AUTHOREA
Log in
Sign Up
Browse Preprints
LOG IN
SIGN UP
Essential Site Maintenance
: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at help@authorea.com in case you face any issues.
Qiang Gao
Public Documents
1
Non-stationary Financial Time Series Forecasting Based on Meta-Learning
Anqi Hong
and 3 more
September 09, 2022
In this letter, we address the challenge in forecasting non-stationary financial time series by proposing a meta-learning based forecasting model equipped with a CNN predictor and a LSTM meta-learner. The model is applied to a set of short subseries which are the result of dividing a long non-stationary financial time series. As a result, a promising performance can be achieved by the proposed model in terms of making more accurate prediction than the traditional CNN predictor and AR based forecasting models in non-stationary conditions.