References
[1] N.H. Yen, L.Y. Wang.
Reactive metals in explosives.
Propell. Explos. Pyrot.
37(2012) 143-155.
https://doi.org/10.1002/prep.200900050.
[2] C. Rossi, C. Zhang, K.
Esteve, D. Alphonse, P. Tailhades, P. Vahlas. Nanoenergetic materials
for MEMS: a review. J. Microelectromech. S. 16(2007) 919-931.
https://doi.org/10.1109/JMEMS.2007.893519.
[3] L.H. Shen, G.P. Li, Y.J.
Luo, K. Gao and Z. Ge. Preparation and characterization of
Al/B/Fe2O3 nanothermites. Sci. China.
Chem. 57(2014) 797-802. https://doi. org/10.1007/s11426-013-5050-2.
[4] Q.H. Wang, S.B. Yang, H.B. Bao, Q.Y. Wang, X.M. Li, W.J. Yang.
Self-assembled core-shell structured Si@CuO energetic materials for
enhanced exothermic performance. Vacuum. 169(2019) 108881.
https://doi.org/10.1016/j.vacuum. 2019.108881
[5] Q.H. Wang, Y.C. Ma, Y.L. Wang, H.B. Bao, A.Q. Li, P. Xu, X.M. Li
and W.J. Yang. Facile fabrication of highly exothermic CuO@Al
nanothermites via self-assembly approach. Nanotechnology. 31(2020)
055601. https://doi.org/10.1088/1361-6528/ab4ed0.
[6] X. L. Hu, X. Liao, L. Q. Xiao, X. X. Jian, W. L. Zhou.
High-energy pollen-like porous Fe2O3/Al
thermite: synthesis and properties. Propell. Explos. Pyrot. 40(2015)
867-872. https://doi.org/10.1002/prep.201500046.
[7] J. P. Zhang, Y. Y. Zhang, H. Li, J. X. Gao, X. L. Cheng.
Molecualr dynamics investigation of thermite reaction behavior of
nanostructured Al/SiO2 system. Acta. Phys. Sin-Ch Ed.
63(2014) 086401. https://doi.org/10.7498/aps.63.086401.
[8] J. X. Song, T. Guo, M. Yao, W. Ding, X. N. Zhang, F. L. Bei, J.
Tang, J. Y. Huang, Z. S. Yu. Thermal behavior and combustion of Al
nanoparticles/MnO2 nanorods nanothermites with addition
of potassium perchlorate. RSC Adv. 9(2019) 41319-41325. https://doi.org/
10.1039/C9RA08663C.
[9] S. Elbasuney. Novel colloidal nanothermite particles
(MnO2/Al) for advanced highly energetic system. J.
Inorg. Organomet. P. 28(2018) 1793-1800. https://doi.org/
10.1007/s10904-018-0823-x.
[10] C. P. Yu, W. C. Zhang, R. Q. Shen, X. Xu, J. Cheng, J. H. Ye,
Z. C. Qin, Y. M. Chao. 3D ordered macroporous NiO/Al nanothermite film
with significantly improved higher heat output, lower ignition
temperature and less gas production. Mater. Design. 110(2016) 304-310.
https://doi.org/10.1016/j.matdes.2016.08.002.
[11] J.X. Song, T. Guo, M. Yao, J.L. Chen, W. Ding, F.L. Bei, Y.
Mao, Z.S. Yu, J.Y. Huang, X.N. Zhang, Q Yin, S Wang. A comparative study
of thermal kinetics and combustion performance of Al/CuO,
Al/Fe2O3 and Al/MnO2nanothermites. Vacuum. 176(2020) 109339.
https://doi.org/10.1016/j.vacuum.2020.109339.
[12] S.K. Valluri, M. Schoenitz, E. Dreizin. Fluorine-containing
oxidizers for metal fuels in energetic formulations. Def. Technol.
15(2019) 1-22. https://doi.org/ 10.1016/j.dt.2018.06.001.
[13] K. Jahnisch, M. Baerns, V. Hessel, W. Ehrfeld, V. Haverkamp, H.
Lowe, Ch. Wile, A. Guber. Direct fluorination of toluene using elemental
fluorine in gas/liquid microreactors. J. Fluorine. Chem. 105(2000)
117-128. https://doi.org/ 10.1016/S0022-1139(00)00300-6.
[14] X. Zhou. D. G. Xu, J. Lu, K. L. Zhang. CuO/Mg/fluorocarbon
sandwich-structure superhydrophobic nanoenergetic composite with
anti-humidity property. Chem. Eng. J. 266(2015) 163-170.
https://doi.org/10.1016/j.cej.2014.12.087.
[15] X. Zhou, D. G. Xu, G. C. Yang, Q. B. Zhang, J. P. Shen, J. Lu,
K. L. Zhang. Highly exothermic and superhydrophobic Mg/fluorocarbon
core/shell nanoenergetic arrays. ACS Appl. Mater. Inter. 6(2014)
10497-10505. https://doi.org/ 10.1021/am502078e
[16] K. Meeks, M. L. Pantoya, C. Apblett. Deposition and
characterization of energetic thin films. Combust. Flame. 161(2014)
1117-1124. https://doi.org/10.1016 /j.combustflame.2013.10.027
[17] X. Zhu, S. S. Feng, S. F. Zhao, C. Xu, M. Hu, Z. X. Zhong, W.
