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Radio frequency (RF) fingerprinting is a challenging and important
technique in individual identification of wireless devices. Recent work
has used deep learning-based classifiers on ADS-B signal without
missing aircraft ID information. However, traditional methods are dif-
ficult to obtain well performance accuracy for classical deep learn-
ing methods to recognize RF signals. This letter proposes a Gaus-
sian Low-pass Channel Attention Convolution Network (GLCA-Net),
where a Gaussian Low-pass Channel Attention module (GLCAM) is
designed to extract fingerprint features with low frequency. Particu-
larly, in GLCAM, we design a Frequency-Convolutional Global Aver-
age Pooling (F-ConvGAP) module to help channel attention mechanism
learn channel weights in frequency domain. Experimental results on the
datasets of large-scale real-world ADS-B signals show that our method
can achieve an accuracy of 92.08%, which is 6.21% higher than Con-
volutional Neural Networks.

Introduction: The Automatic Dependent Surveillance-Broadcast (ADS-
B) system has been widely used in aviation field due to its low cost and
high accuracy. However, ADS-B system is vulnerable to lawbreaking
attacks due to the non-encrypted message mode. With the rapid devel-
opment of computation and datasets, deep learning (DL) has made a sig-
nificant forward in computer vision, voice and natural language process-
ing. For the field of radio frequency (RF) identification, DL has made
rapid progress. LA Yun et al. [1] collected a dataset of 426,613 ADS-B
long signals of category 1,661 aircraft and 167,234 ADS-B short sig-
nals of category 1,713 aircraft, and verified the effect of networks on
the identification rate for different signal-noise ratios, sampling rates,
and frequency carrier offsets. Although they achieve good identifica-
tion results, but move ID address was not taken into account. YAN
Ke et al. [2] proposed an end-to-end DL method based on ADS-B raw
I/Q data, in which the collected ADS-B signal was pre-processed by
wavelet transform denoising and then input to the network. The proposed
method obtains the identification accuracy of 99%, but the method did
not remove the ID address from ADS-B. J. Robinson et al. [3] designed
the ADCC (Augmented Dilated Causal Convolution) module for raw
I/Q data and achieved an 85% accuracy for ADS-B with ID address
removed. The deep neural network framework of the frequency principle
(F-Principle) [4] demonstrated that deep learning tends to preferentially
use low frequencies to fit the objective function. Xi Li et al. [5] extended
the channel attention to frequency and experimentally demonstrated the
effectiveness of using attention mechanism in the frequency domain.

Inspired by Frequency Channel Attention Networks [5]. This letter
proposes the Gaussian Low-pass Channel Attention Convolution Net-
work (GLCA-Net) to improve the accuracy of fingerprinting. GLCAM
is able to capture the characteristics of ADS-B signal, and enhancie the
low-frequency of the data while simplifying the computational work.
In addition, we designed F-ConvGAP (Frequency-Convolutional Global
Average Pooling) to replace traditional GAP (Global Average Pooling).
The F-ConvGAP is learnable, and we can verify the characteristics of
the network by showing the nature map of the module.

The remainder of this paper is organized as follows: In Section II,
we describe the datasets and analyze the ADS-B signal. In Section III,
we present the methodology, especially GLCAM and F-ConvGAP. Sec-
tion IV, evaluation setup and experimental results are provided. Finally,
Section V concludes.

ADS-B Encoding Format: The ADS-B signal uses Pulse Position Modu-
lation (PPM) which has better anti-interference performance than Pulse
Amplitude Modulation and Pulse Width Modulation. In this letter, we
focus on the ADS-B signals of the long format S-model: standard output

of 1090MHz with Extended Squitter (1090ES). ADS-B message struc-
ture as shown in fig.1.

Fig 1 Description of the ADS-B message structure.

Each transmission contains 8 µs preamble and 112 µs data block. Tak-
ing a long data block as an example, the first 8 bits of a data block pos-
sess the downlink format (DF) and capability (CA), which remain con-
stant in time and space for the same flight purpose. The next 24 bits are
the aircraft address (AA) that uniquely identifies the aircraft all over the
world. The 56 bits ME field consists of aircraft surveillance information
(the short data block excludes this part). The last 24 bits parity check
is used for receiver verification. The 24 bits aircraft address from each
transmission is easy to learn by Deep Neural Networks (DNN), which
affects the generalization ability of the algorithm for RF fingerprinting.
Thus the aircraft address I/Q is removed during the network training pro-
cess. The ID address is just extracted as a device label, in order to ensure
that there is no direct semantic relationship between the label and the
training data during the training of the neural network.

