes into meadows shifts microbial functional diversity of soil phosphorus cycling in an alpine wetland of the Tibetan Plateau. Land Degradation and Development , 33, 628–637. https://doi.org/10.1002/ldr.4180
Liu W., Guo, Z., Jiang, B., Lu, F., Wang, H., Wang, D., Zhang M., Cui L. (2020). Improving wetland ecosystem health in China. Ecological Indicators , 113, 106184. https://doi.org/10.1016/j.ecolind.2020.106184
Li, X. M., Zhang, J. M., Phosphorus status in Hebei fluvo-aquic soil.Chinese Journal of Soil Scinece , 1994, 25, 259–260 (In chiese). https://doi.org/10.19336/j.cnki.trtb.1994.06.006
Liu, H., Wang, R., Wang, H., Cao, Y., Dijkstra, F. A., Shi, Z., Cai, J., Wang, Z., Zou, H., Jiang, Y. (2019). Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe. Biogeosciences, 16: 4293–4306. https://doi:10.5194/bg-16-4293-2019
Liu, Z. G., Li, Y. C. C., Zhang, S. A., Fu, Y. Q., Fan, X. H. (2015). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology , 96, 217-224. https://doi.org/10.1016/j.apsoil.2015.08.003
Lu, R. K. (2000). Methods of soil chemical analysis (pp. 146-195). Beijing, Chian: China agricultural science technology press.
Luo, L., Ye, H. Y., Zhang, D. H., Gu, J. D., Deng, O. P. (2021). The dynamics of phosphorus fractions and the factors driving phosphorus cycle in Zoige Plateau peatland soil. Chemosphere , 278, 130501. https://doi.org/10.1016/j.chemosphere.2021.130501
Ma, K., Liu, J. G, Balkovič, J., Skalsk, R., Azevedo, L. B., Kraxner, F. (2016). Changes in soil organic carbon stocks of wetlands on China’s Zoige Plateau from 1980 to 2010. Ecological. Modelling , 327, 18-28. https://doi.org/10.1016/j.ecolmodel.2016.01.009
Melese, A., Gebrekidan, H., Yli-Halla, M., Yitaferu, B. (2015). Phosphorus Status, Inorganic Phosphorus Forms, and Other Physicochemical Properties of Acid Soils of Farta District, Northwestern Highlands of Ethiopia. Applied and Environmental Soil Science , 2015, 1-11. https://doi.org/10.1155/2015/748390
Meyerson, L. A., Saltonstall, K., Windham, L., Eiviat, E., Findlay, S. (2000). A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetland Ecology and Management , 8, 89-103. https://doi.org/10.1023/A:1008432200133
Miao, S. J., Shi, H., Wang, G. H., Jin, J., Liu, J. D., Zhou, K. Q., Sui, Y.Y., Liu, X. B. (2013). Seven years of repeated cattle manure addition to eroded Chinese Mollisols increase low-molecular-weight organic acids in soil solution. Plant and Soil , 369, 577-584. https://doi.org/10.1007/s11104-013-1594-3
Murphy, J., Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta , 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
Negassa, W., Michalik, D., Klysubun, W., Leinweber, P. (2020). Phosphorus speciation in long-term drained and rewetted peatlands of Northern Germany. Soil System , 4, 11. https://doi.org/doi:10.3390/soilsystems4010011
Nelson, D. W., Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In Methods of soil analysis, Part 2: Chemical and Microbiological Properties, 2nd ed. American Society of Agronomy, Madison.
Nguyen, H. H., Dargusch, P., Moss, P., Tran, D. B. (2016). A review of the drivers of 200 years of wetland degradation in the Mekong Delta of Vietnam. Regional Environmental Change , 16, 2303-2315. https://doi.org/10.1007/s10113-016-0941-3
Nuryana, I., Andriani, A., Lisdiyanti, P., Yopi (2019). Analysis of organic acids produced by lactic acid bacteria. IOP Conference Series: Earth and Environmental Science , 251, 012054. https://doi.org/10.1088/1755-1315/251/1/012054
Ockenden, M. C., Deasy, C., Quinton, J. N., Surridge, B., Stoate, C. (2014). Keeping agricultural soil out of rivers: Evidence of sediment and nutrient accumulation within field wetlands in the UK. Journal of Environmental Management , 135, 54-62. https://doi.org/10.1016/j.jenvman.2014.01.015
Oelmann, Y., Brauckmann, H. J., Schreiber, K. F., Broll, G. (2017). 40 years of succession or mulching of abandoned grassland affect phosphorus fractions in soil. Agriculture Ecosystems & Environment , 237, 66-74. https://doi.org/10.1016/j.agee.2016.12.014
Olsen, S. R., Cole, C. V., Watanabe, F. S., Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circ. 939.
