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Abstract 
Motivation: Protein allocation determines activity of cellular pathways and affects growth across all 

organisms. Therefore, a variety of experimental and machine learning approaches has been developed 

to quantify and predict protein abundances, respectively. Yet, despite advances in protein quantifica-

tion, it remains challenging to predict condition-specific allocation of enzymes in metabolic networks. 

Results: Here we propose a family of constrained-based approaches, termed PARROT, to predict 

enzyme allocations based on the principle of minimizing the enzyme allocation adjustment using pro-

tein-constrained metabolic models. To this end, PARROT variants model the minimization of enzyme 

reallocation using four different (combinations of) distance functions. We demonstrate that the 

PARROT variant that minimizes the Manhattan distance of enzyme allocations outperforms existing 

approaches based on the parsimonious distribution of fluxes or enzymes for both Escherichia coli and 

Saccharomyces cerevisiae. Further, we show that the combined minimization of flux and enzyme allo-

cation adjustment leads to poor and inconsistent predictions. Together, our findings indicate that mini-

mization of resource rather than flux redistribution is a governing principle determining steady-state 

pathway activity for microorganism grown in suboptimal conditions. 

Availability and implementation: The implementation of PARROT can be found in the GitHub repos-

itory: https://github.com/mauricioamf/PARROT 

Contact: zoran.nikoloski@uni-potsdam.de  

Supplementary information: Supplementary data are available online. 

 

 

1 Introduction  

Constraint-based approaches have been employed to simulate and predict 

phenotypes based on genome-scale metabolic models (GEMs) (Price et 

al., 2003). While already useful for predicting a wide range of phenotypes, 

the predictive performance of GEMs has been further improved by inte-

grating protein constraints, such as enzyme catalytic rates and the alloca-

tion of enzyme abundances across reactions (Adadi et al., 2012; Sánchez 

et al., 2017). These protein-constrained GEMs (pcGEMs) have been used 

to predict complex phenotypes, such as the overflow metabolism, in which 

fermentation predominates over respiration when microorganisms grow in 

high sugar concentrations (Basan et al., 2015; Sánchez et al., 2017), and 

diauxic growth, when multiple carbon sources are available and the mi-

crobial growth presents two or more growth phases (Beg et al., 2007). The 

models also allow for the incorporation of proteomics data, and thus pro-

vide a framework for multi-omics data analysis and integration (Bekiaris 

and Klamt, 2020; Sánchez et al., 2017). 

The parameters included in pcGEMs are: (i) the enzyme turnover num-

bers, 𝑘𝑐𝑎𝑡, a first-order rate constant with the unit of s-1 that describes the 

limiting rate of reactions catalysed by enzymes when these are fully occu-

pied at their saturation point; and (ii) enzyme abundances (in mmol/gDW), 

obtained from quantitative proteomics experiments. Values of 𝑘𝑐𝑎𝑡 can be 

measured from biochemical assays or be estimated from computational 

methods based on constraint-based and data-driven approaches (Ferreira 

et al., 2022), while enzyme abundances are obtained from absolute prote-

omics measurements. More specifically, they are obtained from peptide 

intensity-based quantification or spectral counting (Lindemann et al., 

2017). However, proteomics experiments for absolute quantification are 

still difficult to perform, given the challenges put forward by the diversity 

of physicochemical properties of protein (Otto et al., 2014), lack of stand-

ards and problems in reproducibility (Calderón-Celis et al., 2018), and 

overall inaccessibility given the high costs of equipment and supplies 

(Swiatly et al., 2018). 

Computational methods have also been developed to predict protein 

abundance, mostly based on data-driven models. These models often ex-

plore the central dogma of molecular biology, by assessing the relation-

ship between transcription and protein biosynthesis. Notable approaches 

to estimate protein abundance include the joint learning approach devised 

by Li et al. (2019), where an ensemble model was constructed by combin-

ing different supervised learning algorithms, outperforming competing 
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approaches in the NCI-CPTAC DREAM Proteogenomics Challenge. An-

other approach, developed by Terai and Asai (2020), uses features such as 

the accessibility around the Shine-Dalgarno sequence, minimum free en-

ergy of the mRNA molecule, Viterbi score, and inside-outside score. Fur-

ther, Ferreira et al. (2021) explored codon usage bias information to train 

an AdaBoost regression model, achieving higher correlations than previ-

ous approaches without the usage of transcriptomics data. 

