contributions
Conceptualization, Investigation, Writing- Original draft, Writing –
Review & Editing, Visualisation, Supervision: Molnár, O
Conceptualization, Investigation, Writing – Review & Editing: Knickel, M
Conceptualization, Investigation, Writing – Review & Editing: Marizzi, C.
Availability of Data and Materials
Not applicable.
Financial Support and Sponsorship
None.
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical Approval and Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Copyright
© The Author(s) 2021.
References
1. Brooks DR, Hoberg EP, Boeger WA. The Stockholm Paradigm Climate Change and Emerging Disease. Chicago University Press; 2019.
2. COVID-19 to Plunge Global Economy into Worst Recession since World War II [Internet]. Available from: https://www.worldbank.org/en/news/press-release/2020/06/08/covid-19-to-plunge-global-economy-into-worst-recession-since-world-war-ii
3. 2020 Year in Review: The impact of COVID-19 in 12 charts [Internet]. Available from: https://blogs.worldbank.org/voices/2020-year-review-impact-covid-19-12-charts
4. Cameron EE, Nuzzo JB, Bell JA, Nalabandian M, O’Brien J, League A, et al. Global Health Security Index [Internet]. 2019. Available from: https://www.ghsindex.org/wp-content/uploads/2020/04/2019-Global-Health-Security-Index.pdf
5. Singh RK, Rani M, Bhagavathula AS, Sah R, Rodriguez-Morales AJ, Kalita H, et al. Prediction of the COVID-19 pandemic for the top 15 affected countries: Advanced autoregressive integrated moving average (ARIMA) model. JMIR Public Health and Surveillance [Internet]. 2020;6(2). Available from: http://dx.doi.org/10.2196/19115
6. DeSalvo K, Hughes B, Bassett M, Benjamin G, Fraser M, Galea S, et al. Public Health COVID-19 Impact Assessment: Lessons Learned and Compelling Needs. NAM Perspectives [Internet]. 2021 Apr 7; Available from: http://dx.doi.org/10.31478/202104c
7. Who. The COVID-19 pandemic: lessons learned for the WHO European Region. 2020.
8. Quaglio GL, Goerens C, Putoto G, Rübig P, Lafaye P, Karapiperis T, et al. Ebola: Lessons learned and future challenges for Europe [Internet]. Vol. 16, The Lancet Infectious Diseases. 2016. Available from: http://dx.doi.org/10.1016/S1473-3099(15)00361-8
9. Lakoff A. Unprepared_ Global Health in a Time of Emergency-University of California Press (2017). University of California Press; 2017.
10. Cheng VCC, Chan JFW, To KKW, Yuen KY. Clinical management and infection control of SARS: Lessons learned [Internet]. Vol. 100, Antiviral Research. 2013. Available from: http://dx.doi.org/10.1016/j.antiviral.2013.08.016
11. Funding boom or bust? [Internet]. Vol. 11, Nature Cell Biology. 2009. Available from: http://dx.doi.org/10.1038/ncb0309-227
12. Kading RC, Cohnstaedt LW, Fall K, Hamer GL. Emergence of arboviruses in the United States: The boom and bust of funding, innovation, and capacity [Internet]. Vol. 5, Tropical Medicine and Infectious Disease. 2020. Available from: http://dx.doi.org/10.3390/tropicalmed5020096
13. Morens DM, Fauci AS. Emerging Pandemic Diseases: How We Got to COVID-19 [Internet]. Vol. 182, Cell. 2020. Available from: http://dx.doi.org/10.1016/j.cell.2020.08.021
14. Pneumonia of unknown cause – China [Internet]. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON229
15. Schuler-Faccini L, Ribeiro EM, Feitosa IML, Horovitz DDG, Cavalcanti DP, Pessoa A, et al. Possible Association Between Zika Virus Infection and Microcephaly - Brazil, 2015. MMWR Morb Mortal Wkly Rep. 2016 Jan 29;65(3):59–62.