H. Xing.
Perfluorinated
superhydrophobic and oleophobic SiO2@PTFE nanofiber
membrane with hierarchical nanostructures for oily fume purification. J.
Membrane. Sci. 594(2020) 117473.
https://doi.org/10.1016/j.memsci.2019.117473.
[18] J. Khedkar, I. Negulescu, E. I. Meletis. Sliding wear behavior
of PTFE composites. Wear. 252(2002) 361-369.
https://doi.org/10.1016/S0043-1648(01)00859-6.
[19] D. H. Li, M. Y. Liao. Dehydrofluorination mechanism, structure
and thermal stability of pure fluoroelastomer (poly(VDF-ter-HFP-ter-TFE)
terpolymer) in alkaline environment. J. Fluorine. Chem. 201(2017) 55-67.
https://doi.org/ 10.1016/j.jfluchem.2017.08.002
[20] W. J. Ye, T. Wang, Y. H. Yu. Research progress of
fluoropolymer-matrix energetic reactive materials. Aerospace Materials
& Technology. 42(2012) 19-23.
[21] L. L. Ding, J. Y. Zhou, W. H. Tang, X. W. Ran, Y. X. Hu. Impact
energy release characteristics of PTFE/Al/CuO reactive materials
measured by a new energy release testing device. Polymers. 11(2019) 149.
https://doi.org/10.3390/polym11010149
[22] J. Y. Zhou, L. L. Ding, W. H. Tang, X. W. Ren. Experimental
study of mechanical properties and impact-induced reaction
characteristics of PTFE/Al/CuO reactive materials. Materials. 13(2020)
66. https://doi.org/10.3390/ma13010066.
[23] J. X. Wu, Q. Liu, B. Feng, S. Z. Wu, S. Zhang, Z. R. Gao, Q.
Yin, Y. C. Li, L. M. Xiao, J. Y. Huang. A comparative study on the
mechanical and reactive behavior of three fluorine-containing thermites.
RSC Adv. 10(2020) 5533-5539. https://doi.org/ 10.1039/D0RA00044B.
[24] C. Huang, H. Yang, Y. Li, Y. Cheng. Characterization of
aluminum/poly(vinylidene fluoride) by thermogravimetric analysis,
differential scanning calorimetry, and mass spectrometry. Anal. Lett.
48(2015) 2011-2021. https://doi.org/10.1080 /00032719.2015.1012675.
[25] H. Hori, H. Tanaka, T. Tsuge, R. Honma, S. Banerjee, B.
Ameduri. Decomposition of fluoroelastomer: poly(vinylidene fluoride- ter
-hexafluoropropylene - ter- tetrafluoroethylene) terpolymer in
subcritical water. Eur. Polym. J. 94(2017) 322-331.
https://doi.org/10.1016/j.eurpolymj.2017.05.042.
[26] J.X. Song, X. Fang, T. Guo, F. L. Bei, W. Ding, X. N. Zhang, M.
Yao, H. J. Yu. Thermal properties and kinetics of
Al/alpha-MnO2 nanostructure thermite. J. Brazil. Chem.
Soc. 29(2018) 404-411. https://doi.org/10.21577/0103-5053.20170154.
[27] N. N. Zhao, C. C. He, J. B. Liu, H. X. Ma, T. An, F. Q. Zhao.
Preparation and characterization of superthermite
Al/MnO2 and its compatibilities with the propellant
components. Chinese Journal of Explosives and Propellants. 35(2012)
32-36. https://doi.org/10.14077/j.issn.1007-7812.2012.06.018.
[28] W. M. Dose, S. W. Donne. Manganese dioxide structural effects
on its thermal decomposition. Mater. Sci. Eng. B. 176(2011) 1169-1177.
https://doi.org/10.1016/ j.mseb. 2011.06.007.
[29] L. D’Orazio, G. Gentile, C. Mancarella, E. Martuscelli, V.
Massa. Water-dispersed polymers for the conservation and restoration of
cultural heritage: a molecular, thermal, structural and mechanical
characterization. Polym. Test. 20(2001) 227-240.
https://doi.org/10.1016/S0142-9418(00)00027-1.
[30] X. Y. Li, C. Huang, H. T. Yang, Y. C. Li, Y. Cheng. Thermal
reaction properties of aluminum/copper (II) oxide/ poly(vinylidene
fluoride) nanocomposite. J Therm. Anal. Calorim. 124(2016) 899-907.
https://doi.org/10.1007/s10973-015-5194-8.
[31] S. G. Hosseini, A. Sheikhpour, M. H. Keshavarz, S. Tavangar.
The effect of metal oxide particle size on the thermal behavior and
ignition kinetics of Mg-CuO thermite mixture. Thermochim. Acta.
626(2016) 1-8. https://doi.org/10.1016/ j.tca.2016. 01.005
[32] E. L. Dreizin. Metal-Based Reactive nanomaterials. Prog Energ.
Combust. 35(2009) 141–167. https://doi.org/10.1016/j.pecs.2008.09.001.