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Abstract 15 

Protein allocation determines the activity of cellular pathways and affects growth across all 16 

organisms. Therefore, different experimental and machine learning approaches have been 17 

developed to quantify and predict protein abundances, respectively. Yet, despite advances in 18 

protein quantification, it remains challenging to predict condition-specific allocation of 19 

enzymes in metabolic networks. Here we propose a family of constrained-based approaches, 20 

termed PARROT, to predict enzyme allocations based on the principle of minimizing the 21 

enzyme allocation adjustment using protein-constrained metabolic models. To this end, 22 

PARROT variants model the minimization of enzyme reallocation using four different 23 

(combinations of) distance functions. We demonstrate that the PARROT variant that 24 

minimizes the Manhattan distance of enzyme allocations outperforms existing approaches 25 

based on the parsimonious distribution of fluxes or enzymes for both Escherichia coli and 26 

Saccharomyces cerevisiae. Further, we show that the combined minimization of flux and 27 

enzyme allocation adjustment leads to inconsistent predictions. Together, our findings 28 

indicate that minimization of resource, rather than flux, redistribution is a governing principle 29 

determining steady-state pathway activity for microorganism grown in suboptimal conditions. 30 

 31 

KEYWORDS: Metabolic modelling; Metabolic engineering; Quantitative proteomics; 32 

Systems biology 33 
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Introduction 35 

Constraint-based approaches have been employed to simulate and predict phenotypes based 36 

on genome-scale metabolic models (GEMs) [1]. While already useful for predicting a wide 37 

range of phenotypes, the predictive performance of GEMs has been further improved by 38 

integrating protein constraints, such as: enzyme catalytic rates and the allocation of enzyme 39 

abundances across reactions [2,3]. These protein-constrained GEMs (pcGEMs) have been 40 

used to predict complex phenotypes, such as the overflow metabolism, in which fermentation 41 

predominates over respiration when microorganisms grow in high sugar concentrations [3,4], 42 

and diauxic growth, when multiple carbon sources are available and the microbial growth 43 

presents two or more growth phases [5]. The models also allow for the incorporation of 44 

proteomics data, and thus provide a framework for multi-omics data analysis and integration 45 

[3,6]. 46 

The parameters included in pcGEMs are: (i) the enzyme turnover numbers, 𝑘𝑐𝑎𝑡, a 47 

first-order rate constant with the unit of s-1, that describes the limiting rate of reactions 48 

catalysed by enzymes when these are fully occupied at their saturation point; and (ii) enzyme 49 

abundances (in mmol/gDW), obtained from quantitative proteomics experiments. Values of 50 

𝑘𝑐𝑎𝑡 can be measured from biochemical assays or estimated from computational methods 51 

based on constraint-based and data-driven approaches [7], while enzyme abundances are 52 

obtained from absolute proteomics measurements. More specifically, they are obtained from 53 

peptide intensity-based quantification or spectral counting [8]. However, proteomics 54 

experiments for absolute quantification are still difficult to perform, given the challenges put 55 

forward by the diversity of physicochemical properties of protein [9], lack of standards and 56 

problems in reproducibility [10], and overall inaccessibility given the high costs of equipment 57 

and supplies [11]. 58 
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Computational methods have also been developed to predict protein abundance, 59 

mostly based on data-driven models. These models often explore the central dogma of 60 

molecular biology by assessing the relationship between transcription and protein 61 

biosynthesis. Notable approaches to estimate protein abundance include the joint learning 62 

approach devised by Li et al [12], where an ensemble model was constructed by combining 63 

different supervised learning algorithms, outperforming competing approaches in the NCI-64 

CPTAC DREAM Proteogenomics Challenge. Another approach, developed by Terai and 65 

Asai [13], uses features such as the accessibility around the Shine-Dalgarno sequence, 66 

minimum free energy of the mRNA molecule, Viterbi score, and inside-outside score. 67 

Further, Ferreira et al. [14] explored codon usage bias information to train an AdaBoost 68 

regression model, achieving higher correlations than previous approaches without the usage 69 

of transcriptomics data. 70 

Aside from machine learning models, constraint-based approaches have also been 71 

used to predict protein abundance. Using approaches such as MOMENT [2] or GECKO [3], 72 

it is possible to calculate the optimal concentration of enzymes necessary to carry the 73 

provided flux with the provided catalytic rate, given the relationship: 74 

𝑣𝑗 ≤ 𝑘𝑐𝑎𝑡
𝑖𝑗

 ∙ [𝐸𝑖] (1) 75 

where 𝑣𝑗  is the metabolic flux of reaction 𝑗, [𝐸𝑖] is the concentration of an enzyme 𝑖, and 𝑘𝑐𝑎𝑡
𝑖𝑗

 76 

is the catalytic rate of an enzyme 𝑖 catalyzing a reaction 𝑗. This allows for deriving 𝑘𝑐𝑎𝑡
𝑖𝑗

 77 

values given the other two are available. This relationship was explored by Heckmann et al. 78 

[15] by using pcGEMs to predict enzyme concentrations given catalytic rates predicted 79 

computationally, achieving a 43% lower root mean squared error.  80 

Assuming that pcGEMs that integrate proteomics data predict flux distributions that 81 

reflect the corresponding metabolic state, we ask whether the reverse operation could be 82 
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employed to predict proteomics data that match a given physiological state. Moreover, as 83 

cells are exposed to stresses or changing environmental conditions, the optimal growth state 84 

is disturbed, leading to a suboptimal growth state in which gene expression, regulatory 85 

pathways and metabolic flux are changed in adjusting the cell to this new physiological 86 

condition [16]. Despite the aforementioned advances in predicting protein abundances, the 87 

problem of predicting enzyme allocation under suboptimal growth conditions remains largely 88 

unexplored. Here we propose PARROT (Figure 1), for Protein allocation Adjustment foR 89 

suboptimal enviROnmenTs, a family of constraint-based approaches for prediction of protein 90 

abundances for suboptimal conditions using protein abundances measured in a reference, 91 

optimal state. Our proposed approach is inspired by Minimization of Metabolic Adjustment 92 

