References
Alam, M. A., Gauslaa, Y., & Solhaug, K. A. (2015). Soluble carbohydrates and relative growth rates in chloro-, cyano- and cephalolichens: Effects of temperature and nocturnal hydration.New Phytologist, 208 (3), 750-762. doi:https://doi.org/10.1111/nph.13484
Alexa, A., & Rahnenführer, J. (2018). topGO: Enrichment Analysis for Gene Ontology. R package version 2.34.0.
Allakhverdiev, S., Kreslavskii, V., Fomina, I., Los, D., Klimov, V., Mimuro, M., Mohanty, P. & Carpentier, R. (2012). Inactivation and repair of photosynthetic machinery under heat stress. In S. Itoh, P. Mohanty, & K. N. Guruprasad (Eds.), Photosynthesis: Overviews on Recent Progress and Future Perspective (pp. 187-214). New Delhi: International Publishing House Pvt. Ltd.
Almendras, K., García, J., Carú, M., & Orlando, J. (2018). Nitrogen-fixing bacteria associated with Peltigera cyanolichens and Cladonia chlorolichens. Molecules, 23 (12), 3077. doi:10.3390/molecules23123077
Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11 (10), R106. doi:10.1186/gb-2010-11-10-r106
Armaleo, D., & Clerc, P. (1991). Lichen chimeras: DNA analysis suggests that one fungus forms two morphotypes. Experimental Mycology, 15 (1), 1-10. doi:https://doi.org/10.1016/0147-5975(91)90002-U
Barati, B., Gan, S. Y., Lim, P. E., Beardall, J., & Phang, S. M. (2019). Green algal molecular responses to temperature stress.Acta Physiologiae Plantarum, 41 (2), 26. doi:10.1007/s11738-019-2813-1
Beck, A., Kasalicky, T., & Rambold, G. (2002). Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida . New Phytologist, 153 (2), 317-326. doi:https://doi.org/10.1046/j.0028-646X.2001.00315.x
Blot, M., Meyer, J., & Arber, W. (1991). Bleomycin-resistance gene derived from the transposon Tn5 confers selective advantage toEscherichia coli K-12. Proceedings of the National Academy of Sciences, 88 (20), 9112-9116.
Bowman, S. M., & Free, S. J. (2006). The structure and synthesis of the fungal cell wall. BioEssays, 28 (8), 799-808. doi:https://doi.org/10.1002/bies.20441
Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology, 34 (5), 525-527. doi:10.1038/nbt.3519
Calhoun, L. N., & Kwon, Y. M. (2011). Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli : a review.Journal of Applied Microbiology, 110 (2), 375-386. doi:10.1111/j.1365-2672.2010.04890.x
Calzadilla, P. I., Vilas, J. M., Escaray, F. J., Unrein, F., Carrasco, P., & Ruiz, O. A. (2019). The increase of photosynthetic carbon assimilation as a mechanism of adaptation to low temperature inLotus japonicus . Scientific Reports, 9 (1), 863. doi:10.1038/s41598-018-37165-7
Casano, L. M., del Campo, E. M., García-Breijo, F. J., Reig-Armiñana, J., Gasulla, F., Del Hoyo, A., Guéra, A. & Barreno, E. (2011). Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea . Coexistence versus competition? Environmental Microbiology, 13 (3), 806-818. doi:10.1111/j.1462-2920.2010.02386.x