Each transmission of the long data module contains a total of 112bits
of fields, which corresponds to a time length of 112 µs. Our equipment
uses universal software radio peripheral with a sampling rate of 20MHz,
thus 112 µs corresponds to 2240 sampling points containing 112 bits of
information. Therefore, the ratio of information to sampled data is 112 /
2240 = 1 / 20.

ADS-B Raw I/Q Data Analysis: The ADS-B datasets are stored as a
sequence of time-domain in-phase and quadrature (I/Q), it contains all
the characteristics of the signal compare with constellation, fast Fourier
transform and other format. Datasets consists of 33,647 transmissions
from 100 devices. Each transmission contains 6000 fixed discrete com-
plex sampling points. Analysis of raw signal is show in fig.2.

(a) (b)

Fig 2 Analysis of raw signals. (a) Time domain characteristics of signal. (b)
Frequency domain characteristics of signal.

As shown in fig.2. (b), the low frequency part of the signal has a rich
spectral width which we are interested in.

Method: DL methods are able to extract fingerprint features from dif-
ferent data fragments. Gaussian Low-pass Channel Attention module
(GLCAM) is proposed to enhance the features of the RF fingerprint. The
operation of the channel attention is to learn a set of weighting param-
eters which is able to enhance the region of interest in the task. Global
Average Pooling (GAP) is a special form of the two-dimensional dis-
crete cosine transform. GAP would ignore many useful non-0-frequency
components [5]. Through extensive mathematical derivations, deep neu-
ral networks are usually fitted from low to high frequencies at the begin-
ning, middle and end phases of training.

Y(x) is an indicator function, i.e.,
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Fig 3 The architecture of GLCAM. In this module, input data passes through a 2D convolution and LeakyRelu, then passes through a Gaussian low-pass filter,
the weights of the channels are initialized by a Frequency Convolution Global Average Pooling (F-ConvGAP) and then passed through a fully connected and
then through a batch normalization and max pooling, where the dark colors in the attention block represent enhancement, the light colors represent mitigation,
and the white colors represent an assignment of 0. Best viewed in color.

𝑌 (𝑥 ) =
{

1, |𝑥 | ≤ 𝜏,

0, |𝑥 | > 𝜏,
(1)

where 𝜏 is threshold. The frequency domain filter of the ideal window
function corresponds to the time domain of the sinc function, since the
time domain sinc function has negative values, which is not conducive
to network convergence. Here is the convolution theorem:

F−1 [𝑔1 · 𝑔2 ] (𝑥 ) = F−1 (𝑔1 ) ∗ F−1 (𝑔2 ) (2)

Where F−1 is inverse Fourier transformation,and * is indicates con-
volution operator. 𝑔1 and 𝑔2 represent frequency domain functions. Con-
sidering that Gaussian functions have similar characteristics in the time
and frequency domains. The One-dimensional Gaussian:

𝐺𝛿 (𝑥 ) = 1
√

2𝜋 𝛿
𝑒
− 𝑥2

2𝛿2 (3)

Where 𝛿 is the variance of Gaussian function G. For brevity of proof,
formula (3) simplified as 𝐺 (𝑥 ) = 𝑒−𝑎𝑥

2
. Ĝ (𝜔) is Fourier transform of

a Gaussian function:
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Respectively, where ·̂ indicates Fourier transform. Let 𝑢 =
√
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As shown in equation (3) and (5), the Fourier transform of a Gaussian
is still a Gaussian, i.e., it can approximate Y(x) by 𝐺𝛿 (𝑥 ) with a proper
𝛿. We can equivalently perform the examination in the spatial domain
to avoid the high-dimensional Fourier transform. The low frequency part
𝑦𝑙𝑜𝑤 (𝑥 ) can be derived by

F−1
(
𝑦̂𝑙𝑜𝑤 (𝑥 )

)
= F−1 ( 𝑦̂ (𝑥 ) ) ∗ F−1

(
𝐺̂𝜎 (𝑥 )

)
= 𝑦 ∗ 𝐺̂𝜎 (6)

As shown in equation (6), the Gaussian function has the same low-
pass property in the time and frequency domains. Then we can directly
add a Gaussian low-pass filter to the data to reduce the number of fast
Fourier transform operations to improve the learning time of the neural
network.

The flow chart for individual identification of signals based on
GLCAM is shown in fig.3. During the Gaussian Low-pass Channel
Attention Convolution network (GLCA-Net) module the input data is
shortened and the number of channels is increased. The equivalent sam-
pling rate is halved every time passing the GLCA-Net which is related to
the pooling size we set. Combined with Section II, we want the network
to focus more on the first 1/20 of the frequency domain of the data, so
the 𝛿 variance of Gaussian in the GLCAM is set to 1/20.