(MOMA) [17], which minimizes the distance between a reference state and a gene knock-out 93 

state while ensuring cell survival in the later. We show that PARROT predicted enzyme 94 

concentrations in very good agreement with experimental data and outperformed competing 95 

methods for minimizing flux distributions. Therefore, PARROT can be used to parameterize 96 

pcGEMs for unseen, suboptimal conditions from which metabolic phenotypes can further be 97 

analysed. 98 

 99 

 100 

Methods 101 

The principle of minimizing the change in enzyme usage between a suboptimal and 102 

reference state 103 

To find the enzyme distribution vector that matches the enzyme usage of a cell growing in 104 

suboptimal growth conditions, we propose PARROT, an approach that minimizes the 105 

distance between a reference enzyme allocation 𝐄𝐫𝐞𝐟 and a suboptimal growth enzyme 106 
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allocation 𝐄𝐬 (Figure 1). This is consistent with observations that micro-organisms minimize 107 

expenditures to perform a growth and associated flux state [18]. We define and compare four 108 

different objectives to model the distance between enzyme allocations in suboptimal and 109 

reference states: (i) the Manhattan distance; (ii) the Euclidean distance; (iii) the weighted sum 110 

of the Manhattan distance between enzyme allocations and the Manhattan distance between 111 

flux distributions; (iv) the weighted sum of the Euclidean distance between enzyme 112 

allocations and the Euclidean distance between flux distributions. The first can be formulated 113 

as a linear optimization problem (LP1), specified as follows: 114 

min‖
𝐄𝐫𝐞𝐟

Eref
tot −

𝐄𝐬

Es
tot‖

1

 (2) 115 

s.t. 𝐍𝐯 = 𝟎 (3) 116 

𝑣𝑠,𝑚𝑖𝑛 ≤ 𝑣𝑠 ≤ 𝑣𝑠,𝑚𝑎𝑥 (4) 117 

𝑣𝑠 ≤ 𝑘𝑐𝑎𝑡 ⋅ [𝐸𝑠] (5) 118 

∑ 𝐸𝑠 = 𝐸𝑠
𝑡𝑜𝑡 (6) 119 

𝑣𝑏𝑖𝑜 = 𝜇, (7) 120 

where 𝐸𝑟𝑒𝑓
𝑡𝑜𝑡  and 𝐸𝑠

𝑡𝑜𝑡 represent the total enzyme usage in the model for the reference and 121 

suboptimal states, respectively; 𝐍 is the stoichiometric matrix; 𝐯 is the flux distribution 122 

vector; 𝑣𝑏𝑖𝑜 is the flux through the biomass pseudo-reaction; and 𝜇 is the specific growth rate, 123 

determined from measurements in the suboptimal state. The other objectives are captured by 124 

the following: 125 

QP1: ‖
𝐄𝐫𝐞𝐟

Eref
tot −

𝐄𝐬

Es
tot‖

2

, (8) 126 

LP2: ‖
𝐄𝐫𝐞𝐟

Eref
tot −

𝐄𝐬

Es
tot‖

1

+ λ‖𝐯𝐫𝐞𝐟 − 𝐯𝐬‖1, (9) 127 

QP2: ‖
𝐄𝐫𝐞𝐟

Eref
tot −

𝐄𝐬

Es
tot‖

2

+ λ‖𝐯𝐫𝐞𝐟 − 𝐯𝐬‖2. (10) 128 
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where the parameter λ is a weighting factor chosen by inspecting the difference between the 129 

norms of enzyme allocation and the flux distributions. We solved the corresponding problems 130 

under the same constraints as in Eq. 2. We implemented and solved the problems in 131 

MATLAB (The MathWorks Inc., Natick, Massachusetts) using the COBRA Toolbox [19] 132 

and the Gurobi solver v9.1.1 [20]. The implementation of PARROT can be found in the 133 

GitHub repository: https://github.com/mauricioamf/PARROT. 134 

 135 

Experimental data and simulation constraints 136 

To test the variants of the proposed approach, PARROT, we used the pcGEMs of 137 

Saccharomyces cerevisiae, ecYeast8 [21], and Escherichia coli, eciML1515 [22]. We 138 

employed quantitative proteomics measurements for both species performed in a number of 139 

growth conditions, ranging from optimal growth in standard physiological conditions to stress 140 

conditions, alternative nutrient usage and chemostat cultivation.  141 

For S. cerevisiae, we used the protein measurements from Chen and Nielsen [23] for 19 142 

different growth conditions, which were collected from four studies [24–27]. These included 143 

proteomics measurements in yeast growing in ethanol, osmolarity, and high temperature 144 

stresses [24]; yeast growing in chemostats with reducing nitrogen availability [25]; and yeast 145 

growing in chemostats limited by the nitrogen source in increasing dilution rates and in 146 

chemostats with alternative nitrogen sources [27]. We also used measurements of nutrient 147 

uptake rates, growth rates and protein content from these studies to constrain the batch model, 148 

which does not consider protein measurements and rely on the protein pool constraint.  149 

For E. coli, we used the proteomics data for 20 different growth conditions collected in 150 

[28] from three different studies [29–31]. These include batch cultivations of E. coli growing 151 

with different carbon sources and a glucose-limited chemostat culture, with dilution rates 152 

https://github.com/mauricioamf/PARROT
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ranging from 0.12 h-1 to 0.5 h-1 performed by Schmidt et al. [31], a second chemostat limited 153 

by glucose at dilution rates ranging from 0.11 h-1 to 0.49 h-1 [29], and a third chemostat 154 

limited by glucose at dilutions rates ranging from 0.21 h-1 to 0.51 h-1 [30]. Similar to S. 155 

cerevisiae, the batch model was constrained with the nutrient uptake rates, growth rates and 156 

protein content measured in the studies where the protein measurements were taken. For both 157 

species, we excluded the conditions that did not have measured uptake rates, growth rates, or 158 

protein content. In addition, we excluded the temperature stress conditions from Lahtvee et 159 

al. [24], as temperature can severely impact the function of enzymes [32], and temperature 160 

stress responses entail changes beyond metabolic flux redistribution [16]. 161 

 162 

Pre-processing of protein measurements for the reference state 163 

From the protein measurements obtained from Davidi et al. [28] and Chen and Nielsen [23] 164 

we separated the measurements according to each experiment performed in the original 165 

studies. From each experiment we selected the control sample to represent the reference state 166 

in our approach PARROT. We corrected the protein measurements for the reference state 167 

measurements by integrating the values into the pcGEMs ecYeast8 and eciML1515 for S. 168 

cerevisiae and E. coli, respectively, using the GECKO Toolbox 2 [22]. The GECKO Toolbox 169 

2 identifies the enzyme usage values that most limit growth and flexibilises the values to 170 

prevent over-constraining the model. We then used for the 𝐄𝐫𝐞𝐟 vector of each experiment the 171 

values for flexibilised proteins along with values for proteins that were unchanged. 172 