Chavarria-Pizarro, T., Resl, P., Janjic, A., & Werth, S. (2022). Gene expression responses to thermal shifts in the endangered lichenLobaria pulmonaria . Molecular Ecology, 31 (3), 839-858. doi:https://doi.org/10.1111/mec.16281
Cornejo, C., Derr, C., & Dillman, K. (2017). Ricasolia amplissima (Lobariaceae): one species, three genotypes and a new taxon from south-eastern Alaska. The Lichenologist, 49 (6), 579-596. doi:10.1017/S002428291700041X
Cruz-Loya, M., Kang, T. M., Lozano, N. A., Watanabe, R., Tekin, E., Damoiseaux, R., Savage V. M. & Yeh, P. J. (2019). Stressor interaction networks suggest antibiotic resistance co-opted from stress responses to temperature. The ISME Journal, 13 (1), 12-23. doi:10.1038/s41396-018-0241-7
Culberson, W. L. (1986). Chemistry and sibling speciation in the lichen-forming fungi: Ecological and biological considerations.The Bryologist, 89 (2), 123-131. doi:10.2307/3242752
del Hoyo, A., Álvarez, R., del Campo, E. M., Gasulla, F., Barreno, E., & Casano, L. M. (2011). Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichenRamalina farinacea . Annals of Botany, 107 (1), 109-118. doi:10.1093/aob/mcq206
Demmig-Adams, B., Adams, W. W., Green, T. G. A., Czygan, F.-C., & Lange, O. L. (1990). Differences in the susceptibility to light stress in two lichens forming a phycosymbiodeme, one partner possessing and one lacking the xanthophyll cycle. Oecologia, 84 (4), 451-456.
Domozych, D., Ciancia, M., Fangel, J., Mikkelsen, M., Ulvskov, P., & Willats, W. (2012). The cell walls of green algae: A journey through evolution and diversity. Frontiers in Plant Science, 3 , 82.
Dubin, M. J., Mittelsten Scheid, O., & Becker, C. (2018). Transposons: A blessing curse. Current Opinion in Plant Biology, 42 , 23-29. doi:10.1016/j.pbi.2018.01.003
Dumas, P., Bergdoll, M., Cagnon, C., & Masson, J.-M. (1994). Crystal structure and site-directed mutagenesis of a bleomycin resistance protein and their significance for drug sequestering. The EMBO Journal, 13 (11), 2483-2492.
Elliott, T. (1998). Stress Proteins. In P. J. Delves (Ed.),Encyclopedia of Immunology (Second Edition) (pp. 2228-2232). Oxford: Elsevier.
Elvebakk, A., Papaefthimiou, D., Robertsen, E. H., & Liaimer, A. (2008). Phylogenetic patterns among Nostoc cyanobionts within bi- and tripartite lichens of the genus Pannaria . Journal of Phycology, 44 (4), 1049-1059. doi:https://doi.org/10.1111/j.1529-8817.2008.00556.x
Ertz, D., Guzow-Krzemińska, B., Thor, G., Łubek, A., & Kukwa, M. (2018). Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Scientific Reports, 8 (1), 4952. doi:10.1038/s41598-018-23219-3
Farrar, J. F. (1976). Ecological physiology of the lichenHypogymnia physodes . II. Effects of wetting and drying cycles and the concept of ’physiological buffering’. New Phytologist, 77 (1), 105-113.
