AUTHOR CONTRIBUTIONS
Yihao Chen: Data curation; investigation; writing-original draft; writing-review & editing. Jingjing Chen: Software; writing-original draft. Chongchong Chen: Data curation; investigation; software; writing-original draft. Xiaoli Wu:Funding acquisition; Software; writing-review & editing; investigation; Project administration; supervision. Yifan Li: Writing-original draft; supervision. Jie Zhang: Data curation; investigation.Jingtao Wang: Funding acquisition; project administration; supervision; writing-original draft; writing-review & editing.
REFERENCES
1. Brennecke JF, Freeman B. Reimagining petroleum refining.Science . 2020; 369:254–255.
2. Werber JR, Osuji CO, Elimelech M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater.2016;1:16018.
3. Ghalei B, Sakurai K, Kinoshita Y, Wakimoto K, Isfahani AP, Song Q, Doitomi K, Furukawa S, Hirao H, Kusuda H, Kitagawa S, Sivaniah E. Enhanced selectivity in mixed matrix membranes for CO2capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat. Energy . 2017;2:17086.
4. Freger V. Outperforming nature’s membranes. Science . 2015;348:1317–1318.
5. Zhang S, Li H, Li H, Sengupta B, Zha S, Li S, Yu M. Negative charge confined amine carriers within the nanowire network for stable and efficient membrane carbon capture.Adv. Funct. Mater.2020;30:2002804.
6. Liu Q, Babu DJ, Hao J, Vahdat MT, Campi D, Agrawal KV. Metal soap membranes for gas separation. Adv. Funct. Mater. 2021;31:2005629.
7. Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding LX, Wang S, Caro J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 2018;9:155.
8. Liu G, Jin W, Xu N. Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew. Chem., Int. Ed.2016;55:13384−13397.
9. Chen J, Wu X, Chen C, Chen Y, Li W, Wang J. Secondary-assembled defect-free MOF membrane via triple-needle electrostatic atomization for highly stable and selective organics permeation.J. Membr. Sci. 2022;648:120382.
10. Hu J, Yuan C, Zhi L, Zhang H, Yuan Z, Li X. In situ defect-free vertically aligned layered double hydroxide composite membrane for high areal capacity and long-cycle zinc-based flow battery. Adv. Funct. Mater. 2021;31:2102167.
11. Yang J, Li HN, Zhang X, Zhu CY, Yu HH, Xu ZK. Janus membranes for fast-mass-transfer separation of viscous ionic liquids from emulsions.J. Membr. Sci. 2021;637:119643.
12. Zhang X, Zhou W, Xu F, Wei M, Wang Y. Resistance of water transport in carbon nanotube membranes. Nanoscale . 2018;10:13242−13249.
13. Song Y, Wei M, Xu F, Wang Y. Molecular simulations of water transport resistance in polyamide RO membranes: interfacial and interior contributions. Engineering . 2020;6:577−584.
14. Uragami T, Yono T, Sugihara M, Studies on syntheses and permeabilities of special polymer membranes. 36. Permeabilities of alcohols and hydrocarbons through acrylonitrile-butadiene-styrene terpolymer membranes. Die Angew. Makromol. Chemie . 1979;82:89−102.
15. Sandru M, Sandru EM, Ingram WF, Deng J, Stenstad PM, Deng L, Spontak RJ. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes. Science . 2022;376:90−94.
16. Qian Y, Shang J, Liu D, Yang G, Wang X, Chen C, Kou L, Lei W. Enhanced ion sieving of graphene oxide membranes via surface amine functionalization. J. Am. Chem. Soc. 2021;143:5080−5090.
17. Huang K, Liu G, Shen J, Chu Z, Zhou H, Gu X, Jin W, Xu N. High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates. Adv. Funct. Mater. 2015;25:5809−5815.
18. Zhang Z, Wu H, Li Y, Liu Y, Cao C, Wang H, Wang M, Pan F, Jiang Z. Heterostructured graphene oxide membranes with tunable water-capture coatings for highly selective water permeation. J. Mater. Chem. A . 2021;9:7903–7912.
19. Tunuguntla RH, Henley RY, Yao YC, Pham TA, Wanunu M, Noy A. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science . 2017;357:792–796.
20. Cheng C, Iyengar SA, Karnik R. Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes Nat. Nanotechnol. 2021;16:989–995.
21. Jang D, Idrobo JC, Laoui T, Karnik R. Water and solute transport governed by tunable pore size distributions in nanoporous graphene membranes. ACS Nano . 2017;11:10042–10052.