16. Multi-Country – Acute, severe hepatitis of unknown origin in children [Internet]. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON376
17. Findlater A, Bogoch II. Human Mobility and the Global Spread of Infectious Diseases: A Focus on Air Travel [Internet]. Vol. 34, Trends in Parasitology. 2018. Available from: http://dx.doi.org/10.1016/j.pt.2018.07.004
18. Cazzolla Gatti R, Menéndez LP, Laciny A, Bobadilla Rodríguez H, Bravo Morante G, Carmen E, et al. Diversity lost: COVID-19 as a phenomenon of the total environment [Internet]. Vol. 756, Science of the Total Environment. Elsevier B.V.; 2021. Available from: http://dx.doi.org/10.1016/j.scitotenv.2020.144014
19. Vianna Franco MP, Molnár O, Dorninger C, Laciny A, Treven M, Weger J, et al. Diversity regained: Precautionary approaches to COVID-19 as a phenomenon of the total environment. Vol 825, Science of the Total Environment. Elsevier B.V., 2022 Available from: https://doi.org/10.1016/j.scitotenv.2022.154029
20. Parrish CR, Kawaoka Y. The origins of new pandemic viruses: The acquisition of new host ranges by canine parvovirus and influenza A viruses [Internet]. Vol. 59, Annual Review of Microbiology. 2005. Available from: http://dx.doi.org/10.1146/annurev.micro.59.030804.121059
21. Molnár O, Hoberg E, Trivellone V, Földvári G, Brooks DR. The 3P Framework – A Comprehensive Approach to Coping with the Emerging Infectious Disease Crisis. Royal Society Open Science (under review).
22. Nylin S, Agosta S, Bensch S, Boeger WA, Braga MP, Brooks DR, et al. Embracing Colonizations: A New Paradigm for Species Association Dynamics. Trends Ecol Evol. 2018 Jan;33(1):4–14. Available from: https://doi.org/10.1016/j.tree.2017.10.005
23. de Vienne DM, Refrégier G, López-Villavicencio M, Tellier A, Hood ME, Giraud T. Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol. 2013 Apr;198(2):347–85. Available from: https://doi.org/10.1111/nph.12150
24. World Health Organization. A safer future: global public health security in the 21st century. WHO; 2007. 72 p.
25. Brooks DR, Hoberg EP, Boeger WA. In the Eye of the Cyclops: The Classic Case of Cospeciation and Why Paradigms are Important. copa. 2015 Jan;82(1):1–8. Available from: https://doi.org/10.1654/4724C.1
26. Hoberg EP, Brooks DR. Evolution in action: Climate change, biodiversity dynamics and emerging infectious disease. Philos Trans R Soc Lond B Biol Sci. 2015;370(1665):1–7. Available from: https://doi.org/10.1098/rstb.2013.0553
27. Agosta SJ, Janz N, Brooks DR. How specialists can be generalists: Resolving the and “parasite paradox” and implications for emerging infectious disease [Internet]. Vol. 27, Zoologia. 2010. p. 151–62. Available from: http://dx.doi.org/10.1590/S1984-46702010000200001
28. Brooks DR, Hoberg EP, Boeger WA, Gardner SL, Galbreath KE, Herczeg D, et al. Finding them before they find Us: Informatics, parasites, and environments in accelerating climate change. Comp Parasitol. 2014;81(2):155–64. Available from: https://doi.org/10.1654/4724b.1
