References
1. Murphy AR, Fréchet JMJ (2007) Organic semiconducting oligomers for use in thin film transistors. Chemical Reviews 107:1066–1096. https://doi.org/10.1021/cr0501386
2. Kuo CH, Huang DC, Peng WT, et al (2014) Substituent effect on the crystal packing and electronic coupling of tetrabenzocoronenes: A structure-property correlation. Journal of Materials Chemistry C 2:3928–3935. https://doi.org/10.1039/c4tc00296b
3. Gelinck G, Heremans P, Nomoto K, Anthopoulos TD (2010) Organic transistors in optical displays and microelectronic applications. Advanced Materials 22:3778–3798. https://doi.org/10.1002/adma.200903559
4. Muccini M, Nazionale C (2006) PROGRESS ARTICLE A bright future for organic fi eld-effect transistors. Group 605–613
5. Li Y, Guo Q, Li Z, et al (2010) Solution processable D - A small molecules for bulk-heterojunction solar cells. Energy and Environmental Science 3:1427–1436. https://doi.org/10.1039/c003946b
6. Jean R (2009) Molecular bulk heterojunctions: An emerging approach to organic solar cells. Accounts of Chemical Research 42:1719–1730. https://doi.org/10.1021/ar900041b
7. Liu J, Walker B, Tamayo A, et al (2013) Effects of heteroatom substitutions on the crystal structure, film formation, and optoelectronic properties of diketopyrrolopyrrole-based materials. Advanced Functional Materials 23:47–56. https://doi.org/10.1002/adfm.201201599
8. Carmen Ruiz Delgado M, Kim EG, Da Silva Filho DA, Bredas JL (2010) Tuning the charge-transport parameters of perylene diimide single crystals via end and/or core functionalization: A density functional theory investigation. Journal of the American Chemical Society 132:3375–3387. https://doi.org/10.1021/ja908173x
9. Zhang J, Ma Z, Zhang Q, et al (2013) Substitution effects on the electrical tranporting properties of tetrathia[22]annulene[2,1,2,1]: Experimental and theoretical investigations. Journal of Materials Chemistry C 1:5765–5771. https://doi.org/10.1039/c3tc30776j
10. Zhang NX, Ren AM, Ji LF, et al (2018) Theoretical Investigations on Molecular Packing Motifs and Charge Transport Properties of a Family of Trialkylsilylethynyl-Modified Pentacenes/Anthradithiophenes. Journal of Physical Chemistry C 122:18880–18894. https://doi.org/10.1021/acs.jpcc.8b06527
11. Yang X, Wang L, Wang C, et al (2008) Influences of crystal structures and molecular sizes on the charge mobility of organic semiconductors: Oligothiophenes. Chemistry of Materials 20:3205–3211. https://doi.org/10.1021/cm8002172
12. Yao ZF, Wang JY, Pei J (2018) Control of π-π Stacking via Crystal Engineering in Organic Conjugated Small Molecule Crystals. Crystal Growth and Design 18:7–15. https://doi.org/10.1021/acs.cgd.7b01385
13. Shi YR, Wei HL, Jia XB, Liu YF (2018) Effects of crystal structures and intermolecular interactions on charge transport properties of organic semiconductors. Journal of Materials Science 53:15569–15587. https://doi.org/10.1007/s10853-018-2719-0
14. Wang K, Xie Y, Liu M, et al (2020) High-Contrast Polymorphic Luminogen Formed through Effect of Tiny Differences in Intermolecular Interactions on the Intramolecular Charge Transfer Process. Advanced Optical Materials 8:1–10. https://doi.org/10.1002/adom.202000436
15. Banerjee A, Saha A, Saha BK (2019) Understanding the Behavior of π-π Interactions in Crystal Structures in Light of Geometry Corrected Statistical Analysis: Similarities and Differences with the Theoretical Models. Crystal Growth and Design 19:2245–2252. https://doi.org/10.1021/acs.cgd.8b01857
16. Thomas R, Varghese S, Kulkarni GU (2009) The influence of crystal packing on the solid state fluorescence behavior of alkyloxy substituted phenyleneethynylenes. Journal of Materials Chemistry 19:4401–4406. https://doi.org/10.1039/b902937k
17. Hermann J, Alfè D, Tkatchenko A (2017) Nanoscale π-π Stacked molecules are bound by collective charge fluctuations. Nature Communications 8:. https://doi.org/10.1038/ncomms14052
