References
1. Murphy AR, Fréchet JMJ (2007) Organic semiconducting oligomers for
use in thin film transistors. Chemical Reviews 107:1066–1096.
https://doi.org/10.1021/cr0501386
2. Kuo CH, Huang DC, Peng WT, et al (2014) Substituent effect on the
crystal packing and electronic coupling of tetrabenzocoronenes: A
structure-property correlation. Journal of Materials Chemistry C
2:3928–3935. https://doi.org/10.1039/c4tc00296b
3. Gelinck G, Heremans P, Nomoto K, Anthopoulos TD (2010) Organic
transistors in optical displays and microelectronic applications.
Advanced Materials 22:3778–3798. https://doi.org/10.1002/adma.200903559
4. Muccini M, Nazionale C (2006) PROGRESS ARTICLE A bright future for
organic fi eld-effect transistors. Group 605–613
5. Li Y, Guo Q, Li Z, et al (2010) Solution processable D - A small
molecules for bulk-heterojunction solar cells. Energy and Environmental
Science 3:1427–1436. https://doi.org/10.1039/c003946b
6. Jean R (2009) Molecular bulk heterojunctions: An emerging approach to
organic solar cells. Accounts of Chemical Research 42:1719–1730.
https://doi.org/10.1021/ar900041b
7. Liu J, Walker B, Tamayo A, et al (2013) Effects of heteroatom
substitutions on the crystal structure, film formation, and
optoelectronic properties of diketopyrrolopyrrole-based materials.
Advanced Functional Materials 23:47–56.
https://doi.org/10.1002/adfm.201201599
8. Carmen Ruiz Delgado M, Kim EG, Da Silva Filho DA, Bredas JL (2010)
Tuning the charge-transport parameters of perylene diimide single
crystals via end and/or core functionalization: A density functional
theory investigation. Journal of the American Chemical Society
132:3375–3387. https://doi.org/10.1021/ja908173x
9. Zhang J, Ma Z, Zhang Q, et al (2013) Substitution effects on the
electrical tranporting properties of
tetrathia[22]annulene[2,1,2,1]: Experimental and theoretical
investigations. Journal of Materials Chemistry C 1:5765–5771.
https://doi.org/10.1039/c3tc30776j
10. Zhang NX, Ren AM, Ji LF, et al (2018) Theoretical Investigations on
Molecular Packing Motifs and Charge Transport Properties of a Family of
Trialkylsilylethynyl-Modified Pentacenes/Anthradithiophenes. Journal of
Physical Chemistry C 122:18880–18894.
https://doi.org/10.1021/acs.jpcc.8b06527
11. Yang X, Wang L, Wang C, et al (2008) Influences of crystal
structures and molecular sizes on the charge mobility of organic
semiconductors: Oligothiophenes. Chemistry of Materials 20:3205–3211.
https://doi.org/10.1021/cm8002172
12. Yao ZF, Wang JY, Pei J (2018) Control of π-π Stacking via Crystal
Engineering in Organic Conjugated Small Molecule Crystals. Crystal
Growth and Design 18:7–15. https://doi.org/10.1021/acs.cgd.7b01385
13. Shi YR, Wei HL, Jia XB, Liu YF (2018) Effects of crystal structures
and intermolecular interactions on charge transport properties of
organic semiconductors. Journal of Materials Science 53:15569–15587.
https://doi.org/10.1007/s10853-018-2719-0
14. Wang K, Xie Y, Liu M, et al (2020) High-Contrast Polymorphic
Luminogen Formed through Effect of Tiny Differences in Intermolecular
Interactions on the Intramolecular Charge Transfer Process. Advanced
Optical Materials 8:1–10. https://doi.org/10.1002/adom.202000436
15. Banerjee A, Saha A, Saha BK (2019) Understanding the Behavior of π-π
Interactions in Crystal Structures in Light of Geometry Corrected
Statistical Analysis: Similarities and Differences with the Theoretical
Models. Crystal Growth and Design 19:2245–2252.
https://doi.org/10.1021/acs.cgd.8b01857
16. Thomas R, Varghese S, Kulkarni GU (2009) The influence of crystal
packing on the solid state fluorescence behavior of alkyloxy substituted
phenyleneethynylenes. Journal of Materials Chemistry 19:4401–4406.
https://doi.org/10.1039/b902937k
17. Hermann J, Alfè D, Tkatchenko A (2017) Nanoscale π-π Stacked
molecules are bound by collective charge fluctuations. Nature
Communications 8:. https://doi.org/10.1038/ncomms14052
18. Li Q, Li Z (2020) Molecular Packing: Another Key Point for the
Performance of Organic and Polymeric Optoelectronic Materials. Accounts
of Chemical Research 53:962–973.
https://doi.org/10.1021/acs.accounts.0c00060
19. Yang J, Ren Z, Chen B, et al (2017) Three polymorphs of one
luminogen: How the molecular packing affects the RTP and AIE properties?