Aside from machine learning models, constraint-based approaches 

have also been used to predict protein abundance. Using approaches such 

as MOMENT (Adadi et al., 2012) or GECKO (Sánchez et al., 2017), it is 

possible to calculate the optimal concentration of enzymes necessary to 

carry the provided flux with the provided catalytic rate, given the relation-

ship: 

 𝑣𝑗 ≤ 𝑘𝑐𝑎𝑡
𝑖𝑗

 ∙ [𝐸𝑖] (1) 

where 𝑣𝑗  is the metabolic flux of reaction 𝑗, [𝐸𝑖] is the concentration of an 

enzyme 𝑖, and 𝑘𝑐𝑎𝑡
𝑖𝑗

 is the catalytic rate of an enzyme i catalyzing a reaction 

𝑗. This allows for deriving 𝑘𝑐𝑎𝑡
𝑖𝑗

 values given the other two are available. 

This relationship was explored by Heckmann et al. (2018) by using 

pcGEMs to predict enzyme concentrations given catalytic rates predicted 

computationally, achieving a 43% lower root mean squared error.  

Assuming that pcGEMs that integrate proteomics data predict flux dis-

tributions that reflect the corresponding metabolic state, we ask whether 

the reverse operation could be employed to predict proteomics data that 

match a given physiological state. Moreover, as cells are exposed to 

stresses or changing environmental conditions, the optimal growth state is 

disturbed, leading to a suboptimal growth state in which gene expression, 

regulatory pathways and metabolic flux are changed to aid the cell in ad-

justing to this new physiological condition (Lahtvee et al., 2016). Despite 

the aforementioned advances in predicting protein abundances, the prob-

lem of predicting enzyme allocation under suboptimal growth conditions 

remains largely unexplored. Here we propose PARROT (Figure 1), for 

Protein allocation Adjustment foR stRess cOndiTions, a family of con-

straint-based approaches for prediction of protein abundances for subop-

timal conditions using protein abundances measured in a reference, opti-

mal state. Our proposed approach is inspired by Minimization of Meta-

bolic Adjustment (MOMA) (Segrè et al., 2002), which minimizes the dis-

tance between a reference state and a gene knock-out state while ensuring 

cell survival in the later. We show that PARROT predicted enzyme con-

centrations in very good agreement with experimental data and outper-

formed competing methods for minimizing flux distributions. Therefore, 

PARROT can be used to parameterize pcGEMs for unseen, suboptimal 

conditions from which metabolic phenotypes can further be analysed. 

2 Methods 

2.1 The principle of minimizing the change in enzyme usage 

between a suboptimal and reference state 

To find the enzyme distribution vector that matches the enzyme usage of 

a cell growing in suboptimal growth conditions, we propose PARROT that 

minimizes the distance between a reference enzyme allocation 𝐄𝐫𝐞𝐟 and a 

suboptimal growth enzyme allocation 𝐄𝐬 (Figure 1). This is consistent 

with observations that micro-organisms minimize expenditures to perform 

a growth and associated flux state (Goelzer et al., 2015). We define and 

compare four different objectives to model the distance between enzyme 

allocations in suboptimal and reference states: (i) the Manhattan distance; 

(ii) the Euclidean distance; (iii) the weighted sum of the Manhattan dis-

tance between enzyme allocations and the Manhattan distance between 

flux distributions; (iv) the weighted sum of the Euclidean distance be-

tween enzyme allocations and the Euclidean distance between flux distri-

butions. The first can be formulated as a linear optimization problem 

(LP1), specified as follows: 

  min‖
𝐄𝐫𝐞𝐟

Eref
tot −

𝐄𝐬

Es
tot‖

1
 (2) 

 s.t. 𝐍𝐯 = 𝟎 (3) 

 𝑣𝑠,𝑚𝑖𝑛 ≤ 𝑣𝑠 ≤ 𝑣𝑠,𝑚𝑎𝑥 (4) 

 𝑣𝑠 ≤ 𝑘𝑐𝑎𝑡 ⋅ [𝐸𝑠] (5) 

 ∑ 𝐸𝑠 = 𝐸𝑠
𝑡𝑜𝑡 (6) 

 𝑣𝑏𝑖𝑜 = 𝜇 (7) 

where Eref
tot and Es

tot represent the total enzyme usage in the model for the 

reference and suboptimal states, respectively; 𝐍 is the stoichiometric ma-

trix; 𝐯 is the flux distribution vector; 𝑣𝑏𝑖𝑜 is the flux through the biomass 

pseudo-reaction; and 𝜇 is the specific growth rate, determined from meas-

urements. The other objectives are captured by the following: 