29. Janzen DH. ON ECOLOGICAL FITTING. Oikos. 1985;45:308–10.
30. Lytras S, Xia W, Hughes J, Jiang X, Robertson DL. The animal origin of SARS-CoV-2. Science [Internet]. 2021 Aug 27;373(6558). Available from: http://dx.doi.org/10.1126/science.abh0117
31. Dicken SJ, Murray MJ, Thorne LG, Reuschl AK, Forrest C, Ganeshalingham M, et al. Characterisation of B.1.1.7 and Pangolin coronavirus spike provides insights on the evolutionary trajectory of SARS-CoV-2. bioRxiv : the preprint server for biology [Internet]. 2021; Available from: http://dx.doi.org/10.1101/2021.03.22.436468
32. McCullough J. RBCs as targets of infection. Hematology [Internet]. 2014;2014(1). Available from: http://dx.doi.org/10.1182/asheducation-2014.1.404
33. Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22311–22. Available from: https://doi.org/10.1073/pnas.201014611
34. Hoberg EP, Boeger WA, Brooks DR, Trivellone V, Agosta SJ. Stepping-stones and Mediators of Pandemic Expansion—A Context for Humans as Ecological Super-spreaders. 2022 [cited 2022 Aug 16]; Available from: https://digitalcommons.unl.edu/manter/19/
35. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008 Feb 21;451(7181):990–3. Available from: https://doi.org/10.1038/nature06536
36. Leach M, MacGregor H, Ripoll S, Scoones I, Wilkinson A. Rethinking disease preparedness: incertitude and the politics of knowledge. Crit Public Health [Internet]. 2021; Available from: http://dx.doi.org/10.1080/09581596.2021.1885628
37. Palagyi A, Marais BJ, Abimbola S, Topp SM, McBryde ES, Negin J. Health system preparedness for emerging infectious diseases: A synthesis of the literature. Glob Public Health. 2019 Dec 2;14(12):1847–68. Available from: doi: 10.1080/17441692.2019.1614645.
38. Gurr GM, Johnson AC, Ash GJ, Wilson BAL, Ero MM, Pilotti CA, et al. Coconut lethal yellowing diseases: A phytoplasma threat to palms of global economic and social significance [Internet]. Vol. 7, Frontiers in Plant Science. 2016. Available from: http://dx.doi.org/10.3389/fpls.2016.01521
39. Datt N. Key transboundary plant pests of Coconut [Cocos nucifera] in the Pacific Island Countries – a biosecurity perspective. Plant Pathol Quar J Fungal Biolog. 2020;10(1):152–71. DOI: 10.5943/ppq/10/1/17
40. Pretorius ZA, Singh RP, Wagoire WW, Payne TS. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in uganda. Plant Dis [Internet]. 2000;84(2). Available from: http://dx.doi.org/10.1094/PDIS.2000.84.2.203B
41. Saunders DGO, Pretorius ZA, Hovmøller MS. Tackling the re-emergence of wheat stem rust in Western Europe [Internet]. Vol. 2, Communications Biology. 2019. Available from: http://dx.doi.org/10.1038/s42003-019-0294-9
42. ’Newton J, ’Kuethe T. Economic Implications of the 2014-2015 Bird Flu. Vol. 5, farmdoc daily. Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign; 2015.
43. Miller BJ. Why unprecedented bird flu outbreaks sweeping the world are concerning scientists. Nature. 2022 Jun;606(7912):18–9.
44. ’Food and Agriculture Organization of the United Nations (FAO)’. Food Outlook – Biannual report on global food markets. Rome; 2019.
45. Xia W, Hughes J, Robertson DL, Jiang X. How one pandemic led to another: ASFV, the disruption contributing to SARS-CoV-2 emergence in Wuhan. Preprints 2021. 2021;
46. Brooks DR, Hoberg EP, Boeger WA, Trivellone V. Emerging infectious disease: An underappreciated area of strategic concern for food security [Internet]. Transboundary and Emerging Diseases. 2021. Available from: http://dx.doi.org/10.1111/tbed.14009