 173 

Assessment of predicted enzyme usage distributions  174 

The protein measurements, 𝐄𝐬
𝐞𝐱𝐩

, for the suboptimal growth conditions obtained from Davidi 175 

et al. [28] and Chen and Nielsen [23] were not used directly in simulations. These 176 
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experimental measurements were instead employed to calculate a baseline to which 177 

predictions of 𝐄𝐬 were compared. Assuming that simulations performed with pcGEMs use 178 

only the optimal concentration of enzymes necessary to carry a given metabolic flux, the 179 

model-allocated protein usage would underestimate the in vivo enzyme concentrations. To 180 

allow for a fair comparison, we devised a baseline by integrating the experimental proteomics 181 

measurements of each experiment into the pcGEMs using the GECKO Toolbox 2 in which 182 

we minimized the total enzyme allocation given the following optimization problem: 183 

min‖𝐄𝐬
𝐞𝐱𝐩

‖
1
 (11) 184 

s. t.  𝐍𝐯 = 𝟎 (12) 185 

𝐯𝐬,𝐦𝐢𝐧 ≤ 𝐯𝐬 ≤ 𝐯𝐬,𝐦𝐚𝐱 (13) 186 

𝑣𝑠,𝑗 ≤  𝑘𝑐𝑎𝑡
𝑖𝑗

⋅ [𝐸𝑠
𝑒𝑥𝑝,𝑖] (14) 187 

∑ 𝐸𝑠
𝑒𝑥𝑝 = 𝐸𝑠

𝑒𝑥𝑝,𝑡𝑜𝑡
 (15) 188 

𝑣𝑏𝑖𝑜 = 𝜇. (16) 189 

The resulting enzyme usage distribution, 𝐄𝐬
𝐞𝐱𝐩

, was then defined as the baseline for 190 

each sample of each proteomics experiment. We compared the predicted 𝐄𝐬 values from the 191 

four variants of PARROT to 𝐄𝐬
𝐞𝐱𝐩

 by calculating the Pearson correlations of each sample. 192 

Further, we calculated the root-median square error (RMdSE) to measure the difference 193 

between predicted and baseline values. For assessing both correlations and the RMdSE, we 194 

log10-transformed the values for the predictions and the baseline.  195 

We also performed a robustness analysis to check the effect of using the minimization 196 

of the second norm in constructing a baseline. In addition, we compared the predictions of 197 

our approaches to those obtained using an extension of parsimonious enzyme usage FBA 198 
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(pFBA) [33] to consider enzyme constraints. To this end, for each sample of each 199 

experiment, we defined the optimization problem as: 200 

min ∑ 𝑣𝑗,𝑠,𝑖𝑟𝑟𝑒𝑣
𝑚
𝑗=1  (17) 201 

s. t.  𝐍𝐬,𝐢𝐫𝐫𝐞𝐯 ⋅ 𝐯𝐬,𝐢𝐫𝐫𝐞𝐯 = 𝟎 (18) 202 

0 ≤ 𝐯𝐬,𝐢𝐫𝐫𝐞𝐯 ≤ 𝐯𝐬,𝐢𝐫𝐫𝐞𝐯,𝐦𝐚𝐱 (19) 203 

𝑣𝑠,𝑖𝑟𝑟𝑒𝑣,𝑗 ≤  𝑘𝑐𝑎𝑡
𝑖𝑗

⋅ [𝐸𝑠,𝑖] (20) 204 

∑ 𝐸𝑠 = 𝐸𝑠
𝑡𝑜𝑡 (21) 205 

𝑣𝑏𝑖𝑜 = 𝜇, (22) 206 

where 𝑣𝑗,𝑠,𝑖𝑟𝑟𝑒𝑣 corresponds to the flux distribution of an irreversible model in a non-optimal 207 

growth condition. We also assessed a modified version of pFBA with enzyme constraints 208 

with the following objective: 209 

min ∑ 𝐸𝑠,𝑖 ⋅ 𝑘𝑐𝑎𝑡
𝑖𝑗𝑚

𝑗=1  . (23) 210 

For pFBA and the modified implementation, we applied the same constraints on 211 

nutrient uptake rates and growth rates as for the four approaches assessed previously, and 212 

calculated the Pearson correlations and the RMdSE. Lastly, as a negative control to 213 

benchmark the performance of PARROT, we equated 𝐸𝑠,𝑖 to 𝑘𝑐𝑎𝑡
𝑖𝑗

, meaning that 𝑘𝑐𝑎𝑡 values 214 

we used directly as the enzyme usage. We calculated the correlation values and RMdSE for 215 

all assessed optimization problems and compared them to the predictions of pFBA and its 216 

modified implementation using a Pairwise Wilcoxon rank sum test with Bonferroni 217 

correction. 218 

 219 

Assessment of optimal values for the λ weighting factor 220 
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To systematically assess the impact of different lambda values, we optimised the LP2 and 221 

QP2 variants using λ values ranging from 0 (no fluxes used) to 1 (fluxes and enzyme usages 222 

equally considered). Additionally, we optimised the LP2 and QP2 variants using λ values 223 

ranging from 0.1 to 1 in order to make sure fluxes are always used for the objective function. 224 

In both scenarios, we calculated the Pearson correlation to the baseline for each λ value. We 225 

determined the optimal λ value as the value that outputs predictions with the highest Pearson 226 

correlation when compared to the first norm baseline. 227 

 228 

 229 

Results 230 

PARROT successfully captures protein allocation changes in yeast  231 

We used PARROT to predict the enzyme usage distribution for 19 growth conditions under 232 

constraints provided by experimental data. First, we built a baseline for comparison with 233 

predictions from PARROT (Figure 1). To this end, we integrated the experimental 234 

proteomics measurements obtained from Lahtvee et al. [24], Yu et al. [25], Di Bartolomeo et 235 

al. [26], and Yu et al. [27] (Table S1) in the ecYeast8 model and minimized the enzyme 236 

allocation (Methods). The resulting allocation of enzymes 𝐄𝐬
𝐞𝐱𝐩

 included 286 to 336 enzymes 237 

with abundance in all considered conditions. For the reference condition, we used the 238 

experimental proteomics measurements from optimal (control) growth conditions in the 239 

respective four groups of experiments, after flexibilization following GECKO 2.0 (see 240 