  QP1: ‖
𝐄𝐫𝐞𝐟

Eref
tot −

𝐄𝐬

Es
tot‖

2
 (8) 

 LP2: ‖
𝐄𝐫𝐞𝐟

Eref
tot −

𝐄𝐬

Es
tot‖

1
+ λ‖𝐯𝐫𝐞𝐟 − 𝐯𝐬‖1 (9) 

 QP2: ‖
𝐄𝐫𝐞𝐟

Eref
tot −

𝐄𝐬

Es
tot‖

2
+ λ‖𝐯𝐫𝐞𝐟 − 𝐯𝐬‖2 (10) 

where the parameter λ is a weighting factor chosen by inspecting the dif-

ference between the norms of enzyme allocation and the flux distributions. 

We solved the corresponding problems under the same constraints as in 

Eq. 2. We implemented and solved the problems in MATLAB (The Math-

Works Inc., Natick, Massachusetts) using the COBRA Toolbox (Heirendt 

et al., 2019) and the Gurobi solver v9.1.1 (Gurobi Optimization, 2020).  

The implementation of PARROT can be found in the GitHub repository: 

https://github.com/mauricioamf/PARROT 

2.2 Experimental data and simulation constraints 

To test the variants of the proposed approach, PARROT, we used the 

pcGEMs of Saccharomyces cerevisiae, ecYeast8 (Lu et al., 2019), and 

Escherichia coli, eciML1515 (Domenzain et al., 2022). We employed 

quantitative proteomics measurements for both species performed in a 

number of growth conditions, ranging from optimal growth in standard 

physiological conditions to stress conditions, alternative nutrient usage 

and chemostat cultivation.  

For S. cerevisiae, we used the protein measurements from Chen and 

Nielsen (2021) for 19 different growth conditions, which were collected 

from four studies (Lahtvee et al., 2017; Yu et al., 2020; Di Bartolomeo et 

al., 2020; Yu et al., 2021). These included proteomics measurements in 

yeast growing in ethanol, osmolarity, and high temperature stresses 

(Lahtvee et al., 2017); yeast growing in chemostats with reducing nitrogen 

availability (Yu et al., 2020); and yeast growing in chemostats limited by 

the nitrogen source in increasing dilution rates and in chemostats with al-

ternative nitrogen sources (Yu et al., 2021). We also made use the meas-

urements of nutrient uptake rates, growth rates and protein content from 

these studies to constrain the batch model, which does not consider protein 

measurements and rely on the protein pool constraint.  

https://github.com/mauricioamf/PARROT
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For E. coli, we used the proteomics data for 20 different growth condi-

tions collected in Davidi et al. (2016) from three different studies 

(Valgepea et al., 2013; Peebo et al., 2015; Schmidt et al., 2016). These 

include batch cultivations of E. coli growing with different carbon sources 

and a glucose-limited chemostat culture, with dilution rates ranging from 

0.12 h-1 to 0.5 h-1 performed by Schmidt et al. (2016), a second chemostat 

limited by glucose at dilution rates ranging from 0.11 h-1 to 0.49 h-1 

(Valgepea et al., 2013), and a third chemostat limited by glucose at dilu-

tions rates ranging from 0.21 h-1 to 0.51 h-1 (Peebo et al., 2015). Similar to 

S. cerevisiae, the batch model was constrained with the nutrient uptake 

rates, growth rates and protein content measured in the studies where the 

protein measurements were taken. For both species, we excluded the con-

ditions that did not have measured uptake rates, growth rates, or protein 

content. In addition, we excluded the temperature stress conditions from 

Lahtvee et al. (2017), as temperature can severely impact the function of 

enzymes (Li et al., 2021), and temperature stress responses entail changes 

beyond metabolic flux redistribution (Lahtvee et al., 2016). 