47. Brooks DR, Trivellone V, Hoberg EP, Boeger WA, Manter HW. Food security and emerging infectious disease: risk assessment and risk management. 2022; Available from: https://doi.org/10.1098/rsos.211687
48. Bernstein AS, Ando AW, Loch-Temzelides T, Vale MM, Li BV, Li H, et al. The costs and benefits of primary prevention of zoonotic pandemics. Sci Adv. 2022 Feb 4;8(5):eabl4183. DOI: 10.1126/sciadv.abl4183
49. Cyranoski D. Bat cave solves mystery of deadly SARS virus — and suggests new outbreak could occur. Nature [Internet]. 2017 Dec 1;552(7683). Available from: http://dx.doi.org/10.1038/d41586-017-07766-9
50. Avian Influenza in Birds | Avian Influenza (Flu) [Internet]. Available from: https://www.cdc.gov/flu/avianflu/avian-in-birds.htm
51. Gallardo MC, Reoyo A de la T, Fernández-Pinero J, Iglesias I, Muñoz MJ, Arias ML. African swine fever: A global view of the current challenge [Internet]. Vol. 1, Porcine Health Management. 2015. Available from: http://dx.doi.org/10.1186/s40813-015-0013-y
52. Dunnum JL, McLean BS, Dowler RC, Alvarez-Castañeda ST, Bradley JE, Bradley RD, et al. Mammal collections of the Western Hemisphere: A survey and directory of collections. J Mammal [Internet]. 2018;99(6). Available from: http://dx.doi.org/10.1093/jmammal/gyy151
53. Colella JP, Bates J, Burneo SF, Camacho MA, Bonilla CC, Constable I, et al. Leveraging natural history biorepositories as a global, decentralized, pathogen surveillance network [Internet]. Vol. 17, PLoS Pathogens. 2021. Available from: http://dx.doi.org/10.1371/journal.ppat.1009583
54. Marizzi C, Florio A, Lee M, Khalfan M, Ghiban C, Nash B, et al. DNA barcoding Brooklyn (New York): A first assessment of biodiversity in Marine Park by citizen scientists. PLoS One [Internet]. 2018;13(7). Available from: http://dx.doi.org/10.1371/journal.pone.0199015
55. Földvári G, Szabó É, Tóth GE, Lanszki Z, Zana B, Varga Z, et al. Emergence of Hyalomma marginatum and Hyalomma rufipes adults revealed by citizen science tick monitoring in Hungary. Transbound Emerg Dis [Internet]. 2022 Apr 25; Available from: http://dx.doi.org/10.1111/tbed.14563
56. Jahn T, Bergmann M, Keil F. Transdisciplinarity: Between mainstreaming and marginalization. Ecol Econ. 2012 Jul 1;79:1–10. Available from: https://doi.org/10.1016/j.ecolecon.2012.04.017
57. Schäpke N, Stelzer F, Caniglia G, Bergmann M, Wanner M, Singer-Brodowski M, et al. Jointly Experimenting for Transformation? Shaping Real-World Laboratories by Comparing Them. GAIA - Ecological Perspectives for Science and Society. 2018;27(1):85–96. Available from: https://doi.org/10.14512/gaia.27.S1.16
58. Haire-Joshu D, McBride TD, editors. Transdisciplinary Public Health: Research, Education, and Practice. Wiley; 2013. (Jossey-Bass Public Health).
59. Fao, OiE, Who. Global Early Warning and Response System for Major Animal Diseases, including Zoonoses (GLEWS). 2006.
60. FAO and WHO. Codex and the SDGs [Internet]. ​FAO and WHO; 2020 Dec. Available from: http://dx.doi.org/10.4060/CB0222EN
61. Khasnis AA, Nettleman MD. Global warming and infectious disease [Internet]. Vol. 36, Archives of Medical Research. 2005. p. 689–96. Available from: http://dx.doi.org/10.1016/j.arcmed.2005.03.041
62. Feronato SG, Araujo S, Boeger WA. “Accidents waiting to happen”—Insights from a simple model on the emergence of infectious agents in new hosts. Transbound Emerg Dis [Internet]. 2021; Available from: http://dx.doi.org/10.1111/tbed.14146
63. Romero Herrera N. The emergence of living lab methods. In: Living Labs: Design and Assessment of Sustainable Living. 2016.