18. Li Q, Li Z (2020) Molecular Packing: Another Key Point for the Performance of Organic and Polymeric Optoelectronic Materials. Accounts of Chemical Research 53:962–973. https://doi.org/10.1021/acs.accounts.0c00060
19. Yang J, Ren Z, Chen B, et al (2017) Three polymorphs of one luminogen: How the molecular packing affects the RTP and AIE properties? Journal of Materials Chemistry C 5:9242–9246. https://doi.org/10.1039/c7tc03656f
20. Huang R, Liu H, Liu K, et al (2019) Marriage of Aggregation-Induced Emission and Intramolecular Charge Transfer toward High Performance Film-Based Sensing of Phenolic Compounds in the Air. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.9b03096
21. Sutton C, Risko C, Brédas JL (2016) Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes. Chemistry of Materials 28:3–16. https://doi.org/10.1021/acs.chemmater.5b03266
22. Wang K, Zhang H, Chen S, et al (2014) Organic polymorphs: One-compound-based crystals with molecular-conformation- and packing-dependent luminescent properties. Advanced Materials 26:6168–6173. https://doi.org/10.1002/adma.201401114
23. Li J, Wang M, Ren S, et al (2012) High performance organic thin film transistor based on pentacene derivative: 6,13-dichloropentacene. Journal of Materials Chemistry 22:10496–10500. https://doi.org/10.1039/c2jm16871e
24. Yoon S, Chung JW, Gierschner J, et al (2010) [mechano][AIEE]Park-DBDCS(JACS-2010).pdf. 13675–13683. https://doi.org/10.1021/ic902591s.(9)
25. Fraboni B, Fraleoni-Morgera A, Geerts Y, et al (2016) Organic single crystals: An essential step to new physics and higher performances of optoelectronic devices. Advanced Functional Materials 26:2229–2232. https://doi.org/10.1002/adfm.201504924
26. Varghese S, Das S (2011) Role of molecular packing in determining solid-state optical properties of π-conjugated materials. Journal of Physical Chemistry Letters 2:863–873. https://doi.org/10.1021/jz200099p
27. Xie Z, Yang B, Li F, et al (2005) Cross dipole stacking in the crystal of distyrylbenzene derivative: The approach toward high solid-state luminescence efficiency. Journal of the American Chemical Society 127:14152–14153. https://doi.org/10.1021/ja054661d
28. 30.pdf
29. Hunter CA (1993) Arene—Arene Interactions: Electrostatic or Charge Transfer? Angewandte Chemie International Edition in English 32:1584–1586. https://doi.org/10.1002/anie.199315841
30. Hunter CA MELDOLA LECTURE. The Role
31. Kumar NSS, Gujrati MD, Wilson JN (2010) Evidence of preferential π-stacking: A study of intermolecular and intramolecular charge transfer complexes. Chemical Communications 46:5464–5466. https://doi.org/10.1039/c0cc00249f
32. Cariati E, Lanzeni V, Tordin E, et al (2011) Efficient crystallization induced emissive materials based on a simple push-pull molecular structure. Physical Chemistry Chemical Physics 13:18005–18014. https://doi.org/10.1039/c1cp22267h
33. Zhang H, Zhang Z, Ye K, et al (2006) Organic crystals with tunable emission colors based on a single organic molecule and different molecular packing structures. Advanced Materials 18:2369–2372. https://doi.org/10.1002/adma.200600704
34. Ii NZ, Ii C, Coordination S (2020) Crystallization Induced Enhanced Emission in Two
35. Cias P, Slugovc C, Gescheidt G (2011) Hole transport in triphenylamine based OLED devices: From theoretical modeling to properties prediction. Journal of Physical Chemistry A 115:14519–14525. https://doi.org/10.1021/jp207585j
36. Jia X, Wei H, Shi Y, Liu Y (2019) Theoretical studies on charge transport and optical properties of diarylmaleic anhydride derivatives as organic light-emitting materials. Chemical Physics Letters 724:50–56. https://doi.org/10.1016/j.cplett.2019.03.053
37. Wang L, Duan G, Ji Y, Zhang H (2012) Electronic and charge transport properties of peri-xanthenoxanthene: The effects of heteroatoms and phenyl substitutions. Journal of Physical Chemistry C 116:22679–22686. https://doi.org/10.1021/jp306326e
38. Siddiqui SA, Al-Hajry A, Al-Assiri MS (2016) Ab initio investigation of 2,2′-bis(4-trifluoromethylphenyl)-5,5′-bithiazole for the design of efficient organic field-effect transistors. International Journal of Quantum Chemistry 116:339–345. https://doi.org/10.1002/qua.25034