Ouyang, X., Lee, S.Y. (2020). Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nature Communications , 11, 317. https://doi.org/10.1038/s41467-019-14120-2
Pan, F., Guo, Z. R., Cai, Y., Fu, Y.Y., Wu, X. D., Liu, H. T., Wang, X. H. (2021). Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface. Journal of hazardous materials , 411, 125078. https://doi.org/10.1016/j.jhazmat.2021.125078
Prado, A. G. S., Airoldi, C. (1999). The influence of moisture on microbial activity of soils. Thermochimica Acta , 332, 71-74. https://doi.org/10.1016/s0040-6031(99)00062-3
Pu, Y. L., Lang, S. X., Wang, A. B., Zhang, S. R., Li, T., Qian, H. Y., Wang, G. Y., Jia, Y. X., Xu, X. X., Yuan, D. G., Li, Y. (2022). Distribution and functional groups of soil aggregate-associated organic carbon along a marsh degradation gradient on the Zoige Plateau, China.Catena , 209, 105811. https://doi.org/10.1016/J.CATENA.2021.105811
Pu, Y. L., Ye, C., Zhang, S. R., Wang, G. Y., Hu, S. J., Xu, X. X., Xiang, S., Li, T., Jia, Y. X. (2020). Response of the organic carbon fractions and stability of soil to alpine marsh degradation in Zoige, East Qinghai-Tibet Plateau.Journal of Plant Nutrition & Soil Science, 20, 2145-2155. https://doi.org/10.1007/s42729-020-00282-2
Qian, Y. C., Shi, J. Y., Chen, Y. X., Lou, L. P., Cui, X. Y., Cao, R. K., Li, P. F., Tang, J. (2010). Characterization of phosphate solubilizing bacteria in sediments from a shallow eutrophic lake and a wetland: isolation, molecular identification and phosphorus release ability determination. Molecules , 15, 8518-8533. https://doi.org/10.3390/molecules15118518
Qu, F. Z., Meng, L., Xia, J. B., Huang, H. S., Zhan, C., Li, Y. Z. (2021). Soil phosphorus fractions and distributions in estuarine wetlands with different climax vegetation covers in the Yellow River Delta. Ecological Indicators , 125, 107497. https://doi.org/10.1016/j.ecolind.2021.107497
Qu, F. Z., Shao, H. B., Meng, L., Yu, J. B., Xia, J. B., Sun, J. K., Li, Y. Z. (2018). Forms and vertical distributions of soil phosphorus in newly formed coastal wetlands in the Yellow River Delta estuary.Land Degradation & Development , 29, 4219-4226. https://doi.org/10.1002/ldr.3132
Qu, Y., Wang, C., Guo, J. S., Huang, J. J., Fang, F., Xiao, Y., Ouyang, W. J., Lu, L. H. (2019). Characteristics of organic phosphorus fractions in soil from water-level fluctuation zone by solution 31P-nuclear magnetic resonance and enzymatic hydrolysis. Environmental Pollution , 255, 113209. https://doi.org/10.1016/j.envpol.2019.113209
Qualls, R. G., Richardson, C. J. (2000). Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms. Soil Science Society of America Journal , 64, 799-808. https://doi.org/10.2136/sssaj2000.642799x
Reddy, K. R., Kadlec, R. H., Flaig, E., Gale, P. M. (1999). Phosphorus retention in streams and wetlands: a review. Critical Reviews in Environmental Science and Technology , 29, 83-146. https://doi.org/10.1080/10643389991259182
Ren, C. Y., Wang, Z. M., Zhang, Y. Z., Zhang, B., Chen, L., Xi, Y. B., Xiao, X. M., Doughty, R. B., Liu, M. Y., Jia, M. M., Mao, D. H., Mao, D. H., Song, K. S. (2019). Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984-2016. International Journal of Applied Earth Observation and Geoinformation , 82, 101902. https://doi.org/10.1016/j.jag.2019.101902
Sah, R. N., Mikkelsen, D. S. (1986). Transformation of inorganic phosphorus during the flooding and draining cycles of soil. Soil Science Society of America Journal , 50, 62-67. https://doi.org/10.2136/sssaj1986.03615995005000010012x
Sah, R. N., Mikkelsen, D. S. (1989). Phosphorus behavior in flooded-drained soils. I. effects on phosphorus sorption. Soil Science Society of America Journal , 53, 1718-1722. https://doi.org/10.2136/sssaj1989.03615995005300060018x