Fontaniella, B., Vicente, C., & Legaz, M.-E. (2000). The cryoprotective role of polyols in lichens: Effects on the redistribution of RNase inEvernia prunastri thallus during freezing. Plant Physiology and Biochemistry, 38 (7), 621-627. doi:https://doi.org/10.1016/S0981-9428(00)00780-4
Fürtauer, L., Weiszmann, J., Weckwerth, W., & Nägele, T. (2019). Dynamics of plant metabolism during cold acclimation.International Journal of Molecular Sciences, 20 (21), 5411. doi:10.3390/ijms20215411
Gagunashvili, A. N., & Andrésson, Ó. S. (2018). Distinctive characters of Nostoc genomes in cyanolichens. BMC Genomics, 19 (1), 434. doi:10.1186/s12864-018-4743-5
Garcia-Rubio, R., de Oliveira, H. C., Rivera, J., & Trevijano-Contador, N. (2020). The fungal cell wall: Candida , Cryptococcus , and Aspergillus species. Frontiers in Microbiology, 10 . doi:10.3389/fmicb.2019.02993
Gastebois, A., Aimanianda, V., Bachellier-Bassi, S., Nesseir, A., Firon, A., Beauvais, A., . . . Mouyna, I. (2013). SUN proteins belong to a novel family of β-(1,3)-glucan-modifying enzymes involved in fungal morphogenesis. The Journal of Biological Chemistry, 288 (19), 13387-13396. doi:10.1074/jbc.M112.440172
Gauslaa, Y., Coxson, D. S., & Solhaug, K. A. (2012). The paradox of higher light tolerance during desiccation in rare old forest cyanolichens than in more widespread co-occurring chloro- and cephalolichens. New Phytologist, 195 (4), 812-822. doi:https://doi.org/10.1111/j.1469-8137.2012.04221.x
Gazzano, C., Favero-Longo, S. E., Iacomussi, P., & Piervittori, R. (2013). Biocidal effect of lichen secondary metabolites against rock-dwelling microcolonial fungi, cyanobacteria and green algae.International Biodeterioration & Biodegradation, 84 , 300-306. doi:https://doi.org/10.1016/j.ibiod.2012.05.033
Geoghegan, I., Steinberg, G., & Gurr, S. (2017). The role of the fungal cell wall in the infection of plants. Trends in Microbiology, 25 (12), 957-967. doi:10.1016/j.tim.2017.05.015
Ghimire, S., Tang, X., Zhang, N., Liu, W., Qi, X., Fu, X., & Si, H. (2020). Genomic analysis of the SUMO-conjugating enzyme and genes under abiotic stress in potato (Solanum tuberosum L.).International Journal of Genomics, 2020 , 9703638. doi:10.1155/2020/9703638
Goffinet, B., & Hastings, R. I. (1994). The Lichen Genus Peltigera (Lichenized Ascomycetes) in Alberta . Edmonton, Alberta: Provincial Museum of Alberta.
Goward, T., Goffinet, B., & Vitikainen, O. (1995). Synopsis of the genus Peltigera (lichenized Ascomycetes) in British Columbia, with a key to the North American species. Canadian Journal of Botany, 73 (1), 91-111. doi:10.1139/b95-012
Green, T. G. A., Büdel, B., Heber, U., Meyer, A., Zellner, H., & Lange, O. L. (1993). Differences in photosynthetic performance between cyanobacterial and green algal components of lichen photosymbiodemes measured in the field. New Phytologist, 125 (4), 723-731. doi:https://doi.org/10.1111/j.1469-8137.1993.tb03921.x
Green, T. G. A., Schlensog, M., Sancho, L. G., Winkler, J. B., Broom, F. D., & Schroeter, B. (2002). The photobiont determines the pattern of photosynthetic activity within a single lichen thallus containing cyanobacterial and green algal sectors (photosymbiodeme).Oecologia, 130 (2), 191-198. doi:10.1007/s004420100800
Grzesiak, J., Woltyńska, A., Zdanowski, M. K., Górniak, D., Świątecki, A., Olech, M. A., & Aleksandrzak-Piekarczyk, T. (2021). Metabolic fingerprinting of the Antarctic cyanolichen Leptogium puberulum –associated bacterial community (Western Shore of Admiralty Bay, King George Island, Maritime Antarctica). Microbial Ecology, 82 (3), 818-829. doi:10.1007/s00248-021-01701-2
Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., . . . Regev, A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols, 8 (8), 1494-1512. doi:10.1038/nprot.2013.084
Hájek, J., Váczi, P., Barták, M., Smejkal, L., & Lipavská, H. (2009). Cryoproective role of ribitol in Xanthoparmelia somloensis .Biologia Plantarum, 53 (4), 677-684. doi:10.1007/s10535-009-0122-z
Hale, M. E. (1957). The Lobaria amplissima -L. quercizanscomplex in Europe and North America. The Bryologist, 60 (1), 35-39. doi:10.2307/3240051
hbctraining, DGE_workshop (2022). GitHub repository , [accessed 05.04.2022]; https://github.com/hbctraining/DGE_workshop.