64. Voytenko Y, McCormick K, Evans J, Schliwa G. Urban living labs for sustainability and low carbon cities in Europe: towards a research agenda. J Clean Prod. 2016 Jun 1;123:45–54. Available from: https://doi.org/10.1016/j.jclepro.2015.08.053
65. Kim J, Kim YL, Jang H, Cho M, Lee M, Kim J, et al. Living labs for health: An integrative literature review. Eur J Public Health [Internet]. 2020;30(1). Available from: http://dx.doi.org/10.1093/eurpub/ckz105
66. Mirijamdotter, Ståhlbröst, Sällström. The European Network of Living Labs for CWE-user-centric co-creation and innovation. , Case Studies IOS … [Internet]. Available from: https://www.academia.edu/download/34117628/eChallenges_1054_doc_1502_1_.pdf
67. Menny M, Palgan YV, McCormick K. Urban Living Labs and the Role of Users in Co-Creation [Internet]. Vol. 27, GAIA - Ecological Perspectives for Science and Society. 2018. p. 68–77. Available from: http://dx.doi.org/10.14512/gaia.27.s1.14
68. Plohl N, Musil B. Modeling compliance with COVID-19 prevention guidelines: the critical role of trust in science. Psychol Health Med [Internet]. 2021;26(1). Available from: http://dx.doi.org/10.1080/13548506.2020.1772988
69. Kreps SE, Kriner DL. Model uncertainty, political contestation, and public trust in science: Evidence from the COVID-19 pandemic. Science Advances [Internet]. 2020;6(43). Available from: http://dx.doi.org/10.1126/sciadv.abd4563
70. Steen K, Van Bueren E. Urban Living Labs: A Living Lab Way of Working Analysis of the methods of Urban Living Labs View project Towards a Circular Products Initiative in the EU View project [Internet]. 2017. Available from: https://www.researchgate.net/publication/318109901
71. Benelli G, Beier JC. Current vector control challenges in the fight against malaria [Internet]. Vol. 174, Acta Tropica. Elsevier B.V.; 2017. p. 91–6. Available from: http://dx.doi.org/10.1016/j.actatropica.2017.06.028
72. Chen Y, Wang Y, Robertson ID, Hu C, Chen H, Guo A. Key issues affecting the current status of infectious diseases in Chinese cattle farms and their control through vaccination. Vaccine [Internet]. 2021;39(30). Available from: http://dx.doi.org/10.1016/j.vaccine.2021.05.078
73. Gebreyes WA, Dupouy-Camet J, Newport MJ, Oliveira CJB, Schlesinger LS, Saif YM, et al. The Global One Health Paradigm: Challenges and Opportunities for Tackling Infectious Diseases at the Human, Animal, and Environment Interface in Low-Resource Settings. PLoS Negl Trop Dis [Internet]. 2014;8(11). Available from: http://dx.doi.org/10.1371/journal.pntd.0003257
74. Palmer JRB, Oltra A, Collantes F, Delgado JA, Lucientes J, Delacour S, et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat Commun [Internet]. 2017;8(1). Available from: http://dx.doi.org/10.1038/s41467-017-00914-9
75. Lawson B, Petrovan SO, Cunningham AA. Citizen Science and Wildlife Disease Surveillance [Internet]. Vol. 12, EcoHealth. 2015. Available from: http://dx.doi.org/10.1007/s10393-015-1054-z
76. Uchtmann N, Herrmann JAR, Hahn EC, Beasley VRI. Barriers to, Efforts in, and Optimization of Integrated One Health Surveillance: A Review and Synthesis [Internet]. Vol. 12, EcoHealth. 2015. Available from: http://dx.doi.org/10.1007/s10393-015-1022-7
77. Ilukor J, Birner R, Rwamigisa PB, Nantima N. The provision of veterinary services: Who are the influential actors and what are the governance challenges? a case study of Uganda. Exp Agric [Internet]. 2015;51(3). Available from: http://dx.doi.org/10.1017/S0014479714000398
78. Vollmer NA, Valadez JJ. A psychological epidemiology of people seeking HIV/AIDS counselling in Kenya: An approach for improving counsellor training. AIDS [Internet]. 1999;13(12). Available from: http://dx.doi.org/10.1097/00002030-199908200-00017
79. Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-emerging infectious diseases. Nature. 2004 Jul 8;430(6996):242–9. Available from: https://doi.org/10.1038/nature02759
80. Van Der Mensbrugghe D. Evaluating the Economic Consequences of Avian Influenza(1) [Internet]. 2008. Available from: http://www.worldbank.org/gdf2006.