Journal of Materials Chemistry C 5:9242–9246.
https://doi.org/10.1039/c7tc03656f
20. Huang R, Liu H, Liu K, et al (2019) Marriage of Aggregation-Induced
Emission and Intramolecular Charge Transfer toward High Performance
Film-Based Sensing of Phenolic Compounds in the Air. Analytical
Chemistry. https://doi.org/10.1021/acs.analchem.9b03096
21. Sutton C, Risko C, Brédas JL (2016) Noncovalent Intermolecular
Interactions in Organic Electronic Materials: Implications for the
Molecular Packing vs Electronic Properties of Acenes. Chemistry of
Materials 28:3–16. https://doi.org/10.1021/acs.chemmater.5b03266
22. Wang K, Zhang H, Chen S, et al (2014) Organic polymorphs:
One-compound-based crystals with molecular-conformation- and
packing-dependent luminescent properties. Advanced Materials
26:6168–6173. https://doi.org/10.1002/adma.201401114
23. Li J, Wang M, Ren S, et al (2012) High performance organic thin film
transistor based on pentacene derivative: 6,13-dichloropentacene.
Journal of Materials Chemistry 22:10496–10500.
https://doi.org/10.1039/c2jm16871e
24. Yoon S, Chung JW, Gierschner J, et al (2010)
[mechano][AIEE]Park-DBDCS(JACS-2010).pdf. 13675–13683.
https://doi.org/10.1021/ic902591s.(9)
25. Fraboni B, Fraleoni-Morgera A, Geerts Y, et al (2016) Organic single
crystals: An essential step to new physics and higher performances of
optoelectronic devices. Advanced Functional Materials 26:2229–2232.
https://doi.org/10.1002/adfm.201504924
26. Varghese S, Das S (2011) Role of molecular packing in determining
solid-state optical properties of π-conjugated materials. Journal of
Physical Chemistry Letters 2:863–873. https://doi.org/10.1021/jz200099p
27. Xie Z, Yang B, Li F, et al (2005) Cross dipole stacking in the
crystal of distyrylbenzene derivative: The approach toward high
solid-state luminescence efficiency. Journal of the American Chemical
Society 127:14152–14153. https://doi.org/10.1021/ja054661d
28. 30.pdf
29. Hunter CA (1993) Arene—Arene Interactions: Electrostatic or Charge
Transfer? Angewandte Chemie International Edition in English
32:1584–1586. https://doi.org/10.1002/anie.199315841
30. Hunter CA MELDOLA LECTURE. The Role
31. Kumar NSS, Gujrati MD, Wilson JN (2010) Evidence of preferential
π-stacking: A study of intermolecular and intramolecular charge transfer
complexes. Chemical Communications 46:5464–5466.
https://doi.org/10.1039/c0cc00249f
32. Cariati E, Lanzeni V, Tordin E, et al (2011) Efficient
crystallization induced emissive materials based on a simple push-pull
molecular structure. Physical Chemistry Chemical Physics
13:18005–18014. https://doi.org/10.1039/c1cp22267h
33. Zhang H, Zhang Z, Ye K, et al (2006) Organic crystals with tunable
emission colors based on a single organic molecule and different
molecular packing structures. Advanced Materials 18:2369–2372.
https://doi.org/10.1002/adma.200600704
34. Ii NZ, Ii C, Coordination S (2020) Crystallization Induced Enhanced
Emission in Two
35. Cias P, Slugovc C, Gescheidt G (2011) Hole transport in
triphenylamine based OLED devices: From theoretical modeling to
properties prediction. Journal of Physical Chemistry A 115:14519–14525.
https://doi.org/10.1021/jp207585j
36. Jia X, Wei H, Shi Y, Liu Y (2019) Theoretical studies on charge
transport and optical properties of diarylmaleic anhydride derivatives
as organic light-emitting materials. Chemical Physics Letters
724:50–56. https://doi.org/10.1016/j.cplett.2019.03.053
37. Wang L, Duan G, Ji Y, Zhang H (2012) Electronic and charge transport
properties of peri-xanthenoxanthene: The effects of heteroatoms and
phenyl substitutions. Journal of Physical Chemistry C 116:22679–22686.
