REFERENCES
AACC. AACC approved methods of analysis. 11th ed. St. Paul: AACC International; 2010.
Adebo O, Medina-Meza GI. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules (Basel, Switzerland). 2020;25(4):927. doi:10.3390/molecules25040927.
Adler-Nissen J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J Agric Food Chem. 1979;27(6):1256-1262. doi:10.1021/jf60226a042.
Aljubori A, Idrus Z, Soleimani FA, Abdullah N, Boo LJ. Response of broiler chickens to dietary inclusion of fermented canola meal under heat stress condition. Ital J Anim Sci. 2017;16(4):546-551. doi:10.1080/1828051X.2017.1292830.
AOAC. Official methods of analysis of AOAC international. 18th ed. Gaithersburg: AOAC International; 2005.
Bueckert RA, Thavarajah D, Thavarajah P, Pritchard J. Phytic acid and mineral micronutrients in field-grown chickpea (Cicer arietinumL.) cultivars from western Canada. Eur Food Res Technol. 2011; 233:203-212. doi:10.1007/s00217-011-1495-8.
Chandra-Hioe M, Wong C, Arcot J. The potential use of fermented chickpea and faba bean flour as food ingredients. Plant Foods Hum Nutr (Dordrecht). 2016;71(1):90-95. doi:10.1007/s11130-016-0532-y.
Croat JR, Berhow M, Karki B, Muthukumarappan K, Gibbons WR. Conversion of canola meal into a high-protein feed additive via solid-state fungal incubation process. J Am Oil Chem Soc. 2016;93(4):499-507. doi:10.1007/s11746-016-2796-7.
Croat JR, Karki B, Berhow M, Iten L, Muthukumarappan K, Gibbons WR. Utilizing pretreatment and fungal incubation to enhance the nutritional value of canola meal. J Appl Microbiol. 2017;123(2):362-371. doi:10.1111/jam.13507.
El-Batal A, Abdel KH. Phytase production and phytic acid reduction in rapeseed meal by Aspergillus niger during solid state fermentation. Food Res Int. 2001;34(8):715-720. doi:10.1016/s0963-9969(01)00093-x.
Emkani M, Oliete B, Saurel R. Effect of lactic acid fermentation on legume protein properties, a review. Fermentation. 2022;8(6):244. doi:10.3390/fermentation8060244.
Febrianto NA, Yang T. Producing high quality edible oil by using eco-friendly technology: A review. Adv J Food Sci Technol. 2011;3(4):317-326.
Ismail F, Vaisey‐Genser M, Fyfe B. Bitterness and astringency of sinapine and its components. J Food Sci. 1981;46(4):1241-1244. doi:10.1111/j.1365-2621.1981.tb03031.x.
Jung S, Murphy P, Johnson L. Physicochemical and functional properties of soy protein substrates modified by low levels of protease hydrolysis. J Food Sci. 2005;70(2):C180-C187. doi:10.1111/j.1365-2621.2005.tb07080.x.
Kalaydzhiev H, Ivanova P, Stoyanova M, Pavlov A, Rustad T, Silva C, Chalova V. Valorization of rapeseed meal: Influence of ethanol antinutrients removal on protein extractability, amino acid composition and fractional profile. Waste Biomass Valorization. 2019;11(6):2709-2719. doi:10.1007/s12649-018-00553-1.
Kasprzak MM, Houdijk JGM, Kightley S, Olukosi OA, White GA, Carre P, Wiseman J. Effects of rapeseed variety and oil extraction method on the content and ileal digestibility of crude protein and amino acids in rapeseed cake and softly processed rapeseed meal fed to broiler chickens. Animal Feed Science and Technology. 2016: 213:90-98. doi:10.1016/j.anifeedsci.2016.01.002
Kumitch H, Stone A, Nosworthy M, Nickerson M, House J, Korber D, Tanaka T. Effect of fermentation time on the nutritional properties of pea protein‐enriched flour fermented by Aspergillus oryzae andAspergillus niger. Cereal Chem. 2020;97(1):104-113. doi:10.1002/cche.10234.
Lücke F, Fritz V, Tannhäuser K, Arya A. Controlled fermentation of rapeseed presscake by Rhizopus , and its effect on some components with relevance to human nutrition. Food Res Int. 2019;120:726-732. doi:10.1016/j.foodres.2018.11.031.
Olukomaiya OO, Fernando WC, Mereddy R, Li X, Sultanbawa Y. Solid-state fermentation of canola meal with Aspergillus sojae, Aspergillus ficuum and their co-cultures: Effects on physicochemical, microbiological and functional properties. LWT. 2020;127:109362. doi:10.1016/j.lwt.2020.109362.
Osman M. Changes in sorghum enzyme inhibitors, phytic acid, tannins andin vitro protein digestibility occurring during Khamir (local bread) fermentation. Food Chem. 2004;88(1): 129-134. doi:10.1016/j.foodchem.2003.12.038.
Pal Vig A, Walia A. Beneficial effects of Rhizopus oligosporusfermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus ) meal. Bioresour Technol. 2001;78(3):309-312. doi:10.1016/s0960-8524(01)00030-x.
Plaipetch P, Yakupitiyage A. Effect of replacing soybean meal with yeast‐fermented canola meal on growth and nutrient retention of Nile tilapia, Oreochromis niloticus (Linnaeus 1758). Aquac Res. 2014;45(11):1744–1753. doi:10.1111/are.12119.
Shahidi F, Naczk M. An overview of the phenolics of canola and rapeseed: Chemical, sensory and nutritional significance. J Am Oil Chem’ Soc. 1992;69(9):917-924. doi:10.1007/BF02636344.
Shi C, He J, Yu J, Yu B, Huang Z, Mao X, et al. Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value. J Anim Sci Biotechnol. 2015;6(1). doi:10.1186/s40104-015-0015-2.
Simon J, Wootton S, Johnson T, Karki B, Zahler J, Baldwin E, et al. Solid state fermentation of carinata (Brassica carinata ) meal using various fungal strains to produce a protein-rich product for feed application. J Microb Biochem Technol. 2017;09(02). doi:10.4172/1948-5948.1000344.
Skalickova S, Ridoskova A, Slama P, Skladanka J, Skarpa P, Smykalova I, Horacek J, Dostalova R, Horky P. Effect of lactic fermentation and cooking on nutrient and mineral digestibility of peas. Front Nutr (Lausanne). 2022;9:838963. doi:10.3389/fnut.2022.838963.
Tinus T, Damour M, Van Riel V, Sopade P. Particle size-starch–protein digestibility relationships in cowpea (Vigna unguiculata ). J Food Eng. 2012;113(2):254-264. doi:10.1016/j.jfoodeng.2012.05.041.
Wang X, Jin Q, Wang T, Huang J, Xia Y, Yao L, et al. Screening of glucosinolate-degrading strains and its application in improving the quality of rapeseed meal. Ann Microbiol. 2012;62(3):1013-1020. doi:10.1007/s13213-011-0341-3.
Wu J, Muir A. Comparative structural, emulsifying, and biological properties of 2 major canola proteins, cruciferin and napin. J Food Sci. 2008;73(3):C210-C216. doi:10.1111/j.1750-3841.2008.00675.x.
Zhang B, Liu G, Ying D, Sanguansri L, Augustin MA. Effect of extrusion conditions on the physico-chemical properties and in vitroprotein digestibility of canola meal. Food Res Int. 2017;100(1):658-664. doi:10.1016/j.foodres.2017.07.060.