Saunders, W. M. H., Williams, E. G. (1955). Observations on the determination of total organic phosphorus in soils. European Journal of Soil Science , 6, 254-267. https://doi.org/10.1111/j.1365-2389.1955.tb00849.x
Schelfhout, S., Wasof, S., Mertens, J., Vanhellemont, M., Demey, A., Haegeman, A., DeCock, E., Moeneclaey, I., Vangansbeke, P., Viaene, N., Baeyen, S., Sutter, N. D., Maes, M., van der Putten, W. H., Verheyen, K., Schrijver, A. D. (2021). Effects of bioavailable phosphorus and soil biota on typical Nardus grassland species in competition with fast-growing plant species. Ecological Indicators . 120, 106880. https://doi.org/10.1016/j.ecolind.2020.106880
Schlichting, A., Leiweber, P., Meissner, R., Altermann, M. (2002). Sequentially extracted phosphorus fractions in peat derived soils.Journal of Plant Nutrition & Soil Science , 165, 290-298. https://doi.org/10.1002/1522-2624(200206)165:3%3C290::AID-JPLN290%3E3.0.CO;2-A
Shang, Z.H., Yang, S.H., Wang, Y.L., Shi, J.J., Ding, L.M., Long, R.J. (2016). Soil seed bank and its relation with above-ground vegetation along the degraded gradients of alpine mead-ow. Ecological Engineering , 90, 268-277. https://doi.org/10.1016/j.ecoleng.2016.01.067
Shao, W., Zhu, J., Teng, Z., Zhang, K., Liu, S., Li, M. (2019). Distribution of inorganic phosphorus and its response to the physicochemical characteristics of soil in Yeyahu Wetland, China. Process Safety & Environmental Protection, 125: 1-8. https://doi.org/10.1016/j.psep.2019.02.025
Sharma, S. B., Chowdhury, A. (2021). Phosphorus transitions in traditional eco-knowledge versus chemical based agri-amendment systems of stress-prone semi-arid tropics: Finding the real game-changer. Ecological Indicators , 121, 107145. https://doi.org/10.1016/j.ecolind.2020.107145
Shen, G., Yang, X. C., Jin, Y. X., Xu, B., Zhou, Q. B. (2019). Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China. Ecological Indicators , 104, 48-58. https://doi.org/10.1016/j.ecolind.2019.04.063
Sitters, J., Cherif, M., Egelkraut, D., Giesler, R., Olofsson, J. (2019). Long-term heavy reindeer grazing promotes plant phosphorus limitation in arctic tundra. Functional Ecology , 33, 1233-1242. https://doi.org/10.1111/1365-2435.1342
Smith, G. J., McDowell, R. W., Condron, L. M., Daly, K., HUallacháin D. Ó., Fenton, O. (2021). Reductive dissolution of phosphorus associated with iron-oxides during saturation in agricultural soil profiles.Journal of Environmental Quality , 50, 1207-1219. https://doi.org/10.1002/jeq2.20256
Sorrell, B. K., Chagué-Goff, C., Basher, L.M., Partridge, T. R. (2011). N:P ratios, 15N fractionation and nutrient resorption along a nitrogen to phosphorus limitation gradient in an olig-otrophic wetland complex.Aquatic Botany , 94, 93-101. https://doi.org/10.1016/j.aquabot.2010.11.006
Stevens, C. J., Tullos, D. D. (2011). Effects of Temperature and Site Characteristics on Phosphorus Dynamics in Four Restored Wetlands: Implications for Wetland Hydrologic Management and Restoration. Ecological Restoration, 29, 279-291. https://doi.org/10.3368/er.29.3.279
Susilowati, L. E., Kusumo, B. H., Arifin, Z. (2019). Screening of the drought tolerant phosphate solubilizing bacteria in dissolving P-inorganic. Journal of Physics: Conference Series , 1402, 055082. https://doi.org/10.1088/1742-6596/1402/5/055082
Teng, Y. M., Zhan, J. Y., Agyemang, F. B., Sun, Y. X. (2020). The effects of degradation on alpine grassland resilience: A study based on meta-analysis data. Global Ecology and Conservation , 24, e01336. https://doi.org/10.1016/j.gecco.2020.e01336
Thomas, R. L., Sheard, R. W., Moyer, J. R. (1967). Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion.Agronomy Journal , 59, 240-243. https://doi.org/10.2134/agronj1967.00021962005900030010x
Tiessen, H., Stewart J. W. B., Cole, C.V. (1984). Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Science Society of America Journal , 48, 853-858 https://doi.org/10.2136/sssaj1984. 03615995004800040031x