https://doi.org/10.1021/jp306326e
38. Siddiqui SA, Al-Hajry A, Al-Assiri MS (2016) Ab initio investigation
of 2,2′-bis(4-trifluoromethylphenyl)-5,5′-bithiazole for the design of
efficient organic field-effect transistors. International Journal of
Quantum Chemistry 116:339–345. https://doi.org/10.1002/qua.25034
39. Zhang M, Zhao G (2012) Ming-Xing Zhang and Guang-Jiu Zhao *
40. Wang L, Li T, Shen Y, Song Y (2016) A theoretical study of the
electronic structure and charge transport properties of
thieno[2,3-b]benzothiophene based derivatives. Physical Chemistry
Chemical Physics 18:8401–8411. https://doi.org/10.1039/c5cp07879b
41. Tripathi A, Prabhakar C (2019) Optoelectronic and charge‐transport
properties of truxene, isotruxene, and its heteroatomic (N, O, Si, and
S) analogs: A DFT study. Journal of Physical Organic Chemistry
32:88–96. https://doi.org/10.1002/poc.3944
42. Qi Y, Chen C, Zheng C, et al (2020) Heteroatom-bridged
heterofluorenes: A theoretical study on molecular structures and
optoelectronic properties. Physical Chemistry Chemical Physics
22:3675–3682. https://doi.org/10.1039/c9cp06458c
43. Yan L, Zhao Y, Yu H, et al (2016) Influence of heteroatoms on the
charge mobility of anthracene derivatives. Journal of Materials
Chemistry C 4:3517–3522. https://doi.org/10.1039/c6tc01088a
44. Chai S, Wen SH, Huang JD, Han KL (2011) Density functional theory
study on electron and hole transport properties of organic pentacene
derivatives with electron-withdrawing substituent. Journal of
Computational Chemistry 32:3218–3225. https://doi.org/10.1002/jcc.21904
45. Bonacorso HG, Dal Forno GM, Wiethan C, et al (2017) Sequential
one-pot three-step synthesis of polysubstituted
4-(5-(trifluoromethyl)-1: H -pyrazol-4-yl)-1 H -1,2,3-triazole systems.
RSC Advances 7:43957–43964. https://doi.org/10.1039/c7ra07960e
46. Ma HJ, Li YH, Zhao QF, et al (2010) Synthesis and herbicidal
activity of novel N -(2,2,2)- trifluoroethylpyrazole derivatives.
Journal of Agricultural and Food Chemistry 58:4356–4360.
https://doi.org/10.1021/jf9042166
47. Li Y, Liu Y, Xu G, et al (2014) A combined experimental and natural
bonding orbital charges study on the one-pot regioselective synthesis of
4-chloropyrazoles. Journal of Chemical Research 38:658–661.
https://doi.org/10.3184/174751914X14137288281925
48. Yamamoto S, Tomita N, Suzuki Y, et al (2012) Design, synthesis, and
biological evaluation of 4-arylmethyl-1- phenylpyrazole and
4-aryloxy-1-phenylpyrazole derivatives as novel androgen receptor
antagonists. Bioorganic and Medicinal Chemistry 20:2338–2352.
https://doi.org/10.1016/j.bmc.2012.02.005
49. Baker D (2013) CrysAlis Pro responsible. 44:
50. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta
Crystallographica Section C: Structural Chemistry 71:3–8.
https://doi.org/10.1107/S2053229614024218
51. Sheldrick GM (2015) SHELXT - Integrated space-group and
crystal-structure determination. Acta Crystallographica Section A:
Foundations of Crystallography 71:3–8.
https://doi.org/10.1107/S2053273314026370
52. Dolomanov O V., Bourhis LJ, Gildea RJ, et al (2009) OLEX2: A
complete structure solution, refinement and analysis program. Journal of
Applied Crystallography 42:339–341.
https://doi.org/10.1107/S0021889808042726
53. Superzeure EX, Superieure EX (1964) I i ~
~. 155:
54. Tsiper E V., Soos ZG, Gao W, Kahn A (2002) Eletronic polarization at
surfaces and thin films of organic molecular crystals: PTCDA. Chemical
Physics Letters 360:47–52.
https://doi.org/10.1016/S0009-2614(02)00774-1
55. Taydakov I V., Akkuzina AA, Avetisov RI, et al (2016) Effective
electroluminescent materials for OLED applications based on lanthanide
1.3-diketonates bearing pyrazole moiety. Journal of Luminescence
177:31–39. https://doi.org/10.1016/j.jlumin.2016.04.017
56. Irfan A, Al-Sehemi AG, Chaudhry AR, et al (2016) The structural,
electro-optical, charge transport and nonlinear optical properties of
2-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)methylidene]indan-1,3-dione.
Optik 127:10148–10157. https://doi.org/10.1016/j.ijleo.2016.08.007
57. Moia D, Vaissier V, López-Duarte I, et al (2014) The reorganization
energy of intermolecular hole hopping between dyes anchored to surfaces.