2.3 Pre-processing of protein measurements for the reference 

state 

From the protein measurements obtained from Davidi et al. (2016) and 

Chen and Nielsen (2021) we separated the measurements according to 

each experiment performed in the original studies. From each experiment, 

we selected the control sample to represent the reference state in our ap-

proach PARROT. We corrected the protein measurements for the refer-

ence state measurements by integrating the values into the pcGEMs 

ecYeast8 and eciML1515 for S. cerevisiae and E. coli, respectively, using 

the GECKO Toolbox 2 (Domenzain et al., 2022). The GECKO Toolbox 

2 identifies the enzyme usage values that most limit growth and flexibil-

izes the values to prevent over-constraining the model. We then used for 

the 𝐄𝐫𝐞𝐟 vector of each experiment the values for flexibilized proteins 

along with values for proteins that were unchanged. 

2.4 Assessment of predicted enzyme usage distributions 

The protein measurements, 𝐄𝐬
𝐞𝐱𝐩

, for the suboptimal growth conditions ob-

tained from Davidi et al. (2016) and Chen and Nielsen (2021) were not 

used directly in simulations. These experimental measurements were in-

stead employed to calculate a baseline to which predictions of 𝐄𝐬 were 

compared. Assuming that simulations performed with pcGEMs use only 

the optimal concentration of enzymes necessary to carry a given metabolic 

flux, the model-allocated protein usage should underestimate the in vivo 

enzyme concentrations. To allow for a fair comparison, we devised a base-

line by integrating the experimental proteomics measurements of each ex-

periment into the pcGEMs using the GECKO Toolbox 2. Then, we mini-

mized the total enzyme allocation given the following optimization prob-

lem: 

 min‖𝐄𝐬
𝐞𝐱𝐩

‖
1
 (11) 

 s. t.  𝐍𝐯 = 𝟎 (12) 

 𝐯𝐬,𝐦𝐢𝐧 ≤ 𝐯𝐬 ≤ 𝐯𝐬,𝐦𝐚𝐱 (13) 

 𝑣𝑠,𝑗 ≤  𝑘𝑐𝑎𝑡
𝑖𝑗

⋅ [𝐸𝑠
𝑒𝑥𝑝,𝑖

] (14) 

 ∑ 𝐸𝑠
𝑒𝑥𝑝

= 𝐸𝑠
𝑒𝑥𝑝,𝑡𝑜𝑡

 (15) 

 𝑣𝑏𝑖𝑜 = 𝜇 (16) 

The resulting enzyme usage distribution, 𝐄𝐬
𝐞𝐱𝐩

, was then defined as the 

baseline for each sample of each proteomics experiment. We compared 

the predicted 𝐄𝐬 values from the four variants of PARROT to 𝐄𝐬
𝐞𝐱𝐩

 by cal-

culating the Pearson and Spearman correlations of each sample. Further, 

we calculated the root-median square error (RMdSE) to measure the dif-

ference between predicted and baseline values. For assessing both corre-

lations and the RMdSE, we log10-transformed the values for the predic-

tions and the baseline.  

We also performed a robustness analysis to check the effect of using 

the minimization of the second norm in constructing a baseline. In addi-

tion, we compared the predictions of our approaches to those obtained us-

ing an extension of parsimonious enzyme usage FBA (pFBA) (Lewis et 

al., 2010) to consider enzyme constraints. To this end, for each sample of 

each experiment, we defined the optimization problem as: 

 min ∑ 𝑣𝑗,𝑠,𝑖𝑟𝑟𝑒𝑣
𝑚
𝑗=1  (17) 

 s. t.  𝐍𝐬,𝐢𝐫𝐫𝐞𝐯 ⋅ 𝐯𝐬,𝐢𝐫𝐫𝐞𝐯 = 𝟎 (18) 

Fig. 1.Workflow of PARROT to predict enzyme usage for suboptimal growth conditions. PARROT uses experimental proteomics data from an optimal growth condition as a reference 

point, and experimental physiological parameters from a suboptimal growth condition in a protein-constrained model. The proteomics data from the reference state is preprocessed by 

integrating the data in a pcGEM using the GECKO Toolbox 2 and flexibilizing its values. The proteomics data from the suboptimal state is used to generate a baseline, which is in turn used 

for comparison with predictions from the PARROT variants. 



Ferreira et al. 