39. Zhang M, Zhao G (2012) Ming-Xing Zhang and Guang-Jiu Zhao *
40. Wang L, Li T, Shen Y, Song Y (2016) A theoretical study of the electronic structure and charge transport properties of thieno[2,3-b]benzothiophene based derivatives. Physical Chemistry Chemical Physics 18:8401–8411. https://doi.org/10.1039/c5cp07879b
41. Tripathi A, Prabhakar C (2019) Optoelectronic and charge‐transport properties of truxene, isotruxene, and its heteroatomic (N, O, Si, and S) analogs: A DFT study. Journal of Physical Organic Chemistry 32:88–96. https://doi.org/10.1002/poc.3944
42. Qi Y, Chen C, Zheng C, et al (2020) Heteroatom-bridged heterofluorenes: A theoretical study on molecular structures and optoelectronic properties. Physical Chemistry Chemical Physics 22:3675–3682. https://doi.org/10.1039/c9cp06458c
43. Yan L, Zhao Y, Yu H, et al (2016) Influence of heteroatoms on the charge mobility of anthracene derivatives. Journal of Materials Chemistry C 4:3517–3522. https://doi.org/10.1039/c6tc01088a
44. Chai S, Wen SH, Huang JD, Han KL (2011) Density functional theory study on electron and hole transport properties of organic pentacene derivatives with electron-withdrawing substituent. Journal of Computational Chemistry 32:3218–3225. https://doi.org/10.1002/jcc.21904
45. Bonacorso HG, Dal Forno GM, Wiethan C, et al (2017) Sequential one-pot three-step synthesis of polysubstituted 4-(5-(trifluoromethyl)-1: H -pyrazol-4-yl)-1 H -1,2,3-triazole systems. RSC Advances 7:43957–43964. https://doi.org/10.1039/c7ra07960e
46. Ma HJ, Li YH, Zhao QF, et al (2010) Synthesis and herbicidal activity of novel N -(2,2,2)- trifluoroethylpyrazole derivatives. Journal of Agricultural and Food Chemistry 58:4356–4360. https://doi.org/10.1021/jf9042166
47. Li Y, Liu Y, Xu G, et al (2014) A combined experimental and natural bonding orbital charges study on the one-pot regioselective synthesis of 4-chloropyrazoles. Journal of Chemical Research 38:658–661. https://doi.org/10.3184/174751914X14137288281925
48. Yamamoto S, Tomita N, Suzuki Y, et al (2012) Design, synthesis, and biological evaluation of 4-arylmethyl-1- phenylpyrazole and 4-aryloxy-1-phenylpyrazole derivatives as novel androgen receptor antagonists. Bioorganic and Medicinal Chemistry 20:2338–2352. https://doi.org/10.1016/j.bmc.2012.02.005
49. Baker D (2013) CrysAlis Pro responsible. 44:
50. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry 71:3–8. https://doi.org/10.1107/S2053229614024218
51. Sheldrick GM (2015) SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations of Crystallography 71:3–8. https://doi.org/10.1107/S2053273314026370
52. Dolomanov O V., Bourhis LJ, Gildea RJ, et al (2009) OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography 42:339–341. https://doi.org/10.1107/S0021889808042726
53. Superzeure EX, Superieure EX (1964) I i ~ ~. 155:
54. Tsiper E V., Soos ZG, Gao W, Kahn A (2002) Eletronic polarization at surfaces and thin films of organic molecular crystals: PTCDA. Chemical Physics Letters 360:47–52. https://doi.org/10.1016/S0009-2614(02)00774-1
55. Taydakov I V., Akkuzina AA, Avetisov RI, et al (2016) Effective electroluminescent materials for OLED applications based on lanthanide 1.3-diketonates bearing pyrazole moiety. Journal of Luminescence 177:31–39. https://doi.org/10.1016/j.jlumin.2016.04.017
56. Irfan A, Al-Sehemi AG, Chaudhry AR, et al (2016) The structural, electro-optical, charge transport and nonlinear optical properties of 2-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)methylidene]indan-1,3-dione. Optik 127:10148–10157. https://doi.org/10.1016/j.ijleo.2016.08.007
57. Moia D, Vaissier V, López-Duarte I, et al (2014) The reorganization energy of intermolecular hole hopping between dyes anchored to surfaces. Chemical Science 5:281–290. https://doi.org/10.1039/c3sc52359d
58. Li H, Duan L, Zhang D, Qiu Y (2014) Influence of molecular packing on intramolecular reorganization energy: A case study of small molecules. Journal of Physical Chemistry C 118:14848–14852. https://doi.org/10.1021/jp504979x