Methods) (Table S1). The number of enzymes contained in 𝐄𝐫𝐞𝐟 ranged from 533 to 744, 241 

depending on the investigated control sample. 242 

With the resulting enzyme allocation at the reference and the baseline of a suboptimal 243 

condition, 𝐄𝐫𝐞𝐟 and 𝐄𝐬
𝐞𝐱𝐩

, we used the four variants of PARROT (see Methods) to predict the 244 
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enzyme allocation, 𝐄𝐬, for the suboptimal condition. The number of enzymes contained in the 245 

predicted 𝐄𝐬 ranged from 18 to 336 over the considered experiments. When comparing the 246 

median of the calculated Pearson correlations between the baseline and predicted enzyme 247 

allocation correlations, we found that all PARROT variants achieved a higher median 248 

correlation when compared to pFBA and its modified implementation, except for the 249 

minimization of the Euclidean distances considering fluxes (Figure 2a, see QP2, Methods). 250 

We also evaluated the RMdSE between predictions and the baselines, and observed that the 251 

minimization of the Euclidean distance considering fluxes (QP2, Methods) resulted in a 252 

median error comparable to pFBA and its modified implementation, EsKcat (see Methods) 253 

(Figure 2b). Further, all PARROT variants outperformed the null model, where 𝑘𝑐𝑎𝑡 values 254 

are used directly as the enzyme usage. Taken together, the results demonstrated that 255 

PARROT achieved good predictive performance based on the data from S. cerevisiae. 256 

 257 

Different variants of PARROT outperformed contending methods for E. coli 258 

To verify if the conclusions from PARROT hold in another unicellular model organism, we 259 

applied it to predict enzyme allocation 𝐄𝐬 in suboptimal conditions for E. coli given 260 

constraints provided by growth experiments. As in the case of S. cerevisiae, we built a 261 

baseline for comparison with the predictions obtained from PARROT by integrating the 262 

experimental proteomics measurements from Valgepea et al. [29], Peebo et al. [30] and 263 

Schmidt et al. [31] (Table S2) in the eciML1515 model, and minimized the total enzyme 264 

allocation (see Methods). The resulting 𝐄𝐬
𝐞𝐱𝐩

 included protein allocation for 164 to 176 265 

enzymes. Further, as reference condition we considered the control samples or the chemostat 266 

measurements with the smallest dilution rate (Table S2). The number of enzymes contained 267 

in 𝐄𝐫𝐞𝐟 ranged from 152 to 188 depending on the control experimented used. 268 
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The prediction of 𝐄𝐬 distributions and their assessment were similar to S. cerevisiae, 269 

with the number of predicted values ranging from 19 to 141. After performing a comparison 270 

of Pearson correlations between variants of PARROT, pFBA and its modified 271 

implementation, EsKcat (see Methods), we found that different variants outperformed pFBA. 272 

Both minimizations of the Manhattan distance, with or without metabolic fluxes (LP1 and 273 

LP2, Methods), exhibited significantly higher median correlations compared to pFBA (p-274 

value = 1.24∙10-13 and 6.2∙10-14 for Pearson correlations respectively, pairwise Wilcoxon rank 275 

sum test) (Figure 3a). Another variant with a significant difference to pFBA was the 276 

minimization of the Euclidean distance of enzyme usages (QP1, Methods). Regarding the 277 

RMdSE, the minimization of the weighted sum of the Euclidean distance of enzyme usage 278 

and Euclidean distance of flux distributions outperformed the other PARROT variants. As 279 

with S. cerevisiae, PARROT outperformed the null model in all comparisons. These findings 280 

demonstrated that PARROT is applicable with data from another microorganism without 281 

decrease in performance.  282 

 283 

Robustness analysis shows the consistency of prediction from PARROT  284 

To further evaluate the predictions made by PARROT, we investigated how the usage of a 285 

baseline constructed by minimizing the second norm of the vector 𝐄𝐬
𝐞𝐱𝐩

 impacts the 286 

comparisons. To this end, we repeated all comparisons as performed for a baseline 287 

constructed by minimizing the first norm, using the predicted 𝐄𝐬 obtained by the PARROT 288 

variants. Importantly, the results were consistent between the two baseline approaches. For S. 289 

cerevisiae, the minimization of the weighted sum of the Manhattan distance of enzyme usage 290 

and Manhattan distance of flux distributions (LP2, Methods) was the variant that achieved the 291 

highest mean Pearson correlations than pFBA and its modified implementation (Figure S1). 292 
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For the RMdSE, all PARROT variants had errors comparable to the positive controls (Figure 293 

S2). As observed for comparisons using the first norm baseline, all PARROT variants 294 

outperformed the null model. 295 

The comparisons performed using predictions obtained for E. coli were also 296 

consistent with different variants of PARROT that outperformed pFBA. Considering the 297 

Pearson correlations, the minimization of the Manhattan distance (LP1, Methods) and the 298 

minimization of the weighted sum of the Manhattan distance of enzyme usage and Manhattan 299 

distance of flux distributions (LP2, Methods) also had the highest median correlations and 300 

were significantly different to pFBA. Likewise, these PARROT variants also had a 301 

significant difference to EsKcat, the modified implementation of pFBA (Figure S3). The 302 

comparison of RMdSE values were also consistent, as the errors were comparable to the 303 

positive controls (Figure S4). Altogether, these results highlight the robustness of estimations 304 

of 𝐄𝐬 obtained from PARROT.  305 

 306 

Proteome-aware minimalization is more relevant than minimization of flux distances 307 

We assessed the impact of different λ values ranging from 0 (no fluxes used) to 1 (fluxes and 308 

enzyme usages equally considered). We also considered a scenario of λ values ranging from 309 

0.1 to 1 in order to probe different solutions where metabolic fluxes are always considered. 310 

We considered λ value to be optimal if it resulted in the highest Pearson correlation to the 311 

baseline. In the first scenario, for both S. cerevisiae and E. coli the most frequent optimal λ 312 

was 0, with decreasing correlation values as λ values increased (Figure 4a, 4c). In the second 313 

scenario, the optimal λ values were more equally distributed, with S. cerevisiae having a 314 

higher frequency of lower values (Figure 4b). For E. coli, lower λ values were also frequent, 315 

while also having a λ of 1 slighly more frequent than a λ of 0.2 (Figure 5d). Taken together, 316 
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these results indicate that the problem of minimizing enzyme usage contributes more to 317 

predictions than minimizing metabolic fluxes. 318 

 319 

 320 

Discussion 321 

Here we proposed a family of constraint-based approaches, termed PARROT, that address the 322 

problem of predicting reallocation of protein abundance from an optimal condition to a 323 

suboptimal condition. PARROT is based on the principle that organisms tend to minimally 324 

adjust cellular physiology between growth conditions to make effective use of resources [18]. 325 

