REFERENCES
  1. Ravi M, Sushkevich VL, Knorpp AJ, et al. Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites.Nat. Catal. 2019;2(6):485-494.
  2. Sushkevich VL, van Boichoven JA. Methane-to-Methanol: Activity Descriptors in Copper-Exchanged Zeolites for the Rational Design of Materials. ACS Catal. 2019;9(7):6293-6304.
  3. Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 1998;280(5363):560-564.
  4. Kao LC, Hutson AC, Sen A. Low-temperature, palladium(II)-catalyzed, solution-phase oxidation of methane to methanol derivative. J. Am. Chem. Soc. 1991;113(2):700-701.
  5. Ab Rahim MH, Forde MM, Jenkins RL, et al. Oxidation of Methane to Methanol with Hydrogen Peroxide Using Supported Gold-Palladium Alloy Nanoparticles. Angew. Chem. Int. Ed. 2013;52(4):1280-1284.
  6. Wu W, Li W, Wu M, Zhang H, Zhu C, Jiang Y. Direct oxidation of methane to methanol using CuMoO4. RSC Adv.2023;13(8):5393-5404.
  7. Kim HJ, Huh J, Kwon YW, et al. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains.Nat. Catal. 2019;2(4):342-353.
  8. Parfenov MV, Starokon EV, Pirutko LV, Panov GI. Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite. J. Catal. 2014;318:14-21.
  9. Li D, Wang L, Zhang X, et al. Effect of H2O vapor on plasma-assisted partial oxidation of CH4 over PtOx/BN nanoribbon aerogel catalysts. J. Catal.2023;427:115118.
  10. Yi Y, Li S, Cui Z, et al. Selective oxidation of CH4to CH3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling. Appl. Catal., B 2021;296:120384.
  11. Lv H, Liu X, Hao Y, Yi Y. Coupling of Dielectric Barrier Discharge and Cu-S-1 Catalyst for Direct Oxidation of Methane to Methanol.Plasma Chem. Plasma Processing 2023;43:1963-1978.
  12. Nozaki T, Agiral A, Yuzawa S, Gardeniers JGEH, Okazaki K. A single step methane conversion into synthetic fuels using microplasma reactor. Chem. Eng. J. 2011;166(1):288-293.
  13. Indarto A, Choi JW, Lee H, Song HK. Methanol synthesis over Cu and Cu-oxide-containing ZnO/Al2O3 using dielectric barrier discharge. IEEE Trans. Plasma Sci.2008;36(2):516-518.
  14. Chawdhury P, Ray D, Nepak D, Subrahmanyam C. NTP-assisted partial oxidation of methane to methanol: effect of plasma parameters on glass-packed DBD. J. Phys. D-Applied Physics 2019;52:015204.
  15. Li S, Ahmed R, Yi Y, Bogaerts A. Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis. Catalysts2021;11(5):590.
  16. Ravi M, Ranocchiari M, van Bokhoven JA. The Direct Catalytic Oxidation of Methane to Methanol-A Critical Assessment. Angew. Chem. Int. Ed. 2017;56(52):16464-16483.
  17. Bozbag SE, Alayon EMC, Pechacek J, Nachtegaal M, Ranocchiari M, van Bokhoven JA. Methane to methanol over copper mordenite: yield improvement through multiple cycles and different synthesis techniques. Catal. Sci. Technol. 2016;6(13):5011-5022.
  18. Liu M, Zhao Y, Zhao H, et al. The promotion effect of nickel and lanthanum on Cu-ZSM-5 catalyst in NO direct decomposition.Catal. Today 2019;327:203-209.
  19. Da Costa P, Modén B, Meitzner GD, Lee DK, Iglesia E. Spectroscopic and chemical characterization of active and inactive Cu species in NO decomposition catalysts based on Cu-ZSM5. Phys. Chem. Chem. Phys . 2002;4(18):4590-4601.
  20. Torre-Abreu C, Ribeiro ME, Henriques C, Delahay G. NO TPD and H2-TPR studies for characterisation of CuMOR catalysts the role of Si/Al ratio, copper content and cocation. Appl. Catal., B 1997;14(3-4):261-272.
  21. Singh L, Rekha P, Chand S. Comparative evaluation of synthesis routes of Cu/zeolite Y catalysts for catalytic wet peroxide oxidation of quinoline in fixed-bed reactor. J. Environ. Manage.2018;215:1-12.
  22. Clemens AKS, Shishkin A, Carlsson PA, et al. Reaction-driven Ion Exchange of Copper into Zeolite SSZ-13. ACS Catal.2015;5(10):6209-6218.
  23. Cao Y, Lan L, Feng X, et al. Cerium promotion on the hydrocarbon resistance of a Cu-SAPO-34 NH3-SCR monolith catalyst.Catal. Sci. Technol. 2015;5(9):4511-4521.
  24. Artiglia L, Sushkevich VL, Palagin D, Knorpp AJ, Roy K, van Bokhoven JA. In Situ X-ray Photoelectron Spectroscopy Detects Multiple Active Sites Involved in the Selective Anaerobic Oxidation of Methane in Copper-Exchanged Zeolites. ACS Catal. 2019;9(8):6728-6737.
  25. Sainz-Vidal A, Balmaseda J, Lartundo-Rojas L, Reguera E. Preparation of Cu-mordenite by ionic exchange reaction under milling: A favorable route to form the mono-(μ-oxo) dicopper active species.Micropor. Mesopor. Mat. 2014;185:113-120.
  26. Neyts EC. Plasma-Surface Interactions in Plasma Catalysis.Plasma Chem. Plasma Processing 2016;36(1):185-212.
  27. Cui Z, Zhou C, Jafarzadeh A, et al. SF6 catalytic degradation in a γ-Al2O3 packed bed plasma system: A combined experimental and theoretical study.High Voltage 2022;7(6):1048-1058.
  28. Meng S, Wu L, Liu M, et al. Plasma-driven CO2hydrogenation to CH3OH over Fe2O3/γ-Al2O3catalyst. AIChE J. 2023:e18154.
  29. Cui Z, Meng S, Yi Y, et al. Plasma-Catalytic Methanol Synthesis from CO2 Hydrogenation over a Supported Cu Cluster Catalyst: Insights into the Reaction Mechanism. ACS Catal.2022;12(2):1326-1337.
  30. Wang Y, Yang W, Xu S, et al. Shielding Protection by Mesoporous Catalysts for Improving Plasma-Catalytic Ambient Ammonia Synthesis.J. Am. Chem. Soc. 2022;144(27):12020-12031.
  31. Chen Q, Meng S, Liu R, et al. Plasma-catalytic CO2hydrogenation to methanol over CuO-MgO/Beta catalyst with high selectivity. Appl. Catal., B 2024;342:123422.
  32. Ferry M, Ahn Y, Le Dantec F, Ngono Y, Roma G. Combining Experimental and Theoretical Tools to Probe Radio-Oxidation Products in Polyethylene. Polymers 2023;15(6):1537.
  33. Zhao L, An H, Zhao X, Wang Y. TiO2-Catalyzedn -Valeraldehyde Self-Condensation Reaction Mechanism and Kinetics. ACS Catal. 2017;7(7):4451-4461.
  34. Wang YH, Gao WG, Wang H, Zheng YE, Na W, Li KZ. Structure-activity relationships of Cu-ZrO2 catalysts for CO2 hydrogenation to methanol: interaction effects and reaction mechanism. RSC Adv. 2017;7(14):8709-8717.