81. Kelly TR, Karesh WB, Johnson CK, Gilardi KVK, Anthony SJ, Goldstein T, et al. One Health proof of concept: Bringing a transdisciplinary approach to surveillance for zoonotic viruses at the human-wild animal interface. Prev Vet Med [Internet]. 2017;137. Available from: http://dx.doi.org/10.1016/j.prevetmed.2016.11.023
82. Chatterjee P, Nair P, Chersich M, Terefe Y, Chauhan A, Quesada F, et al. One Health, “Disease X” & the challenge of “Unknown” Unknowns. Indian J Med Res [Internet]. 2021;153(3). Available from: http://dx.doi.org/10.4103/ijmr.ijmr_601_21
83. Wang YXG, Matson KD, Santini L, Visconti P, Hilbers JP, Huijbregts MAJ, et al. Mammal assemblage composition predicts global patterns in emerging infectious disease risk. Glob Chang Biol [Internet]. 2021;27(20). Available from: http://dx.doi.org/10.1111/gcb.15784
84. Franke F, Giron S, Cochet A, Jeannin C, Leparc-Goffart I, de Valk H, et al. Autochthonous chikungunya and dengue fever outbreak in Mainland France, 2010-2018. Eur J Public Health [Internet]. 2019;29(Supplement_4). Available from: http://dx.doi.org/10.1093/eurpub/ckz186.628
85. Weaver SC, Lecuit M. Chikungunya Virus and the Global Spread of a Mosquito-Borne Disease. N Engl J Med. 2015 Mar 26;372(13):1231–9. DOI: 10.1056/NEJMra1406035
86. Brady OJ, Hay SI. The first local cases of Zika virus in Europe. Lancet. 2019 Nov;394(10213):1991–2. Available from: https://doi.org/10.1016/S0140-6736(19)32790-4
87. Ryan SJ, Carlson CJ, Tesla B, Bonds MH, Ngonghala CN, Mordecai EA, et al. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob Chang Biol [Internet]. 2021;27(1). Available from: http://dx.doi.org/10.1111/gcb.15384
88. WHO working closely with countries responding to monkeypox [Internet]. Available from: https://www.who.int/news/item/20-05-2022-who-working-closely-with-countries-responding-to-monkeypox
89. Agate L, Beam D, Bucci C, Dukashin Y, Jo’Beh R, O’Brien K, et al. The Search for Violacein-Producing Microbes to Combat Batrachochytrium dendrobatidis : A Collaborative Research Project between Secondary School and College Research Students. J Microbiol Biol Educ [Internet]. 2016;17(1). Available from: http://dx.doi.org/10.1128/jmbe.v17i1.1002
90. Seifert VA, Wilson S, Toivonen S, Clarke B, Prunuske A. Community Partnership Designed to Promote Lyme Disease Prevention and Engagement in Citizen Science. J Microbiol Biol Educ [Internet]. 2016;17(1). Available from: http://dx.doi.org/10.1128/jmbe.v17i1.1014
91. Tomley FM, Shirley MW. Livestock infectious diseases and zoonoses [Internet]. Vol. 364, Philosophical Transactions of the Royal Society B: Biological Sciences. 2009. Available from: http://dx.doi.org/10.1098/rstb.2009.0133
92. Bett B, Kiunga P, Gachohi J, Sindato C, Mbotha D, Robinson T, et al. Effects of climate change on the occurrence and distribution of livestock diseases. Prev Vet Med [Internet]. 2017;137. Available from: http://dx.doi.org/10.1016/j.prevetmed.2016.11.019
93. Rajala E, Lee HS, Nam NH, Huong CTT, Son HM, Wieland B, et al. Skewness in the literature on infectious livestock diseases in an emerging economy-the case of Vietnam [Internet]. Vol. 22, Animal Health Research Reviews. 2021. Available from: http://dx.doi.org/10.1017/S1466252321000013