Touhami, D., McDowell, R. W., Condron, L. M. (2020). Role of organic anions and phosphatase enzymes in phosphorus acquisition in the rhizospheres of legumes and grasses grown in a low phosphorus pasture soil. Plants , 9, 1185. https://doi.org/10.3390/plants9091185
Turner, B. L., Brenes-Arguedas, T., Condit, R., 2018. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature , 555, 367-370. https://doi.org/10.1038/nature25789
Turner, B. L., Wells, A., Condron, L. M. (2014). Soil organic phosphorus transformations along a coastal dune chronosequence under New Zealand temperate rain forest. Biogeochemistry , 121, 595-611. https://doi.org/10.1007/s10533-014-0025-8
Vitousek, P. M., Porder, B. Z., Houlton, B., Chadwick, O. A. (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications , 20, 5-15. https://doi.org/10.1890/08-0127.1
Wang, C., Guo, J. S., Zhang, W., Jiang, Y. X., Fang, F., He, W. Z., Jia, B.Y, Dang, C. J. (2021b). Drying-rewetting changes soil phosphorus status and enzymatically hydrolysable organic phosphorus fractions in the water-level fluctuation zone of Three Gorges reservoir. Catena , 204, 105416. https://doi.org/10.1016/j.catena.2021.105416
Wang, G. P., Liu, J. S., Wang, J. D., Yu, J. B. (2006). Soil phosphorus forms and their variations in depressional and riparian freshwater wetlands (Sanjiang Plain, Northeast China). Geoderma , 132, 59-74. https://doi.org/10.1016/j.geoderma.2005.04.021
Wang, G. P., Zhai, Z. L., Liu, J. S., Wang, J. D. (2008). Forms and profile distribution of soil phosphorus in four wetlands across gradients of sand desertification in Northeast China. Geoderma , 145, 50-59. https://doi.org/10.1016/j.geoderma.2008.02.004
Wang, K., Ma, N., Zhang, Y., Qiang, Y., Guo, Y. (2022). Evapotranspiration and energy partitioning of a typical alpine wetland in the central Tibetan Plateau. Atmospheric Research , 267, 105931. https://doi.org/10.1016/j.atmosres. 2021.105931
Wang, L.L., Ye, M., Li, O.S., Zou, H., Zhou, Y.S. (2013). Phosphorus speciation in wetland sediments of Zhujiang (Pearl) River Estuary, China. Chinese Geographical Science , 23, 574-583. https://doi.org/10.1007/s11769-013-0627-4
Wang, L., Yuan, J.H., Wang, Y., Butterly, C. R., Tong, D. L., Zhou, B., Li, X. Z., Zhang, H. B. (2021a). Effects of Exotic Spartina alterniflora Invasion on Soil Phosphorus and Carbon Pools and Associated Soil Microbial Community Composition in Coastal Wetlands. ACS Omega , 6, 5730-5738. https://doi.org/10.1021/acsomega.0c06161
Wang, W. Q., Sardans, J., Zeng, C. S., Tong, C., Wang, C., Penuelas, J. (2016b). Impact of Plant Invasion and Increasing Floods on Total Soil Phosphorus and its Fractions in the Minjiang River Estuarine Wetlands, China.Wetlands , 36, 21-36. https://doi.org/10.1007/s13157-015-0712-9
Wang, Y. Z., Whalen, J. K., Chen, X., Cao, Y. H., Huang, B., Lu, C.Y., Shi, Y. (2016a). Mechanisms for altering phosphorus sorption characteristics induced by low-molecular-weight organic acids.Canadian Journal of Soil Science , 96, 289-298. https://doi.org/10.1139/cjss-2015-0068
Wu, G., Li, X., Gao, J. (2021). The evolution of hummock–depression micro‐topography in an alpine marshy wetland in Sanjiangyuan as inferred from vegetation and soil characteristics. Ecology and Evolution , 11, 3901-3916. https://doi.org/10.1002/ece3.7278
Wu, J. Q., Wang, H. Y., Li, G., Ma, W. W., Wu, J. H., Gong, Y., Xu, G. R. (2020). Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau. Sciecetific Reports , 10, 21271. https://doi.org/10.1038/s41598-020-78182-9
Wu, L., Feng, S., Nie, Y., Zhou, J., Yang, Z., Zhang, J. (2015). Soil cellulase activity and fungal community responses to wetland degradation in the Zoige Plateau, China. Journal of Mountain Science, 12: 471-482. https://doi:10.1007/s11629-014-3183-1.