 0 ≤ 𝐯𝐬,𝐢𝐫𝐫𝐞𝐯 ≤ 𝐯𝐬,𝐢𝐫𝐫𝐞𝐯,𝐦𝐚𝐱 (19) 

 𝑣𝑠,𝑖𝑟𝑟𝑒𝑣,𝑗 ≤  𝑘𝑐𝑎𝑡
𝑖𝑗

⋅ [𝐸𝑠,𝑖] (20) 

 ∑ 𝐸𝑠 = 𝐸𝑠
𝑡𝑜𝑡 (21) 

 𝑣𝑏𝑖𝑜 = 𝜇 (22) 

where 𝑣𝑗,𝑠,𝑖𝑟𝑟𝑒𝑣 corresponds to the flux distribution of an irreversible 

model in a non-optimal growth condition. We also assessed a modified 

version of pFBA with enzyme constraints with the following objective: 

 min ∑ 𝐸𝑠 ⋅ 𝑘𝑐𝑎𝑡  . (23) 

For pFBA and the modified implementation, we applied the same con-

straints on nutrient uptake rates and growth rates as for the four approaches 

assessed previously, and calculated the Pearson and Spearman correla-

tions, and the RMdSE. We calculated the correlation values and RMdSE 

for all assessed optimization problems and compared them to the predic-

tions of pFBA using a Pairwise Wilcoxon rank sum test with Bonferroni 

correction. 

3 Results 

3.1 The minimization of the Manhattan distance captures 

protein allocation changes in yeast 

We used PARROT to predict the enzyme usage distribution for 19 growth 

conditions under constraints provided by experimental data. First, we built 

a baseline for comparison with predictions from PARROT (Figure 1). To 

this end, we integrated the experimental proteomics measurements ob-

tained from Lahtvee et al. (2017), Yu et al. (2020), Di Bartolomeo et al. 

(2020), and Yu et al. (2021) (Table S1) in the ecYeast8 model and mini-

mized the enzyme allocation (Methods). The resulting allocation of en-

zymes 𝐄𝐬
𝐞𝐱𝐩

  included 286 to 336 enzymes with abundance in all consid-

ered conditions. For the reference condition, we used the experimental 

proteomics measurements from optimal (control) growth conditions in the 

respective four groups of experiments, after flexibilization following 

GECKO 2.0 (see Methods) (Table S1). The number of enzymes contained 

in 𝐄𝐫𝐞𝐟 ranged from 533 to 744. 

With the resulting enzyme allocation at the reference and the baseline 

of the suboptimal condition, 𝐄𝐫𝐞𝐟 and 𝐄𝐬
𝐞𝐱𝐩

, we used the four variants of 

PARROT to predict the enzyme allocation, 𝐄𝐬, for the suboptimal condi-

tion. The number of enzymes contained in the predicted 𝐄𝐬 ranged from 

114 to 267 over the considered experiments. When comparing the median 

of the calculated Pearson correlations between the baseline and predicted 

enzyme allocation correlations, we found the minimization of the Manhat-

tan distance in PARROT achieved the highest median correlations (Figure 

2a, Figure S1). We also evaluated the RMdSE between predictions and the 

baselines, and observed that the minimization of the Manhattan distance 

also resulted in the smallest median error compared to the other optimiza-

tion problems. Further, PARROT exhibited significantly smaller RMdSE 

than pFBA (p-value = 0.002, pairwise Wilcoxon rank sum test) and its 

modified implementation (p-value = 0.000965, pairwise Wilcoxon rank 

sum test) (Figure 2b) Taken together, the results demonstrated that the 

minimization of the Manhattan distance in PARROT showed the best pre-

diction performance based on the data from S. cerevisiae. 

 

3.2 Different variants of PARROT outperformed contending 

methods for E. coli 

To verify if the conclusions from PARROT hold in another unicellular 

model organism, we applied it to predict enzyme allocation 𝐄𝐬 in subopti-

mal conditions for E. coli given constraints provided by growth experi-

ments. As in the case of S. cerevisiae, we built a baseline for comparison 

Fig. 2. Comparative performance analysis of PARROT with proteomics data from S. 

cerevisiae. All values were log10-transformed prior to comparisons. a. Pearson correlation 

calculated between predicted enzyme distribution and the baseline obtained from minimiz-

ing the first norm of the experimental enzyme usage distribution. The four variants of 

PARROT are denoted as LP1 (Manhattan distance of enzyme distributions), LP2 (weighted 

Manhattan distance, considering flux and enzyme distributions), QP1 (Euclidean distance 

of enzyme distributions), and QP2 (weighted Euclidean distance of flux and enzyme distri-

butions). The performance of PARROT was compared to pFBA and its modified version 