Frequency Convolution Global Average Pooling: We replace the GAP
with a convolution kernel of the same size as the input network data,
as we all know the GAP parameters are fixed in conventional Squeeze-
and-Excitation modules. Our module is autonomously learnable and can
adjust to the best filter by dynamic changing in the network. The design
of F-ConvGAP is shown in fig.4.

Fig 4 F-ConvGAP Block.

Experimental Design: We obtain the ID address of ADS-B signal by
decoding, and threat them as the label of the network. The ID address of
the aircraft is removed to ensure that feature extraction and identification
is base on the residual signal. The overall flow of the experiments is
shown in fig.5.

Fig 5 Deep learning overall framework.

Parameter Settings: The training and testing process of the algorithm
were deployed on a Linux server using the TensorFlow framework. The
model was trained and tested on an RTX1080Ti GPU with the support
of a GPU acceleration library.

Our datasets contains 33,647 ADS-B transmissions with 100 devices.
We randomly divided the entire datasets into three non-overlapping
parts, namely the training set (80% of the datasets), the validation set
(10%), and the test set (10%). We optimize the LSTM and Resnet as
a comparison network that can achieve high accuracy. We reproduced
CNN as one of the baseline models, the CNN has 8 Conv units and two
dense layers. GLCA-Net consists of several Conv Units with the combi-
nation of GLCAM.

Comparison results of different classifiers: The validation accuracy dur-
ing training is shown in fig.6. The GLCA-Net converges the fastest and
has the highest recognition accuracy. Two metrics are chosen for evalu-
ation, namely accuracy and model parameter size. The test accuracy is
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Fig 6 Validation Accuracy During Training.

measured using the average of 5 training sessions. The results are shown
in Table 1.

Table 1. Comparison of identification performance on the test
datasets.

Network Parameters (𝑀) Accuracy (%)

LSTM 0.37 39.2

ResNet 0.49 60.49

CNN [3] 0.87 85.88

GLCA-Net(Ours) 1.06 92.09

As shown in Table 1, GLCA-Net achieve highest Accuracy.

Ablation Study: We also design 8 ablation experiments of GLCA-Net.
Frequency Channel Attention (FCA) [5] is reproduced as an ablation
comparison. Compared with FCA, GLCA-Net adds a Gaussian low-pass
filter to the attention of the frequency domain channel. It should be noted
that GLCAM (layer 1) represents Conv Unit 1 and it joins the GLCA-
Net. All the remaining seven layers have been replaced by FCA modules.

Table 2. Result of Ablation Study.

Network Parameters (𝑀) Accuracy (%)

CNN(Backbone) 0.87 85.88

FCA[5] 1.06 89.95

GLCAM(1 layer) 1.06 89.71

GLCAM(1-2 layers) 1.06 90.19

GLCAM(1-3 layers) 1.06 89.62

GLCAM(1-4 layers) 1.06 90.67

GLCAM(1-5 layers) 1.06 90.93

GLCAM(1-6 layers) 1.06 92.00

GLCAM(1-7 layers) 1.06 91.02

GLCAM(1-8 layers) 1.06 92.09

As shown in Table 2. FCA obtains higher accuracy than CNN by 4.07
%, where FCA contains 8 layers frequency domain channel attention.
The accuracy of our method is 2.14 % higher than FCA In terms of
correctness. On the whole, as the GLCAM is added in more layers of
the network, the recognition accuracy has increased, and the addition of
GLCAM do not increase the number of parameters.

An Interesting Discovery About The Feature-Map: Finally, we visual-
ize the convolution parameters in the first layer of GLCA-Net, as shown
in Fig.7. Considering the fact in Fig.2 (b), we found that the network
autonomously and consciously reduces the impact of 0-frequency by
training. The first layer of this module is an autocorrelation filter in
the frequency domain that focuses more on near-low frequency infor-
mation than 0-frequency. Thus the experiments demonstrate that using
GAP alone does not fully exploit the properties of the data.

Fig 7 F-ConvGAP Feature Map(1 layer).

Conclusion: In this letter, a new attention module named GLCAM is
proposed to explore the fingerprint of ADS-B signals. Firstly, adding
attention module to frequency domain shifts the focus of feature
enhancement, which is interest to signal identification. Secondly, we
design a new GAP called F-ConvGAP in the block to train more effi-
ciently. The improved deep learning network achieves good identifica-
tion results in the experiments. In addition, this lightweight model can
be better applied to engineering applications.
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