Xu, G., Shao, H. B., Sun, J. N., Chang, S. X. (2012). Phosphorus fractions and profile distribution in newly formed wetland soils along a salinity gradient in the Yellow River Delta in China. Journal of Plant Nutrition & Soil Science , 175, 721-728. https://doi.org/10.1002/jpln.201100307
Yang, W. J., Hao, F. H., Cheng, H. G., Liu, C. Y., Ouyang, W. (2013). Phosphorus Fractions and Availability in an Albic Bleached Meadow Soil.Soil Fertility & Crop Nutrition, 105, 1451-1457. https://doi.org/10.2134/agronj2013.0204
Yu, X. C., Liu, Q., Li, C. J., Zhu, P., Li, H. G., Zhang, F. S. (2019). Rhizospheric processes and high substrate concentration stimulating mineralization of soil organic P in black earth. Acta Pedologica Sinica , 56, 953-963 (In chiese). https://doi.org/10.11766/trxb201808280389
Yuan, H. Z., Pan, W., Shen, J., Liu, E. F., Zhu, Z. J., An, S. Q. (2015). Species and Environmental Geochemistry Characteristics of Organic Phosphorus in Sediments of a Riverine Wetland Measured by P-31-NMR Spectroscopy. Geochemistry International, 53, 1141-1149. https://doi.org/10.1134/s0016702915120058
Zeng, J., Chen, H., Bai, Y. P., Dong, F. Q., Peng, C. H., Yan, F., Cao, Q., Yang, Z. N., Yang, S. Z., Yang, G. (2021). Water table drawdown increases plant biodiversity and soil polyphenol in the Zoige Plateau.Ecological Indicators, 121, 107118. https://doi.org/10.1016/j.ecolind.2020.107118
Zhai, Z., Luo, M., Yang, Y., Liu, Y., Chen, X., Zhang, C., Huang, J., Chen, J. (2022). Trade-off between microbial carbon use efficiency and microbial phosphorus limitation under salinization in a tidal wetland. Catena, 209: 105809. https://doi.org/10.1016/j.catena.2021.105809.
Zhang, L., Zhuang, T., Bai, J.H., Ye, X. F., Wang, D. W., Wang, W., Guan, Y. N. (2020). Dynamics of phosphorus fractions and potential bioavailability along soil profiles from seasonal-flooding wetlands in a Chinese estuary. Environmental Science and Pollution Research , 28, 1-12. https://doi.org/10.1007/s11356-020-10732-0
Zhang, W. L., Zeng, C. S., Tong, C., Zhai, S. J., Lin, X., Gao, D. Z. (2015). Spatial distribution of phosphorus speciation in marsh sediments along a hydrologic gradient in a subtropical estuarine wetland, China. Estuar. Estuarine, Coastal and Shelf Science , 154, 30-38. https://doi.org/10.1016/j.ecss.2014.12.023
Zhao, Q. Q., Bai, J. H., Lu, Q. Q., Zhang, G. L. (2017a). Effects of salinity on dynamics of soil carbon in degraded coastal wetlands: Implications on wetland restoration.Physics and Chemistry of the Earth , 97, 12-18. https://doi.org/10.1016/j.pce.2016.08.008
Zhao, N. N., Gou, S., Zhang, B. B., Yu, Y. L., Han, S. J. (2017b). Changes in Pan Evaporation and Their Attribution to Climate Factors in the Zoige Alpine Wetland, the Eastern Edge of the Tibetan Plateau (1969-2014). Water , 9, 971. https://doi.org/10.3390/w9120971
Zhou, W. C., Cui, L. J., Wang, Y. F., Li, W., Kang, X. M. (2020). Carbon emission flux and storage in the degraded peatlands of the Zoige alpine area in the Qinghai–Tibetan Plateau. Soil Use Manage , 37, 72-82. https://doi.org/10.1111/sum.12660
Zhou, W., Guo, Z., Chen, J., Jiang, J., Hui, D., Wang, X., Sheng, J., Chen, L., Luo, Y., Zheng, J., Li, S., Zhang, Y. (2019). Direct seeding for rice production increased soil erosion and phosphorus runoff losses in subtropical China. Science of the Total Environment, 695: 133845. https://doi.org/10.1016/j.scitotenv.2019.133845
Zuquette, L., Failache, M., Barbassa, A. (2020). Assessment of Depressional Wetland Degradation, Spatial Distribution, and Geological Aspects in Southern Brazil. Geosciences , 10, 296. https://doi.org/10.3390/geosciences10080296