EsKcat (first norm of enzyme usage), see Methods. b.  Assessment of model performance 

based on the root median squared error (RMdSE). A pairwise Wilcoxon rank sum assesses 

the statistical significance: ** p-value < 0.002. Black significance bar indicates compari-

sons to pFBA. Red significance bar indicates comparison to EsKcat. 
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with the predictions obtained from PARROT by integrating the experi-

mental proteomics measurements from Valgepea et al. (2013), Peebo et 

al. (2015) and (Schmidt et al., 2016) (Table S2) in the eciML1515 model, 

and minimized the total enzyme allocation (see Methods). The resulting 

𝐄𝐬
𝐞𝐱𝐩

 included protein allocation for 164 to 176 enzymes. Further, as ref-

erence condition we considered the control samples or the chemostat 

measurements with the smallest dilution rate (Table S2). The number of 

enzymes contained in 𝐄𝐫𝐞𝐟 ranged from 152 to 188. 

The prediction of 𝐄𝐬 distributions and their assessment were similar to 

S. cerevisiae, with the number of predicted values ranging from 42 to 106. 

After performing a comparison of Pearson and Spearman correlations be-

tween variants of PARROT, pFBA and its modified implementation, we 

observed that different variants outperformed pFBA. The minimization of 

the Manhattan distance had the highest median correlations, showing sig-

nificant difference to pFBA (p-value = 1.34e-4 and 0.004, for Pearson and 

Spearman correlations respectively, pairwise Wilcoxon rank sum test). 

Another variant with a significant difference to pFBA was the minimiza-

tion of the weighted sum of Manhattan distance of enzyme usage and 

Manhattan distance of flux distributions (Figure 3a, Figure S2). Regarding 

the RMdSE, the minimization of the Euclidean distance achieved the low-

est errors, outperforming both pFBA, its modified implementation and the 

minimization of the Manhattan distance (Figure 3b), with a significant dif-

ference when compared to the modified version of pFBA (p-value = 0.009, 

pairwise Wilcoxon rank sum test). These findings demonstrated that 

PARROT is applicable with data from different microorganisms without 

decreasing its performance. 

3.3 Robustness analysis shows the consistency of prediction 

from PARROT  

To further evaluate the predictions made by PARROT, we investigated 

how the usage of a baseline constructed by minimizing the second norm 

of the vector 𝐄𝐬
𝐞𝐱𝐩

 impacts the comparisons. To this end, we repeated all 

comparisons as performed for a baseline constructed by minimizing the 

first norm, using the predicted 𝐄𝐬 obtained by the PARROT variants. Im-

portantly, the results were consistent between the two baseline ap-

proaches. For S. cerevisiae, the minimization of the Manhattan distance 

maintained its performance by achieving higher mean correlations than 

pFBA and its modified implementation (Figures S3-S4). When consider-

ing the Pearson correlation, the minimization of the Euclidean distance 

also achieved higher correlation values than the two contending methods. 

For the RMdSE, the minimization of the Manhattan distance was still the 

variant with the lowest errors, with a significant difference to pFBA (p-

value < 0.0002, pairwise Wilcoxon rank sum test) (Figure S5). 

The comparisons performed using predictions obtained for E. coli were 

also consistent with different variants of PARROT that outperformed 

pFBA. Considering the Pearson and Spearman correlations, the minimi-

zation of the Manhattan distance also had the highest median correlations 

and were significantly different to pFBA (p-value = 8.36e-4 and 1.91e-6, 

for Pearson and Spearman correlations respectively, pairwise Wilcoxon 

rank sum test). Likewise, the modified implementation of pFBA, and the 

minimization of the weighted sum of Manhattan distance of enzyme usage 

and Manhattan distance of flux distributions also had a significant differ-

ence to pFBA (Figures S6-S7). The comparison of RMdSE values were 

also consistent, as the minimization of the Euclidean distance achieved the 

lowest errors among variants and pFBA (Figure S8). Altogether, these re-

sults highlight the robustness of estimations of 𝐄𝐬 obtained from 

PARROT.  

4 Discussion 

Here we proposed a family of constraint-based approaches, termed 

PARROT, that address the problem of predicting reallocation of protein 

abundance from an optimal condition to a suboptimal condition. PARROT 

is based on the principle that organisms tend to minimally adjust cellular 

physiology between growth conditions to make effective use of resources 

(Goelzer et al., 2015). The predictions of enzyme allocation generated by 

PARROT rely on quantitative proteomics data for a reference condition. 