Henskens, F. L., Green, T. G. A., & Wilkins, A. (2012). Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Annals of Botany, 110 (3), 555-563. doi:10.1093/aob/mcs108
Hill, D. J. (1972). The movement of carbohydrate from the alga to the fungus in the lichen Peltigera polydactyla . New Phytologist, 71 (1), 31-39.
Hill, D. J. (1985). Changes in Photobiont Dimensions and Numbers During Co-Development of Lichen Symbionts. In D. H. Brown (Ed.), Lichen Physiology and Cell Biology (pp. 303-317). Boston, MA: Springer US.
Hill, D. J., & Ahmadjian, V. (1972). Relationship between carbohydrate movement and the symbiosis in lichens with green algae. Planta, 103 (3), 267-277.
Hitch, C. J. B., & Millbank, J. W. (1975). Nitrogen metabolism in lichens. VII. Nitrogenase activity and heterocyst frequency in lichens with blue-green phycobionts. New Phytologist, 75 (2), 239-244.
Hoiczyk, E., & Hansel, A. (2000). Cyanobacterial cell walls: news from an unusual prokaryotic envelope. Journal of Bacteriology, 182 (5), 1191-1199. doi:10.1128/JB.182.5.1191-1199.2000
Holtan-Hartwig, J. (1993). The lichen genus Peltigera , exclusive of the P. canina group, in Norway. Sommerfeltia, 15 . doi:10.1017/S0024282994000150
Holtman, D. F. (1947). Antibiotic products of fungi. The Botanical Review, 13 (2), 59-91. doi:10.1007/BF02861543
Holzinger, A., & Karsten, U. (2013). Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Frontiers in Plant Science, 4 , 327.
Honegger, R. (1984). Cytological aspects of the mycobiont–phycobiont relationship in lichens: Haustorial types, phycobiont cell wall types, and the ultrastructure of the cell surface layers in some cultured and symbiotic myco-and phycobionts. The Lichenologist, 16 (2), 111-127. doi:10.1017/S0024282984000293
Honegger, R. (1985). Fine Structure of Different Types of Symbiotic Relationships in Lichens. In D. H. Brown (Ed.), Lichen Physiology and Cell Biology (pp. 287-302). Boston, MA: Springer US.
Honegger, R. (1986). Ultrastructural studies in lichens. II. Mycobiont and photobiont cell wall surface layers and adhering crystalline lichen products in four Parmeliaceae. New Phytologist, 103 (4), 797-808.
Honegger, R. (2012). 15 The symbiotic phenotype of lichen-forming ascomycetes and their endo- and epibionts. In B. Hock (Ed.),Fungal Associations (pp. 287-339). Berlin, Heidelberg: Springer Berlin Heidelberg.