22. Wan J, Huang L, Wu J, Xiong L, Hu Z, Yu H, Li T, Zhou J. Microwave combustion for rapidly synthesizing pore-size-controllable porous graphene. Adv. Funct. Mater. 2018;28:1800382.
23. Sapkota B, Liang W, Mohammadi AV, Karnik R, Noy A, Wanunu M. High permeability sub-nanometre sieve composite MoS2membranes. Nat. Commun. 2020;11:2747.
24. Kang J, Choi Y, Kim JH, Choi E, Choi SE, Kwon O, Kim DW. Functionalized nanoporous graphene membrane with ultrafast and stable nanofiltration. J. Membr. Sci. 2021;618:118635.
25. Zhang C, Wu BH, Ma MQ, Wang Z, Xu ZK. Ultrathin metal/covalent-organic framework membranes towards ultimate separation.Chem. Soc. Rev. 2019;48:3811–3841.
26. Wang Y, Jin H, Ma Q, Mo K, Mao H, Feldhoff A, Cao X, Li Y, Pan F, Jiang Z. A MOF glass membrane for gas separation. Angew. Chem., Int. Ed. 2020;59:4365–4369.
27. Liu TY, Yuan HG, Liu YY, Ren D, Su YC, Wang X. Metal-organic framework nanocomposite thin films with interfacial bindings and self-standing robustness for high water flux and enhanced ion selectivity. ACS Nano . 2018;12:9253–9265.
28. Dou H, Xu M, Wang B, Zhang Z, Wen G, Zheng Y, Luo D, Zhao L, Yu A, Zhang L, Jiang Z, Chen Z. Microporous framework membranes for precise molecule/ion separations. Chem. Soc. Rev. 2021;50:986–1029.
29. Mandal S, Natarajan S, Mani P, Pankajakshan A. Post-synthetic modification of metal-organic frameworks toward applications. Adv. Funct. Mater. 2021;31:2006291.
30. Feng L, Wang KY, Lv XL, Yan TH, Zhou HC. Hierarchically porous metal-organic frameworks: synthetic strategies and applications.Natl. Sci. Rev. 2020;7:1743–1758.
31. Lin RB, Xiang S, Zhou W, Chen B. Microporous metal-organic framework materials for gas separation. Chem . 2020;6:337–363.
32. Ji Z, Wang H, Canossa S, Wuttke S, Yaghi OM. Pore chemistry of metal-organic frameworks. Adv. Funct. Mater. 2020;30:2000238.
33. Peng Y, Li Y, Ban Y, Yang W. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angew. Chem., Int. Ed. 2017;56:9757–9761.
34. Jian M, Qiu R, Xia Y, Lu J, Chen Y, Gu Q, Liu R, Hu C, Qu J, Wang H, Zhang X. Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv. 2020;6:eaay3998.
35. Chowdhury MR, Steffes J, Huey BD, McCutcheon JR. 3D printed polyamide membranes for desalination. Science . 2018;361:682–686.
36. Wang Q, Wu X, Chen J, Li W, Zhang H, Wang J. Ultrathin and stable organic-inorganic lamellar composite membrane for high-performance organic solvent nanofiltration. Chem. Eng. Sci. 2020;228:116002.
37. Zhao S, Wang Y, Dong J, He CT, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy . 2016;1:16184.
38. Wang B, Zhao M, Li L, Huang Y, Zhang X, Guo C, Zhang Z, Cheng H, Liu W, Shang J, Jin J, Sun X, Liu J, Zhang H. Ultra-thin metal-organic framework nanoribbons. Natl. Sci. Rev. 2020;7:46–52.
39. Wang B, Shang J, Guo C, Zhang J, Zhu F, Han A, Liu J. A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays. Small . 2019;15:1804761.
40. Wang Z, Yu Q, Huang Y, An H, Zhao Y, Feng Y, Li X, Shi X, Liang J, Pan F, Cheng P, Chen Y, Ma S, Zhang Z. PolyCOFs: a new class of freestanding responsive covalent organic framework membranes with high mechanical performance. ACS Cent. Sci. 2019;5:1352–1359.
41. Gonzalez-Nelson A, Mula S, Šimėnas M, Nas SB, Altenhof AR, Vojvodin CS, Canossa S, Banys JR, Schurko RW, Coudert FX, Veen MA. Emergence of coupled rotor dynamics in metal-organic frameworks via tuned steric interactions. J. Am. Chem. Soc. 2021;143:12053–12062.
42. Oveisia M, Asli MA, Mahmoodi NM. MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems.J. Hazard. Mater. 2018;347:123–140.
43. Wang J, Yuan Z, Wu X, Li Y, Chen J, Jiang Z. Beetle-inspired assembly of heterostructured lamellar membranes with polymer cluster-patterned surface for enhanced molecular permeation. Adv. Funct. Mater. 2019;29:1900819.