The predictions of enzyme allocation generated by PARROT rely on quantitative proteomics 326 

data for a reference condition. The resulting optimization problems constructed are thus similar 327 

to MOMA, which depends on a model representing a wild-type strain to predict a minimally 328 

adjusted flux distribution for a mutant strain. 329 

By comparing the predictions to a baseline constructed with experimental proteomics 330 

measurements for suboptimal conditions, we found that PARROT predicted protein 331 

abundances with very good agreement with the baseline. In addition, we demonstrated that 332 

these predictions were consistent and robust to how the baseline is constructed. The 333 

performance of PARROT also holds for two model organisms, S. cerevisiae and E. coli, 334 

highlighting the general application of the principle of minimal protein adjustment on which 335 

the predictions are based. 336 

From the different variants of PARROT, the minimization of the Manhattan distance 337 

(LP1) and the minimization of the weighted sum of the Manhattan distance of enzyme usage 338 

and Manhattan distance of flux distributions (LP2) were the best contenders. The variants QP1 339 

and QP2 – that minimizes Euclidean distances instead of Manhattan distances – resulted in 340 
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good but also inconsistent performance between S. cerevisiae and E. coli. This agrees with the 341 

fact that the first norm distance is the natural metric for enzyme abundances in the cell, because 342 

a change in enzyme concentration requires ribosomal activity that scales linearly with the 343 

enzyme abundance [34]. 344 

The baseline approach devised to assess the predictions allows for a fair comparison 345 

between the predicted enzyme usage distribution and the experimental protein abundance 346 

values. In constraining the pcGEMs using the proteomics measurements, the experimental 347 

values are first readjusted to match the enzyme levels that actually carry flux in the model, 348 

since more protein is produced than actually needed by the cell [35]. This, however, implies 349 

that the predicted values are not directly comparable to experimental proteomics values, which 350 

affect the determined measures of performance. By adjusting the experimental values to levels 351 

that are compatible with what is actually employed to carry metabolic flux, we could more 352 

adequately assess the correlation with enzyme allocation predicted from the pcGEMs, albeit 353 

losing the direct correspondence to experimental data.  354 

The parameter λ is a factor that weights the usage of metabolic fluxes for the 355 

optimisation problem. By varying this value between 0 and 1, we could assess how much the 356 

minimization of metabolic fluxes contributes to the problem of predicting enzyme usage. A λ 357 

value of 0 would render the variants LP2 and QP2 equivalent to LP1 and QP1, respectively, as 358 

metabolic flux would be neglected in the optimal solutions. A λ value of 1, in the other hand, 359 

renders LP2 and QP2 as equivalent to using a pcGEM with the canonical implementation of 360 

MOMA, which considers all fluxes equally. When the two PARROT variants are free to vary 361 

λ between 0 and 1, there is a strong preference for lower λ values. When constraining λ to a 362 

value between 0.1 and 1, higher values of λ are present but still not more prevalent than lower 363 

values of λ. This suggests that the joint minimization of fluxes and enzymes is not a principle 364 
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of flux redistribution, and the principle is guided by minimization of resource redistribution, as 365 

best captured by LP1 and QP1, and by LP2 and QP2 with low values of λ. Thus, by being 366 

proteome-aware, PARROT is better suited for simulations using pcGEMs than the quadratic 367 

and linear implementations of MOMA, given that higher participation of metabolic fluxes 368 

lowers the overall predictive performance. Altogether, we demonstrated that minimizing the 369 

readjustment of enzyme resource allocation is one principle underpinning microbial adjustment 370 

to a suboptimal condition. Thus, PARROT may allow for study and engineering of microbial 371 

cell factories, as these are often under suboptimal growth conditions in industrial settings [36]. 372 

Despite the advantages of using a baseline, predictions of enzyme levels using Eq. (1) 373 

still underestimates protein abundance, leading to a disparity between predictions and in vivo 374 

concentrations. This remaining portion of proteins, termed the “proteome reserve”, is useful 375 

for the cell to quickly adapt to unstable environments, being an evolutionary conserved strategy 376 

[37]. It is important to highlight, though, that this reasoning does not assume that cells are 377 

operating at the saturation point for all metabolites, but rather that enzymes are used 378 

inefficiently. If enzymes are operating near 𝑉𝑚𝑎𝑥, then enzymes would be the only cellular 379 

components that exert control on metabolic fluxes. As noted by Hackett et al. [38], however, 380 

is that cell overexpress enzymes and uses metabolite concentrations to control metabolic flux. 381 

This falls in line with the evolutionary conservation of protein stoichiometries at the pathway 382 

level as demonstrated by Lalanne et al. [39]. Although it is still not understood how preferred 383 

enzyme stoichiometry is determined, it was observed that the preferred range of enzyme 384 

stoichiometry follows a narrow distribution among pathways in Gram-positive and -negative 385 

bacteria, likely a result of evolutionary conservation or convergence. As suggested in the study, 386 

protein biosynthesis and consequently its usage is bound to a cost-benefit trade-off, where the 387 

optimal level of enzymes is balanced with the need for a buffer zone in case of changing 388 
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environments. Similar to our approach, the works of Mori et al. [37] and Lalanne et al. [39] 389 

deals with proteome reallocation in a suboptimal growth condition. However, the first deals 390 

with proteome sectors, while the latter concerns with pathway-centric stoichiometries. Our 391 

approach thus differs as we consider protein reallocation for each enzyme individually.  392 

Nevertheless, other approaches for estimating in vivo protein concentrations would still 393 

need to overcome the underestimating capacity of pcGEMs, especially by considering the 394 

proteome reserve. These approaches could include features such as cellular machinery beyond 395 

enzymes that participate in metabolism, or by integrating constraint-based approaches with 396 

data-driven approaches. 397 

 398 

 399 

CRediT authorship contribution statement 400 

Mauricio Ferreira: Conceptualization, Methodology, Software, Investigation, Validation, 401 

Writing - Original Draft, Writing - Review & Editing. Wendel Silveira: Conceptualization, 402 

Writing - Original Draft, Writing - Review & Editing, Supervision, Project administration, 403 

Funding acquisition. Zoran Nikoloski: Conceptualization, Writing - Original Draft, Writing - 404 

