References
Akbar, S., Sultan, S., Kertesz, M., 2015. Bacterial community analysis
of cypermethrin enrichment cultures and bioremediation of cypermethrin
contaminated soils. J. Basic Microbiol. 55, 819–829.
https://doi.org/10.1002/jobm.201400805
An, B., Chen, Y., Li, B., Qin, G., Tian, S., 2014. Ca2+-CaM regulating
viability of Candida guilliermondii under oxidative stress by acting on
detergent resistant membrane proteins. J. Proteomics 109, 38–49.
https://doi.org/10.1016/j.jprot.2014.06.022
Chen, Y., Stemple, B., Kumar, M., Wei, N., 2016. Cell Surface Display
Fungal Laccase as a Renewable Biocatalyst for Degradation of Persistent
Micropollutants Bisphenol A and Sulfamethoxazole. Environ. Sci. Technol.
50, 8799–8808. https://doi.org/10.1021/acs.est.6b01641
Chen, Z., Wang, Y., Cheng, Y., Wang, X., Tong, S., Yang, H., Wang, Z.,
2020. Efficient biodegradation of highly crystallized polyethylene
terephthalate through cell surface display of bacterial PETase. Sci.
Total Environ. 709, 136138.
https://doi.org/10.1016/j.scitotenv.2019.136138
Cheng, K., Zhao, R., Li, Yao, Qi, Y., Wang, Y., Zhang, Y., Qin, H., Qin,
Y., Chen, L., Li, C., Liang, J., Li, Yujing, Xu, J., Han, X., Anderson,
G.J., Shi, J., Ren, L., Zhao, X., Nie, G., 2021. Bioengineered
bacteria-derived outer membrane vesicles as a versatile antigen display
platform for tumor vaccination via Plug-and-Display technology. Nat.
Commun. 12, 1–16. https://doi.org/10.1038/s41467-021-22308-8
Chordia, S., Narasimhan, S., Lucini Paioni, A., Baldus, M., Roelfes, G.,
2021. In Vivo Assembly of Artificial Metalloenzymes and Application in
Whole-Cell Biocatalysis**. Angew. Chemie - Int. Ed. 60, 5913–5920.
https://doi.org/10.1002/anie.202014771
Chun, J., Bai, J., Ryu, S., 2020. Yeast Surface Display System for
Facilitated Production and Application of Phage Endolysin. ACS Synth.
Biol. 9, 508–516. https://doi.org/10.1021/acssynbio.9b00360
Detzel, C., Maas, R., Tubeleviciute, A., Jose, J., 2013. Autodisplay of
nitrilase from Klebsiella pneumoniae and whole-cell degradation of
oxynil herbicides and related compounds. Appl. Microbiol. Biotechnol.
97, 4887–4896. https://doi.org/10.1007/s00253-012-4401-9
Ding, J., Zhou, Y., Wang, C., Peng, Z., Mu, Y., Tang, X., Huang, Z.,
2020. Development of a whole-cell biocatalyst for diisobutyl phthalate
degradation by functional display of a carboxylesterase on the surface
of Escherichia coli. Microb. Cell Fact. 19, 1–11.
https://doi.org/10.1186/s12934-020-01373-6
Gustavsson, M., Muraleedharan, M.N., Larsson, G., 2014. Surface
expression of ω-transaminase in Escherichia coli. Appl. Environ.
Microbiol. 80, 2293–2298. https://doi.org/10.1128/AEM.03678-13
Hu, W., Lu, Q., Zhong, G., Hu, M., Yi, X., 2019. Biodegradation of
pyrethroids by a hydrolyzing carboxylesterase EstA from Bacillus cereus
BCC01. Appl. Sci. 9, 1–14. https://doi.org/10.3390/app9030477
Jones, D.S., Tsai, P.C., Cochran, J.R., 2011. Engineering hepatocyte
growth factor fragments with high stability and activity as Met receptor
agonists and antagonists. Proc. Natl. Acad. Sci. U. S. A. 108,
13035–13040. https://doi.org/10.1073/pnas.1102561108
Karpouzas, D., Walker, A., Drennan, D., Froud-Williams, R.,2001. The
effect of initial concentration of carbofuran on the development and
stability of its enhanced biodegradation in top-soil and sub-soil. Pest
Manag. Sci. 57, 72-81.
https://doi.org/10.1002/1526-4998(200101)57:1<72::AID-PS264>3.0.CO;2-1
Kuroda, K., Ueda, M., 2013. Arming technology in yeast-novel strategy
for whole-cell biocatalyst and protein engineering. Biomolecules. 3,
632–650. https://doi.org/10.3390/biom3030632
Li, X., Jin, X., Lu, X., Chu, F., Shen, J., Ma, Y., Liu, M., Zhu, J.,
2014. Construction and characterization of a thermostable whole-cell
chitinolytic enzyme using yeast surface display. World J. Microbiol.