44. Ding Li, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding LX, Wang S, Caro J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas separation.Nat. Commun. 2018;9:155.
45. Boateng LK, Madarshahian R, Yoon Y, Caicedo JM, Flora JRV. A probabilistic approach for estimating water permeability in pressure-driven membranes. J. Mol. Model. 2016;22:185.
46. Karan S, Jiang Z, Livingston AG. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science . 2015;348:1347–1351
47. Ruijter MJ, Coninck JD, Blake TD, Clarke A, Rankin A. Contact angle relaxation during the spreading of partially wetting drops.Langmuir . 1997;13:7293–7298.
48. Feng X, Huang RYM. Estimation of activation energy for permeation in pervaporation processes. J. Membr. Sci. 1996;118:127–131.
49. Uragami T, Maekawa K, Sugihara M. Studies on syntheses and permeabilities of special polymer membranes. 21. Permeabilities of alcohols and hydrocarbons through nylon 12 membranes. Die Angew. Makromol. Chemie 1980;87:175−193.
50. Chen C, Wang J, Liu D, Yang C, Liu Y, Ruoff RS, Lei W. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nat. Commun. 2018;9:1902.
51. Machado DR, Hasson D, Semiat R. Effect of solvent properties on permeate flow through nanofiltration membranes. Part I: Investigation of parameters affecting solvent flux. J. Membr. Sci.1999;163:93–102.
52. Uragami T, Fujimoto M, Sugihara M. Studies on syntheses and permeabilities of special polymer membranes: 24. Permeation characteristics of poly(vinylidene fluoride) membranes. Polymer . 1980;21:1047–1051.
53. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK. Unimpeded permeation of water through helium-leak-tight graphene-based membranes.Science . 2012;335:442–444.
54. Fu W, Hu SP, Song XG, Li JX, Cao J, Feng JC, Wang GD. Wettability and bonding of graphite by Sn0.3Ag0.7Cu-Ti alloys. Carbon N. Y. 2017;121:536–543.
55. Starov VM, Zhdanov SA, Kosvintsev SR, Sobolev VD, Velarde MG. Spreading of liquid drops over porous substrates. Adv. Colloid Interface Sci. 2003;104:123–158.
56. Xu F, Dai L, Wu Y, Xu Z. Li+/Mg2+ separation by membrane separation: the role of the compensatory effect. J. Membr. Sci.2021;636:119542.
57. Machado DR, Hasson D, Semiat R. Effect of solvent properties on permeate flow through nanofiltration membranes: Part II. Transport model. J. Membr. Sci. 2000;166:63–69.
58. Shevate R, Shaffer DL. Large-area 2D covalent organic framework membranes with tunable single-digit nanopores for predictable mass transport. ACS Nano 2022;16:2407–2418.
59. Uedaira H, Uedaira H, Role of hydration of polyhydroxy compounds in biological systems. Cell. Mol. Biol. 2001;47:823–829.
60. Zhang X, Shi X, Zhao Q, Li Y, Wang J, Yang Y, Bi F, Xu J, Liu N. Defects controlled by acid-modulators and water molecules enabled UiO-67 for exceptional toluene uptakes: An experimental and theoretical study.Chem. Eng. J. 2022;427:131573.
61. Emamian S, Lu T, Kruse H, Emamian H. Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J. Comput. Chem.2019;40:2868–2881.
62. Kujawa J, Kujawski W, Cerneaux S, Li G, Al-Gharabli S. Zirconium dioxide membranes decorated by silanes based-modifiers for membrane distillation-material chemistry approach. J. Membr. Sci.2020;596:117597.
63. Rezayi T, Entezari MH, Moosavi F. The variation of surface free energy of Al during superhydrophobicity processing. Chem. Eng. J.2017;322:181–187.
64. KongX, ZhouMY, Lin CE, Wang J, Zhao B, Wei XZ, Zhu BK. Polyamide/PVC based composite hollow fiber nanofiltration membranes: Effect of substrate on properties and performance. J. Membr. Sci.2016;505:231–240.
65. Alemayehu HG, Liu C, Hou J, Yang J, Fang M, Tang Z, Li L. Highly stable membrane comprising MOF nanosheets and graphene oxide for ultra-permeable nanofiltration. J. Membr. Sci. 2022;652:120479.
66. Li Y, Zhang X, Yang A, Jiang C, Zhang G, Mao J, Meng Q. Polyphenol etched ZIF-8 modified graphene oxide nanofiltration membrane for efficient removal of salts and organic molecules. J. Membr. Sci.2021;635:119521.