Review & Editing, Supervision, Project administration, Funding acquisition. 405 

 406 

Competing interests 407 

The authors have declared no competing interests. 408 

 409 

Acknowledgements 410 



19 

 

 

 

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível 411 

Superior – Brasil (CAPES) – Finance Code 001. We thank Marius Arend, Philipp Wendering 412 

and Eduardo Almeida for their critical discussion and comments on this study. 413 

 414 

Data availability 415 

All data and code are publicly available in the GitHub repository: 416 

(https://github.com/mauricioamf/PARROT) 417 

 418 

ORCID 419 

0000-0002-6545-6813 (Mauricio Ferreira) 420 

0000-0001-7869-8144 (Wendel Silveira) 421 

0000-0003-2671-6763 (Zoran Nikoloski) 422 

 423 

 424 

References  425 

 426 

[1] N.D. Price, J.A. Papin, C.H. Schilling, B.O. Palsson, Genome-scale microbial in silico 427 

models: The constraints-based approach, Trends in Biotechnology. 21 (2003) 162–169. 428 

https://doi.org/10.1016/S0167-7799(03)00030-1. 429 

[2] R. Adadi, B. Volkmer, R. Milo, M. Heinemann, T. Shlomi, Prediction of Microbial 430 

Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters, 431 

PLoS Computational Biology. 8 (2012) e1002575. 432 

https://doi.org/10.1371/journal.pcbi.1002575. 433 

[3] B.J. Sánchez, C. Zhang, A. Nilsson, P. Lahtvee, E.J. Kerkhoven, J. Nielsen, Improving 434 

the phenotype predictions of a yeast genome‐scale metabolic model by incorporating 435 

https://github.com/mauricioamf/PARROT


20 

 

 

 

enzymatic constraints, Mol Syst Biol. 13 (2017) 935. 436 

https://doi.org/10.15252/msb.20167411. 437 

[4] M. Basan, S. Hui, H. Okano, Z. Zhang, Y. Shen, J.R. Williamson, T. Hwa, Overflow 438 

metabolism in Escherichia coli results from efficient proteome allocation, Nature. 528 439 

(2015) 99–104. https://doi.org/10.1038/nature15765. 440 

[5] Q.K. Beg, A. Vazquez, J. Ernst, M.A. De Menezes, Z. Bar-Joseph, A.L. Barabási, Z.N. 441 

Oltvai, Intracellular crowding defines the mode and sequence of substrate uptake by 442 

Escherichia coli and constrains its metabolic activity, Proceedings of the National 443 

Academy of Sciences of the United States of America. 104 (2007) 12663–12668. 444 

https://doi.org/10.1073/pnas.0609845104. 445 

[6] P.S. Bekiaris, S. Klamt, Automatic construction of metabolic models with enzyme 446 

constraints, BMC Bioinformatics. 21 (2020) 1–13. https://doi.org/10.1186/S12859-019-447 

3329-9/TABLES/2. 448 

[7] M.A. de M. Ferreira, W.B. da Silveira, Z. Nikoloski, Protein constraints in genome-scale 449 

metabolic models: data integration, parameter estimation, and prediction of metabolic 450 

phenotypes, Authorea Preprints. (2022). 451 

https://doi.org/10.22541/AU.166082043.36599845/V1. 452 

[8] C. Lindemann, N. Thomanek, F. Hundt, T. Lerari, H.E. Meyer, D. Wolters, K. Marcus, 453 

Strategies in relative and absolute quantitative mass spectrometry based proteomics, 454 

Biological Chemistry. 398 (2017) 687–699. https://doi.org/10.1515/HSZ-2017-455 

0104/ASSET/GRAPHIC/J_HSZ-2017-0104_FIG_005.JPG. 456 

[9] A. Otto, D. Becher, F. Schmidt, Quantitative proteomics in the field of microbiology, 457 

Proteomics. 14 (2014) 547–565. https://doi.org/10.1002/pmic.201300403. 458 

[10] F. Calderón-Celis, J.R. Encinar, A. Sanz-Medel, Standardization approaches in absolute 459 

quantitative proteomics with mass spectrometry, Mass Spectrom Rev. 37 (2018) 715–460 

737. https://doi.org/10.1002/mas.21542. 461 

[11] A. Swiatly, S. Plewa, J. Matysiak, Z.J. Kokot, Mass spectrometry-based proteomics 462 

techniques and their application in ovarian cancer research, Journal of Ovarian Research. 463 

11 (2018) 1–13. https://doi.org/10.1186/s13048-018-0460-6. 464 

[12] H. Li, O. Siddiqui, H. Zhang, Y. Guan, Joint learning improves protein abundance 465 

prediction in cancers, BMC Biol. 17 (2019) 1–14. https://doi.org/10.1186/S12915-019-466 

0730-9/FIGURES/6. 467 



21 

 

 

 

[13] G. Terai, K. Asai, Improving the prediction accuracy of protein abundance in 468 

Escherichia coli using mRNA accessibility, Nucleic Acids Res. 48 (2020). 469 

https://doi.org/10.1093/nar/gkaa481. 470 

[14] M. Ferreira, R. Ventorim, E. Almeida, S. Silveira, W. Silveira, Protein Abundance 471 

Prediction Through Machine Learning Methods, J Mol Biol. 433 (2021) 167267. 472 

https://doi.org/10.1016/J.JMB.2021.167267. 473 

[15] D. Heckmann, C.J. Lloyd, N. Mih, Y. Ha, D.C. Zielinski, Z.B. Haiman, A.A. Desouki, 474 

M.J. Lercher, B.O. Palsson, Machine learning applied to enzyme turnover numbers 475 

reveals protein structural correlates and improves metabolic models, Nat Commun. 9 476 

(2018) 1–10. https://doi.org/10.1038/s41467-018-07652-6. 477 

[16] P.-J. Lahtvee, R. Kumar, B.M. Hallstrom, J. Nielsen, Adaptation to different types of 478 

stress converge on mitochondrial metabolism, Molecular Biology of the Cell. 27 (2016) 479 

2505–2514. https://doi.org/10.1091/mbc.E16-03-0187. 480 

[17] D. Segrè, D. Vitkup, G.M. Church, Analysis of optimality in natural and perturbed 481 

metabolic networks, Proceedings of the National Academy of Sciences of the United 482 