The resulting optimization problems constructed are thus similar to 

Fig. 3. Comparative performance analysis of PARROT with proteomics data from E. 

coli.  All values were log10-transformed prior to comparisons. a. Pearson correlation cal-

culated between predicted enzyme usage distribution and the baseline obtained from mini-

mizing the first norm of the experimental enzyme usage distribution. A pairwise Wilcoxon 

rank sum assesses the statistical significance: *** p-value < 1e-4, ** p-value < 0.002. b. 

Assessment of model performance based on the RMdSE in E. coli. All values were log10-

transformed prior to comparisons. A pairwise Wilcoxon rank sum assesses the statistical 

significance: * p-value < 0.05. Black significance bar indicates comparisons to pFBA. Red 

significance bar indicates comparison to EsKcat. 
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MOMA, which depends on a model representing a wild-type strain to pre-

dict a minimally adjusted flux distribution for a mutant strain. By compar-

ing the predictions to a baseline constructed with experimental proteomics 

measurements for suboptimal conditions, we found that PARROT pre-

dicted protein abundances with very good agreement with the baseline. In 

addition, we demonstrated that these predictions were consistent and ro-

bust to how the baseline is constructed. The performance of PARROT also 

holds for two model organisms, S. cerevisiae and E. coli, highlighting the 

general application of the principle of minimal protein adjustment on 

which the predictions are based. 

From the different variants of PARROT, the minimization of the Man-

hattan distance (LP1) was the most promising, with QP1 as the second-

best contender. However, LP2 and QP2 – that combine fluxes and enzyme 

predictions for both organisms – resulted in highly inconsistent perfor-

mance between yeast and E. coli. This suggests that the joint minimization 

of fluxes and enzymes is not a principle of flux redistribution and the prin-

ciple is guided by minimization of resource redistribution, as captured by 

LP1 and QP1. Altogether, we demonstrated that minimizing the readjust-

ment of enzyme resource allocation is one principle underpinning micro-

bial adjustment to a suboptimal condition. Thus, PARROT may  allow for 

study and engineering of microbial cell factories, as these are often under 

suboptimal growth conditions in industrial settings (Deparis et al., 2017). 

The baseline approach devised to assess the predictions allows for a fair 

comparison between the predicted enzyme usage distribution and the ex-

perimental protein abundance values. In constraining the pcGEMs using 

the proteomics measurements, the experimental values are first readjusted 

to match the enzyme levels that actually carry flux in the model, since 

more protein is produced than actually needed by the cell (O’Brien et al., 

2016). This, however, implies that the predicted values are not directly 

comparable to experimental proteomics values, which affect the deter-

mined measures of performance. By adjusting the experimental values to 

levels that are compatible with what is actually employed to carry meta-

bolic flux, we could more adequately assess the correlation with enzyme 

allocation predicted from the pcGEMs, albeit losing the direct correspond-

ence to experimental data.  

Despite the advantages of using a baseline, predictions of enzyme levels 

using Equation 1 still underestimates protein abundance, leading to a dis-

parity between predictions and in vivo concentrations. This remaining por-

tion of proteins, termed the “proteome reserve”, is useful for the cell to 

quickly adapt to unstable environments, being an evolutionary conserved 

strategy (Mori et al., 2017). This falls in line with the evolutionary con-

servation of protein stoichiometries at the pathway level as demonstrated 

by Lalanne et al. (2018). Although it is still not understood how preferred 

enzyme stoichiometry is determined, it was observed that the preferred 

range of enzyme stoichiometry follows a narrow distribution among path-

ways in Gram-positive and -negative bacteria, likely a result of evolution-

ary conservation or convergence. As suggested in the study, protein bio-

synthesis and consequently its usage is bound to a cost-benefit trade-off, 

where the optimal level of enzymes is balanced with the need for a buffer 

zone in case of changing environments. Similar to our approach, the works 

of Mori et al. (2017) and Lalanne et al. (2018) deals with proteome real-

location in a suboptimal growth condition. However, the first deals with 

proteome sectors, while the latter concerns with pathway-centric stoichi-

ometries. Our approach thus differs as we consider protein reallocation for 

each enzyme individually.  

Nevertheless, other approaches for estimating in vivo protein concen-

trations would still need to overcome the underestimating capacity of 

pcGEMs, especially by considering the proteome reserve. These ap-

proaches could include features such as cellular machinery beyond en-

zymes that participate in metabolism, or by integrating constraint-based 

approaches with data-driven approaches. 
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