Chemical Science 5:281–290. https://doi.org/10.1039/c3sc52359d
58. Li H, Duan L, Zhang D, Qiu Y (2014) Influence of molecular packing
on intramolecular reorganization energy: A case study of small
molecules. Journal of Physical Chemistry C 118:14848–14852.
https://doi.org/10.1021/jp504979x
59. Chang Y, Chao I (2010) An Important Key to Design Molecules with
Small Internal Reorganization Energy: Strong Nonbonding Character in
Frontier Orbitals. 116–121. https://doi.org/10.1021/jz900042x
60. Gao H (2010) Theoretical investigation into charge mobility.
759–763. https://doi.org/10.1007/s00214-010-0804-9
61. Qiu M, Pei W, Lu Q, et al (2019) DFT characteristics of charge
transport in DBTP-based hole transport materials. Applied Sciences
(Switzerland) 9:1–7. https://doi.org/10.3390/app9112244
62. Brückner C, Walter C, Stolte M, et al (2017) Structure – Property
Relationships for Exciton and Charge Reorganization Energies of Dipolar
Organic Semiconductors : A Combined Valence Bond Self-Consistent Field
and Time-Dependent Hartree-Fock and DFT Study of Merocyanine Dyes To
cite this version : HA
63. Lin BC, Cheng CP, Lao ZPM (2003) Reorganization energies in the
transports of holes and electrons in organic amines in organic
electroluminescence studied by density functional theory. Journal of
Physical Chemistry A 107:5241–5251. https://doi.org/10.1021/jp0304529
64. Wang C, Dong H, Hu W, et al (2012) Semiconducting π-conjugated
systems in field-effect transistors: A material odyssey of organic
electronics. Chemical Reviews 112:2208–2267.
https://doi.org/10.1021/cr100380z
65. Zheng Z, Yu Z, Yang M, et al (2013) Substituent group variations
directing the molecular packing, electronic structure, and
aggregation-induced emission property of isophorone derivatives. Journal
of Organic Chemistry 78:3222–3234. https://doi.org/10.1021/jo400116j
66. Ji LF, Fan JX, Zhang SF, Ren AM (2017) Theoretical investigations
into the charge transfer properties of thiophene α-substituted
naphthodithiophene diimides: Excellent n-channel and ambipolar organic
semiconductors. Physical Chemistry Chemical Physics 19:13978–13993.
https://doi.org/10.1039/c7cp01114h
67. Hutchison GR, Ratner MA, Marks TJ (2005) Intermolecular charge
transfer between heterocyclic oligomers. Effects of heteroatom and
molecular packing on hopping transport in organic semiconductors.
Journal of the American Chemical Society 127:16866–16881.
https://doi.org/10.1021/ja0533996
68. Wang H, Liu H, Bai FQ, et al (2015) Theoretical and experimental
study on intramolecular charge-transfer in symmetric bi-1,3,4-oxadiazole
derivatives. Journal of Photochemistry and Photobiology A: Chemistry
312:20–27. https://doi.org/10.1016/j.jphotochem.2015.07.006
69. Parusel ABJ (2001) Excited state intramolecular charge transfer in
N,N -heterocyclic-4-aminobenzonitriles: A DFT study. Chemical Physics
Letters 340:531–537. https://doi.org/10.1016/S0009-2614(01)00441-9
70. Shee J, Head-Gordon M (2020) Predicting Excitation Energies of
Twisted Intramolecular Charge-Transfer States with the Time-Dependent
Density Functional Theory: Comparison with Experimental Measurements in
the Gas Phase and Solvents Ranging from Hexanes to Acetonitrile. Journal
of Chemical Theory and Computation 16:6244–6255.
https://doi.org/10.1021/acs.jctc.0c00635
71. Saeed A, Bolte M, Erben MF, Pérez H (2015) Intermolecular
interactions in crystalline 1-(adamantane-1-carbonyl)-3-substituted
thioureas with Hirshfeld surface analysis. CrystEngComm 17:7551–7563.
https://doi.org/10.1039/c5ce01373a
72. Seth SK, Sarkar D, Jana AD, Kar T (2011) On the possibility of
tuning molecular edges to direct supramolecular self-assembly in
coumarin derivatives through cooperative weak forces: Crystallographic
and hirshfeld surface analyses. Crystal Growth and Design 11:4837–4849.
https://doi.org/10.1021/cg2006343
73. Seth SK (2014) Structural elucidation and contribution of
intermolecular interactions in O-hydroxy acyl aromatics: Insights from
X-ray and Hirshfeld surface analysis. Journal of Molecular Structure
1064:70–75. https://doi.org/10.1016/j.molstruc.2014.01.068
74. Seth SK, Sarkar D, Roy A, Kar T (2011) Insight into supramolecular
self-assembly directed by weak interactions in acetophenone derivatives:
Crystal structures and Hirshfeld surface analyses. CrystEngComm
13:6728–6741. https://doi.org/10.1039/c1ce05670k