States of America. 99 (2002) 15112–15117. 483 

https://doi.org/10.1073/PNAS.232349399/SUPPL_FILE/3493SUPPLINKS.HTML. 484 

[18] A. Goelzer, J. Muntel, V. Chubukov, M. Jules, E. Prestel, R. Nölker, M. Mariadassou, 485 

S. Aymerich, M. Hecker, P. Noirot, D. Becher, V. Fromion, Quantitative prediction of 486 

genome-wide resource allocation in bacteria, Metab Eng. 32 (2015) 232–243. 487 

https://doi.org/10.1016/J.YMBEN.2015.10.003. 488 

[19] L. Heirendt, S. Arreckx, T. Pfau, S.N. Mendoza, A. Richelle, A. Heinken, H.S. 489 

Haraldsdóttir, J. Wachowiak, S.M. Keating, V. Vlasov, S. Magnusdóttir, C.Y. Ng, G. 490 

Preciat, A. Žagare, S.H.J. Chan, M.K. Aurich, C.M. Clancy, J. Modamio, J.T. Sauls, A. 491 

Noronha, A. Bordbar, B. Cousins, D.C. El Assal, L. V. Valcarcel, I. Apaolaza, S. 492 

Ghaderi, M. Ahookhosh, M. Ben Guebila, A. Kostromins, N. Sompairac, H.M. Le, D. 493 

Ma, Y. Sun, L. Wang, J.T. Yurkovich, M.A.P. Oliveira, P.T. Vuong, L.P. El Assal, I. 494 

Kuperstein, A. Zinovyev, H.S. Hinton, W.A. Bryant, F.J. Aragón Artacho, F.J. Planes, 495 

E. Stalidzans, A. Maass, S. Vempala, M. Hucka, M.A. Saunders, C.D. Maranas, N.E. 496 

Lewis, T. Sauter, B. Palsson, I. Thiele, R.M.T. Fleming, Creation and analysis of 497 

biochemical constraint-based models using the COBRA Toolbox v.3.0, Nat Protoc. 14 498 

(2019) 639–702. https://doi.org/10.1038/s41596-018-0098-2. 499 



22 

 

 

 

[20] L. Gurobi Optimization, Gurobi Optimizer Reference Manual, (2020). 500 

[21] H. Lu, F. Li, B.J. Sánchez, Z. Zhu, G. Li, I. Domenzain, S. Marcišauskas, P.M. Anton, 501 

D. Lappa, C. Lieven, M.E. Beber, N. Sonnenschein, E.J. Kerkhoven, J. Nielsen, A 502 

consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively 503 

probing cellular metabolism, Nat Commun. 10 (2019). https://doi.org/10.1038/s41467-504 

019-11581-3. 505 

[22] I. Domenzain, B. Sánchez, M. Anton, E.J. Kerkhoven, A. Millán-Oropeza, C. Henry, V. 506 

Siewers, J.P. Morrissey, N. Sonnenschein, J. Nielsen, Reconstruction of a catalogue of 507 

genome-scale metabolic models with enzymatic constraints using GECKO 2.0, Nat 508 

Commun. 13 (2022) 1–13. https://doi.org/10.1038/s41467-022-31421-1. 509 

[23] Y. Chen, J. Nielsen, In vitro turnover numbers do not reflect in vivo activities of yeast 510 

enzymes, Proc Natl Acad Sci U S A. 118 (2021) e2108391118. 511 

https://doi.org/10.1073/PNAS.2108391118/SUPPL_FILE/PNAS.2108391118.SD08.X512 

LSX. 513 

[24] P.J. Lahtvee, B.J. Sánchez, A. Smialowska, S. Kasvandik, I.E. Elsemman, F. Gatto, J. 514 

Nielsen, Absolute Quantification of Protein and mRNA Abundances Demonstrate 515 

Variability in Gene-Specific Translation Efficiency in Yeast, Cell Syst. 4 (2017) 495-516 

504.e5. https://doi.org/10.1016/j.cels.2017.03.003. 517 

[25] R. Yu, K. Campbell, R. Pereira, J. Björkeroth, Q. Qi, E. Vorontsov, C. Sihlbom, J. 518 

Nielsen, Nitrogen limitation reveals large reserves in metabolic and translational 519 

capacities of yeast, Nat Commun. 11 (2020) 1–12. https://doi.org/10.1038/s41467-020-520 

15749-0. 521 

[26] F. Di Bartolomeo, C. Malina, K. Campbell, M. Mormino, J. Fuchs, E. Vorontsov, C.M. 522 

Gustafsson, J. Nielsen, Absolute yeast mitochondrial proteome quantification reveals 523 

trade-off between biosynthesis and energy generation during diauxic shift, Proc Natl 524 

Acad Sci U S A. 117 (2020) 7524–7535. 525 

https://doi.org/10.1073/PNAS.1918216117/SUPPL_FILE/PNAS.1918216117.SD07.X526 

LSX. 527 

[27] R. Yu, E. Vorontsov, C. Sihlbom, J. Nielsen, Quantifying absolute gene expression 528 

profiles reveals distinct regulation of central carbon metabolism genes in yeast, Elife. 10 529 

(2021). https://doi.org/10.7554/ELIFE.65722. 530 



23 

 

 

 

[28] D. Davidi, E. Noor, W. Liebermeister, A. Bar-Even, A. Flamholz, K. Tummler, U. 531 

Barenholz, M. Goldenfeld, T. Shlomi, R. Milo, Global characterization of in vivo 532 

enzyme catalytic rates and their correspondence to in vitro kcat measurements, Proc Natl 533 

Acad Sci U S A. 113 (2016) 3401–3406. https://doi.org/10.1073/pnas.1514240113. 534 

[29] K. Valgepea, K. Adamberg, A. Seiman, R. Vilu, Escherichia coli achieves faster growth 535 

by increasing catalytic and translation rates of proteins, Mol Biosyst. 9 (2013) 2344–536 

2358. https://doi.org/10.1039/C3MB70119K. 537 

[30] K. Peebo, K. Valgepea, A. Maser, R. Nahku, K. Adamberg, R. Vilu, Proteome 538 

reallocation in Escherichia coli with increasing specific growth rate, Mol Biosyst. 11 539 

(2015) 1184–1193. https://doi.org/10.1039/c4mb00721b. 540 

[31] A. Schmidt, K. Kochanowski, S. Vedelaar, E. Ahrné, B. Volkmer, L. Callipo, K. 541 