59. Chang Y, Chao I (2010) An Important Key to Design Molecules with Small Internal Reorganization Energy: Strong Nonbonding Character in Frontier Orbitals. 116–121. https://doi.org/10.1021/jz900042x
60. Gao H (2010) Theoretical investigation into charge mobility. 759–763. https://doi.org/10.1007/s00214-010-0804-9
61. Qiu M, Pei W, Lu Q, et al (2019) DFT characteristics of charge transport in DBTP-based hole transport materials. Applied Sciences (Switzerland) 9:1–7. https://doi.org/10.3390/app9112244
62. Brückner C, Walter C, Stolte M, et al (2017) Structure – Property Relationships for Exciton and Charge Reorganization Energies of Dipolar Organic Semiconductors : A Combined Valence Bond Self-Consistent Field and Time-Dependent Hartree-Fock and DFT Study of Merocyanine Dyes To cite this version : HA
63. Lin BC, Cheng CP, Lao ZPM (2003) Reorganization energies in the transports of holes and electrons in organic amines in organic electroluminescence studied by density functional theory. Journal of Physical Chemistry A 107:5241–5251. https://doi.org/10.1021/jp0304529
64. Wang C, Dong H, Hu W, et al (2012) Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chemical Reviews 112:2208–2267. https://doi.org/10.1021/cr100380z
65. Zheng Z, Yu Z, Yang M, et al (2013) Substituent group variations directing the molecular packing, electronic structure, and aggregation-induced emission property of isophorone derivatives. Journal of Organic Chemistry 78:3222–3234. https://doi.org/10.1021/jo400116j
66. Ji LF, Fan JX, Zhang SF, Ren AM (2017) Theoretical investigations into the charge transfer properties of thiophene α-substituted naphthodithiophene diimides: Excellent n-channel and ambipolar organic semiconductors. Physical Chemistry Chemical Physics 19:13978–13993. https://doi.org/10.1039/c7cp01114h
67. Hutchison GR, Ratner MA, Marks TJ (2005) Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors. Journal of the American Chemical Society 127:16866–16881. https://doi.org/10.1021/ja0533996
68. Wang H, Liu H, Bai FQ, et al (2015) Theoretical and experimental study on intramolecular charge-transfer in symmetric bi-1,3,4-oxadiazole derivatives. Journal of Photochemistry and Photobiology A: Chemistry 312:20–27. https://doi.org/10.1016/j.jphotochem.2015.07.006
69. Parusel ABJ (2001) Excited state intramolecular charge transfer in N,N -heterocyclic-4-aminobenzonitriles: A DFT study. Chemical Physics Letters 340:531–537. https://doi.org/10.1016/S0009-2614(01)00441-9
70. Shee J, Head-Gordon M (2020) Predicting Excitation Energies of Twisted Intramolecular Charge-Transfer States with the Time-Dependent Density Functional Theory: Comparison with Experimental Measurements in the Gas Phase and Solvents Ranging from Hexanes to Acetonitrile. Journal of Chemical Theory and Computation 16:6244–6255. https://doi.org/10.1021/acs.jctc.0c00635
71. Saeed A, Bolte M, Erben MF, Pérez H (2015) Intermolecular interactions in crystalline 1-(adamantane-1-carbonyl)-3-substituted thioureas with Hirshfeld surface analysis. CrystEngComm 17:7551–7563. https://doi.org/10.1039/c5ce01373a
72. Seth SK, Sarkar D, Jana AD, Kar T (2011) On the possibility of tuning molecular edges to direct supramolecular self-assembly in coumarin derivatives through cooperative weak forces: Crystallographic and hirshfeld surface analyses. Crystal Growth and Design 11:4837–4849. https://doi.org/10.1021/cg2006343
73. Seth SK (2014) Structural elucidation and contribution of intermolecular interactions in O-hydroxy acyl aromatics: Insights from X-ray and Hirshfeld surface analysis. Journal of Molecular Structure 1064:70–75. https://doi.org/10.1016/j.molstruc.2014.01.068
74. Seth SK, Sarkar D, Roy A, Kar T (2011) Insight into supramolecular self-assembly directed by weak interactions in acetophenone derivatives: Crystal structures and Hirshfeld surface analyses. CrystEngComm 13:6728–6741. https://doi.org/10.1039/c1ce05670k