94. Ashfaq M, Kousar R, Makhdum MSA, Naqivi SAA, Razzaq A. FARMERS’PERCEPTION AND AWARENESS REGARDING CONSTRAINTS AND STRATEGIES TO CONTROL LIVESTOCK DISEASES. Pakistan Journal of Agricultural Sciences [Internet]. 2020;57(2). Available from: https://www.researchgate.net/profile/Muhammad-Makhdum/publication/339137051_FARMERS’_PERCEPTION_AND_AWARENESS_REGARDING_CONSTRAINTS_AND_STRATEGIES_TO_CONTROL_LIVESTOCK_DISEASES/links/5e405c7d92851c7f7f2bbbe6/FARMERS-PERCEPTION-AND-AWARENESS-REGARDING-CONSTRAINTS-AND-STRATEGIES-TO-CONTROL-LIVESTOCK-DISEASES.pdf
95. Brooks-Pollock E, de Jong MCM, Keeling MJ, Klinkenberg D, Wood JLN. Eight challenges in modelling infectious livestock diseases. Epidemics [Internet]. 2015;10. Available from: http://dx.doi.org/10.1016/j.epidem.2014.08.005
96. te Beest DE, Hagenaars TJ, Stegeman JA, Koopmans MPG, van Boven M. Risk based culling for highly infectious diseases of livestock. Vet Res. 2011 Jun 29;42:81. Available from: https://doi.org/10.1186/1297-9716-42-81
97. Nyerere N, Luboobi LS, Mpeshe SC, Shirima GM. Optimal Control Strategies for the Infectiology of Brucellosis. Int J Math Math Sci [Internet]. 2020 May 11 [cited 2022 May 24];2020. Available from: https://www.hindawi.com/journals/ijmms/2020/1214391/
98. Mysterud A, Hopp P, Alvseike KR, Benestad SL, Nilsen EB, Rolandsen CM, et al. Hunting strategies to increase detection of chronic wasting disease in cervids. Nat Commun. 2020 Sep 1;11(1):4392. Available from: https://doi.org/10.1038/s41467-020-18229-7
99. Baluka SA. Economic effects of foot and mouth disease outbreaks along the cattle marketing chain in Uganda. Vet World. 2016 Jun;9(6):544–53. doi: 10.14202/vetworld.2016.544-553
100. Blake A, Thea Sinclair M, Sugiyarto G. Quantifying the Impact of Foot and Mouth Disease on Tourism and the UK Economy [Internet]. Vol. 9, Tourism Economics. 2003. p. 449–65. Available from: http://dx.doi.org/10.5367/000000003322663221
101. Watanabe T, Watanabe S, Maher EA, Neumann G, Kawaoka Y. Pandemic potential of avian influenza A (H7N9) viruses. Trends Microbiol. 2014 Nov;22(11):623–31. DOI: 10.1016/j.tim.2014.08.008
102. Elmberg J, Berg C, Lerner H, Waldenström J, Hessel R. Potential disease transmission from wild geese and swans to livestock, poultry and humans: a review of the scientific literature from a One Health perspective. Infect Ecol Epidemiol. 2017 Apr 10;7(1):1300450. DOI: 10.1080/20008686.2017.1300450
103. Mohamed A. Bovine tuberculosis at the human-livestock-wildlife interface and its control through one health approach in the Ethiopian Somali Pastoralists: A review. One Health. 2020 Jun;9:100113. Available from: https://doi.org/10.1016/j.onehlt.2019.100113
104. Meadows AJ, Mundt CC, Keeling MJ, Tildesley MJ. Disentangling the influence of livestock vs. farm density on livestock disease epidemics. Ecosphere. 2018 Jul;9(7):e02294. Available from: https://doi.org/10.1002/ecs2.2294
105. Perrin LD. Exploration of the Spatial Epidemiology of Tick Borne Pathogens of Livestock in Southern Cumbria [Internet]. 2017. Available from: https://search.proquest.com/openview/f8662fc33be92cd33e5c2f03927570c7/1?pq-origsite=gscholar&cbl=51922&diss=y
106. Kim. Environmental problem and Citizens Science owing to the failure of foot and mouth disease (FMD) policy. The Korean Association for Environmental Sociology. 2011;
107. Schulthess H. Vorschlag einiger durch die Erfahrung bewährter Hilfsmittel gegen den Brand im Korn. Abh Nat.forsch Ges Zur. 1761;1:498–506.