Knoops, M. Bauer, R. Aebersold, M. Heinemann, The quantitative and condition-542 

dependent Escherichia coli proteome, Nat Biotechnol. 34 (2016) 104–110. 543 

https://doi.org/10.1038/nbt.3418. 544 

[32] G. Li, Y. Hu, Jan Zrimec, H. Luo, H. Wang, A. Zelezniak, B. Ji, J. Nielsen, Bayesian 545 

genome scale modelling identifies thermal determinants of yeast metabolism, Nat 546 

Commun. 12 (2021) 1–12. https://doi.org/10.1038/s41467-020-20338-2. 547 

[33] N.E. Lewis, K.K. Hixson, T.M. Conrad, J.A. Lerman, P. Charusanti, A.D. Polpitiya, J.N. 548 

Adkins, G. Schramm, S.O. Purvine, D. Lopez-Ferrer, K.K. Weitz, R. Eils, R. König, 549 

R.D. Smith, B. Palsson, Omic data from evolved E. coli are consistent with computed 550 

optimal growth from genome-scale models, Molecular Systems Biology. 6 (2010). 551 

https://doi.org/10.1038/msb.2010.47. 552 

[34] T. von der Haar, A quantitative estimation of the global translational activity in 553 

logarithmically growing yeast cells, BMC Syst Biol. 2 (2008) 1–14. 554 

https://doi.org/10.1186/1752-0509-2-87/FIGURES/7. 555 

[35] E.J. O’Brien, J. Utrilla, B.O. Palsson, Quantification and Classification of E. coli 556 

Proteome Utilization and Unused Protein Costs across Environments, PLOS 557 

Computational Biology. 12 (2016) e1004998. 558 

https://doi.org/10.1371/JOURNAL.PCBI.1004998. 559 

[36] Q. Deparis, A. Claes, M.R. Foulquié-Moreno, J.M. Thevelein, Engineering tolerance to 560 

industrially relevant stress factors in yeast cell factories, FEMS Yeast Research. 17 561 

(2017) 1–35. https://doi.org/10.1093/femsyr/fox036. 562 



24 

 

 

 

[37] M. Mori, S. Schink, D.W. Erickson, U. Gerland, T. Hwa, Quantifying the benefit of a 563 

proteome reserve in fluctuating environments, Nat Commun. 8 (2017) 1–8. 564 

https://doi.org/10.1038/s41467-017-01242-8. 565 

[38] S.R. Hackett, V.R.T. Zanotelli, W. Xu, J. Goya, J.O. Park, D.H. Perlman, P.A. Gibney, 566 

D. Botstein, J.D. Storey, J.D. Rabinowitz, Systems-level analysis of mechanisms 567 

regulating yeast metabolic flux, Science. 354 (2016). 568 

https://doi.org/10.1126/SCIENCE.AAF2786. 569 

[39] J.B. Lalanne, J.C. Taggart, M.S. Guo, L. Herzel, A. Schieler, G.W. Li, Evolutionary 570 

Convergence of Pathway-Specific Enzyme Expression Stoichiometry, Cell. 173 (2018) 571 

749-761.e38. https://doi.org/10.1016/J.CELL.2018.03.007. 572 

  573 

  574 



25 

 

 

 

Figures 575 

576 

Figure 1. Workflow of PARROT to predict enzyme usage for suboptimal growth 577 

conditions. 578 

PARROT uses experimental proteomics data from an optimal growth condition as a reference 579 

point, and experimental physiological parameters from a suboptimal growth condition in a 580 

protein-constrained model. The proteomics data from the reference state is pre-processed by 581 

integrating the data in a pcGEM using the GECKO Toolbox 2 and flexibilising its values. 582 

The proteomics data from the suboptimal state is used to generate a baseline, which is in turn 583 

used for comparison with predictions from the PARROT variants.  584 
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 586 

Figure 2. Comparative performance analysis of PARROT with proteomics data from S. 587 

cerevisiae. 588 

All protein abundance values were log10-transformed prior to comparisons. a. Pearson 589 

correlation calculated between predicted enzyme distribution and the baseline obtained from 590 

minimizing the first norm of the experimental enzyme usage distribution. The four variants of 591 

PARROT are denoted as LP1 (Manhattan distance of enzyme distributions), LP2 (weighted 592 

Manhattan distance, considering flux and enzyme distributions), QP1 (Euclidean distance of 593 

enzyme distributions), and QP2 (weighted Euclidean distance of flux and enzyme 594 

distributions). The performance of PARROT was compared to pFBA and its modified 595 

version EsKcat (first norm of enzyme usage), see Methods. A pairwise Wilcoxon rank sum 596 

assesses the statistical significance: **** p-value < 1∙10-5, *** p-value < 2∙10-4, ** p-value < 597 

5∙10-4. b.  Assessment of model performance based on the root median squared error 598 

(RMdSE). A pairwise Wilcoxon rank sum assesses the statistical significance: **** p-value < 599 

9∙10-6, *** p-value < 2∙10-5. Black significance bar indicates comparisons to pFBA. Red 600 

significance bar indicates comparison to EsKcat. 601 
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 603 

Figure 3. Comparative performance analysis of PARROT with proteomics data from E. 604 

coli.  605 

All protein abundance values were log10-transformed prior to comparisons. a. Pearson 606 

correlation calculated between predicted enzyme usage distribution and the baseline obtained 607 

from minimizing the first norm of the experimental enzyme usage distribution. A pairwise 608 

Wilcoxon rank sum assesses the statistical significance: **** p-value < 2∙10-11, *** p-value < 609 

2∙10-4, ** p-value < 6∙10-3, * p-value < 3∙10-2. b. Assessment of model performance based on 610 

the RMdSE in E. coli. A pairwise Wilcoxon rank sum assesses the statistical significance: 611 

**** p-value < 1∙10-5. Black significance bar indicates comparisons to pFBA. Red 612 

significance bar indicates comparison to EsKcat. 613 
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 615 

Figure 4. Optimal 𝛌 values across conditions and PARROT variants. 616 

The optima λ value was determined by optimising the LP2 and QP2 variants and finding the 617 

value that outputs predictions with the highest Pearson correlation when compared to the 618 

baseline. Blue bars correspond to S. cerevisiae, and orange bars correspond to E. coli. a. 619 

Number of occurrences of an optimal λ value in a range of 0 to 1. Note that a λ value of zero 620 

means that no fluxes are used for the objective, being equivalent to the LP1 and LP2 variants. 621 

b. Number of occurrences of an optimal λ value in a range of 0.1 to 1. In this scenario, fluxes 622 

are always used for the objective. 623 