Biotechnol. 30, 2577–2585. https://doi.org/10.1007/s11274-014-1681-5
Liang, B., Wang, G., Yan, L., Ren, H., Feng, R., Xiong, Z., Liu, A.,
2019. Functional cell surface displaying of acetylcholinesterase for
spectrophotometric sensing organophosphate pesticide. Sensors Actuators,
B Chem. 279, 483–489.
https://doi.org/10.1016/j.snb.2018.09.119
Lim, S., Glasgow, J.E., Filsinger Interrante, M., Storm, E.M., Cochran,
J.R., 2017. Dual display of proteins on the yeast cell surface
simplifies quantification of binding interactions and enzymatic
bioconjugation reactions. Biotechnol. J. 12, 1–11.
https://doi.org/10.1002/biot.201600696
Lozančić, M., Žunar, B., Hrestak, D., Lopandić, K., Teparić, R., Mrša,
V., 2021. Systematic comparison of cell wall-related proteins of
different yeasts. J. Fungi 7, 1–19. https://doi.org/10.3390/jof7020128
Lu, J., Wu, Q., Yang, Q., Li, G., Wang, R., Liu, Y., Duan, C., Duan, S.,
He, X., Huang, Z., Peng, X., Yan, W., Jiang, J., 2021. Molecular
mechanism of reproductive toxicity induced by beta-cypermethrin in
zebrafish. Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol. 239,
108894. https://doi.org/10.1016/j.cbpc.2020.108894
Luo, X., Zhang, D., Zhou, X., Du, J., Zhang, S., Liu, Y., 2018. Cloning
and characterization of a pyrethroid pesticide decomposing esterase
gene, Est3385, from Rhodopseudomonas palustris PSB-S. Sci. Rep. 8, 1–8.
https://doi.org/10.1038/s41598-018-25734-9
Mata-Fink, J., Kriegsman, B., Yu, H.X., Zhu, H., Hanson, M.C., Irvine,
D.J., Wittrup, K.D., 2013. Rapid conformational epitope mapping of
anti-gp120 antibodies with a designed mutant panel displayed on yeast.
J. Mol. Biol. 425, 444–456. https://doi.org/10.1016/j.jmb.2012.11.010
Rangra, S., Kabra, M., Gupta, V., Srivastava, P., 2018. Improved
conversion of Dibenzothiophene into sulfone by surface display of
Dibenzothiophene monooxygenase (DszC) in recombinant Escherichia coli.
J. Biotechnol. 287, 59–67.
https://doi.org/10.1016/j.jbiotec.2018.10.004
Saleem, M., Brim, H., Hussain, S., Arshad, M., Leigh, M.B.,
Zia-ul-hassan, 2008. Perspectives on microbial cell surface display in
bioremediation. Biotechnol. Adv. 26, 151–161.
https://doi.org/10.1016/j.biotechadv.2007.10.002
Smith, M.R., Khera, E., Wen, F., 2015. Engineering novel and improved
biocatalysts by cell surface display. Ind. Eng. Chem. Res. 54,
4021–4032. https://doi.org/10.1021/ie504071f
Song, H., Zhou, Z., Liu, Y., Deng, S., Xu, H., 2015. Kinetics and
Mechanism of Fenpropathrin Biodegradation by a Newly Isolated
Pseudomonas aeruginosa sp. Strain JQ-41. Curr. Microbiol. 71, 326–332.
https://doi.org/10.1007/s00284-015-0852-4
Song, T., Wang, F., Xiong, S., Jiang, H., 2019. Surface display of
organophosphorus-degrading enzymes on the recombinant spore of Bacillus
subtilis. Biochem. Biophys. Res. Commun. 510, 13–19.
https://doi.org/10.1016/j.bbrc.2018.12.077
Tanaka, T., Yamada, R., Ogino, C., Kondo, A., 2012. Recent developments
in yeast cell surface display toward extended applications in
biotechnology. Appl. Microbiol. Biotechnol. 95, 577–591.
https://doi.org/10.1007/s00253-012-4175-0
Tang, A., Wang, B., Liu, Y., Li, Q., Tong, Z., Wei, Y., 2015.