108. Ayesha MS, Suryanarayanan TS, Nataraja KN, Prasad SR, Shaanker RU. Seed Treatment With Systemic Fungicides: Time for Review. Front Plant Sci. 2021 Aug 2;12:654512. Available from: https://doi.org/10.3389/fpls.2021.654512
109. Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR. Priming for enhanced defense. Annu Rev Phytopathol. 2015 Jun 11;53:97–119. DOI: 10.1146/annurev-phyto-080614-120132
110. Russell PE. The development of commercial disease control. Plant Pathol. 2006 Oct;55(5):585–94. Available from: https://doi.org/10.1111/j.1365-3059.2006.01440.x
111. Oerke EC, Dehne HW, Schönbeck F, Weber A. Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops. Elsevier; 2012. 829 p.
112. Hanssen IM, Lapidot M, Thomma BPHJ. Emerging viral diseases of tomato crops. Mol Plant Microbe Interact. 2010 May;23(5):539–48. doi:10.1094/ MPMI -23-5-0539
113. Fontaine MC, Labbé F, Dussert Y, Delière L, Richart-Cervera S, Giraud T, et al. Europe as a bridgehead in the worldwide invasion history of grapevine downy mildew, Plasmopara viticola [Internet]. Vol. 31, Current Biology. 2021. p. 2155–66.e4. Available from: http://dx.doi.org/10.1016/j.cub.2021.03.009
114. Matić, Tabone, Guarnaccia, Gullino. Emerging leafy vegetable crop diseases caused by the Fusarium incarnatum-equiseti species complex. Phytopathol Mediterr [Internet]. 2020; Available from: https://www.torrossa.com/gs/resourceProxy?an=4710874&publisher=FF3888#page=89
115. Yadav S, Gettu N, Swain B, Kumari K, Ojha N, Gunthe SS. Bioaerosol impact on crop health over India due to emerging fungal diseases (EFDs): an important missing link. Environ Sci Pollut Res Int. 2020 Apr;27(11):12802–29. Available from: https://doi.org/10.1007/s11356-020-08059-x
116. Vurro M, Bonciani B, Vannacci G. Emerging infectious diseases of crop plants in developing countries: impact on agriculture and socio-economic consequences. Food Security. 2010 Jun 1;2(2):113–32. Available from: https://doi.org/10.1007/s12571-010-0062-7
117. Fones HN, Bebber DP, Chaloner TM, Kay WT, Steinberg G, Gurr SJ. Threats to global food security from emerging fungal and oomycete crop pathogens. Nature Food. 2020 Jun 8;1(6):332–42. Available from: https://doi.org/10.1038/s43016-020-0075-0
118. Galetto L, Bosco D, Balestrini R, Genre A, Fletcher J, Marzachì C. The Major Antigenic Membrane Protein of “Candidatus Phytoplasma asteris” Selectively Interacts with ATP Synthase and Actin of Leafhopper Vectors. PLoS One. 2011 Jul 25;6(7):e22571. DOI: 10.1371/journal.pone.0022571
119. Trivellone V, Ripamonti M, Angelini E, Filippin L, Rossi M, Marzachí C, et al. Evidence suggesting interactions between immunodominant membrane protein Imp of Flavescence dorée phytoplasma and protein extracts from distantly related insect species. J Appl Microbiol. 2019 Dec;127(6):1801–13. DOI: 10.1111/jam.14445
120. Bakker MG, Acharya J, Moorman TB, Robertson AE, Kaspar TC. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens. Phytopathology. 2016 Jun;106(6):591–601. Available from: https://doi.org/10.1094/PHYTO-09-15-0214-R
121. About CVAP – Cassava Virus Action Project [Internet]. Available from: https://cassavavirusactionproject.com/about/
122. Lidwell-Durnin J. Cultivating famine: data, experimentation and food security, 1795-1848. Br J Hist Sci. 2020 Jun;53(2):159–81.
123. Hampf AC, Nendel C, Strey S, Strey R. Biotic Yield Losses in the Southern Amazon, Brazil: Making Use of Smartphone-Assisted Plant Disease Diagnosis Data. Front Plant Sci. 2021 Apr 15;12:621168. Available from: https://doi.org/10.3389/fpls.2021.621168
124. Steinke J, van Etten J, Zelan PM. The accuracy of farmer-generated data in an agricultural citizen science methodology. Agron Sustain Dev. 2017 Jul 24;37(4):32. Available from: https://doi.org/10.1007/s13593-017-0441-y