Biodegradation and extracellular enzymatic activities of Pseudomonas
aeruginosa strain GF31 on β-cypermethrin. Environ. Sci. Pollut. Res. 22.
https://doi.org/10.1007/s11356-015-4545-0
Tang, A.X., Liu, H., Liu, Y.Y., Li, Q.Y., Qing, Y.M., 2017. Purification
and Characterization of a Novel β-Cypermethrin-Degrading Aminopeptidase
from Pseudomonas aeruginosa GF31. J. Agric. Food Chem. 65, 9412–9418.
https://doi.org/10.1021/acs.jafc.7b03288
Tao, H.C., Li, P.S., Liu, Q.S., Su, J., Qiu, G.Y., Li, Z.G., 2016.
Surface-engineered Saccharomyces cerevisiae cells displaying redesigned
CadR for enhancement of adsorption of cadmium (II). J. Chem. Technol.
Biotechnol. 91, 1889–1895. https://doi.org/10.1002/jctb.4783
Tiwary, M., Dubey, A.K., 2016. Cypermethrin bioremediation in presence
of heavy metals by a novel heavy metal tolerant strain, Bacillus sp.
AKD1. Int. Biodeterior. Biodegrad. 108, 42–47.
https://doi.org/10.1016/j.ibiod.2015.11.025
Van Deventer, J.A., Kelly, R.L., Rajan, S., Wittrup, K.D., Sidhu, S.S.,
2015. A switchable yeast display/secretion system. Protein Eng. Des.
Sel. 28, 317–325. https://doi.org/10.1093/protein/gzv043
Wang, J.K., He, B., Du, W., Luo, Y., Yu, Z., Liu, J.X., 2015. Yeast with
surface displayed xylanase as a new dual purpose delivery vehicle of
xylanase and yeast. Anim. Feed Sci. Technol. 208, 44–52.
https://doi.org/10.1016/j.anifeedsci.2015.07.002
Wang, Z., Mathias, A., Stavrou, S., Neville, D.M., 2005. A new yeast
display vector permitting free scFv amino termini can augment ligand
binding affinities. Protein Eng. Des. Sel. 18, 337–343.
https://doi.org/10.1093/protein/gzi036
Yang, X., Tang, H., Song, M., Shen, Y., Hou, J., Bao, X., 2019.
Development of novel surface display platforms for anchoring
heterologous proteins in Saccharomyces cerevisiae. Microb. Cell Fact.
18, 1–10. https://doi.org/10.1186/s12934-019-1133-x
Ye, M., Ye, Y., Du, Z., Chen, G., 2021. Cell-surface engineering of
yeasts for whole-cell biocatalysts. Bioprocess Biosyst. Eng. 44,
1003–1019. https://doi.org/10.1007/s00449-020-02484-5
Zhan, H., Huang, Y., Lin, Z., Bhatt, P., Chen, S., 2020. New insights
into the microbial degradation and catalytic mechanism of synthetic
pyrethroids. Environ. Res. 182, 109138.
https://doi.org/10.1016/j.envres.2020.109138
Zhang, M., Lai, W., Zhu, Y., Chen, S., Zhou, K., Ao, X., He, L., Yang,
Y., Zou, L., Liu, A., Yao, K., Liu, S., 2021. Purification and
characterization of a novel cypermethrin-hydrolyzing esterase from
Bacillus licheniformis B-1. J. Food Sci. 86, 1475–1487.
https://doi.org/10.1111/1750-3841.15662
Zhang, Q.Q., Li, W.Q., Lu, Z. Bin, Li, L.L., Yu, Y., Li, C., Men, X.Y.,
2019. Sublethal effects of beta-cypermethrin on the bird cherry-oat
aphid Rhopalosiphum padi (Hemiptera: Aphididae). J. Asia. Pac. Entomol.
22, 693–698. https://doi.org/10.1016/j.aspen.2019.04.012
Zhao, S., Guo, D., Zhu, Q., Dou, W., Guan, W., 2020. Display of
Microbial Glucose Dehydrogenase and Cholesterol Oxidase on the Yeast
Cell Surface for the Detection of Blood Biochemical Parameters.
Biosensors 11. https://doi.org/10.3390/bios11010013