Honegger, R., & Brunner, U. (1981). Sporopollenin in the cell walls ofCoccomyxa and Myrmecia phycobionts of various lichens: An ultrastructural and chemical investigation. Canadian Journal of Botany, 59 , 2713-2734. doi:10.1139/b81-322
Hopke, A., Brown, A. J. P., Hall, R. A., & Wheeler, R. T. (2018). Dynamic fungal cell wall architecture in stress adaptation and immune evasion. Trends in Microbiology, 26 (4), 284-295. doi:10.1016/j.tim.2018.01.007
Hu, X., Lu, Z., Shen, Y.-M., Tao, Y., & Song, S.-Y. (2019). Para-aminobenzoic acid synthase from mushroom Agaricus bisporusenhances UV-C tolerance in Arabidopsis by reducing oxidative DNA damage. Acta Physiologiae Plantarum, 41 (9), 160. doi:10.1007/s11738-019-2936-4
Huang, B.-H., Lin, Y.-C., Huang, C.-W., Lu, H.-P., Luo, M.-X., & Liao, P.-C. (2018). Differential genetic responses to the stress revealed the mutation-order adaptive divergence between two sympatric ginger species.BMC Genomics, 19 (1), 692. doi:10.1186/s12864-018-5081-3
Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2007). MEGAN analysis of metagenomic data. Genome Research, 17 (3), 377-386. doi:10.1101/gr.5969107
Hyvärinen, M., Härdling, R., & Tuomi, J. (2002). Cyanobacterial lichen symbiosis: The fungal partner as an optimal harvester. Oikos, 98 (3), 498-504. doi:https://doi.org/10.1034/j.1600-0706.2002.980314.x
Ikeda, K., Nakayashiki, H., Takagi, M., Tosa, Y., & Mayama, S. (2001). Heat shock, copper sulfate and oxidative stress activate the retrotransposon MAGGY resident in the plant pathogenic fungusMagnaporthe grisea . Molecular Genetics and Genomics, 266 (2), 318-325. doi:10.1007/s004380100560
Insarova, I. D., & Blagoveshchenskaya, E. Y. (2016). Lichen symbiosis: Search and recognition of partners. Biology Bulletin, 43 (5), 408-418. doi:10.1134/S1062359016040038
Ivanov, A. G., Velitchkova, M. Y., Allakhverdiev, S. I., & Huner, N. P. A. (2017). Heat stress-induced effects of photosystem I: An overview of structural and functional responses. Photosynthesis Research, 133 (1), 17-30. doi:10.1007/s11120-017-0383-x
Ivanov, D., Yaneva, G., Potoroko, I., & Ivanova, D. G. (2021). Contribution of cyanotoxins to the ecotoxicological role of lichens.Toxins, 13 (5). doi:10.3390/toxins13050321
Jüriado, I., Kaasalainen, U., Jylhä, M., & Rikkinen, J. (2019). Relationships between mycobiont identity, photobiont specificity and ecological preferences in the lichen genus Peltigera (Ascomycota) in Estonia (northeastern Europe). Fungal Ecology, 39 , 45-54. doi:10.1016/j.funeco.2018.11.005
Kaasalainen, U., Fewer, D. P., Jokela, J., Wahlsten, M., Sivonen, K., & Rikkinen, J. (2012). Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proceedings of the National Academy of Sciences, 109 (15), 5886-5891. doi:10.1073/pnas.1200279109
Kaasalainen, U., Jokela, J., Fewer, D. P., Sivonen, K., & Rikkinen, J. (2009). Microcystin production in the tripartite cyanolichenPeltigera leucophlebia . Molecular Plant-Microbe Interactions, 22 (6), 695-702. doi:10.1094/MPMI-22-6-0695
Kammerscheit, X., Chauvat, F., & Cassier-Chauvat, C. (2019). First in vivo evidence that glutathione-S-transferase operates in photo-oxidative stress in cyanobacteria. Frontiers in Microbiology, 10 (1899). doi:10.3389/fmicb.2019.01899
Karas, V. O., Westerlaken, I., & Meyer, A. S. (2015). The DNA-binding protein from starved cells (Dps) utilizes dual functions to defend cells against multiple stresses. Journal of Bacteriology, 197 (19), 3206-3215. doi:10.1128/JB.00475-15
Kato, N., Brooks, W., & Calvo Ana, M. (2003). The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development.Eukaryotic Cell, 2 (6), 1178-1186. doi:10.1128/EC.2.6.1178-1186.2003
Keszenman, D. J., Candreva, E. C., & Nunes, E. (2000). Cellular and molecular effects of bleomycin are modulated by heat shock inSaccharomyces cerevisiae . Mutation Research, 459 (1), 29-41. doi:https://doi.org/10.1016/S0921-8777(99)00056-7
Keszenman, D. J., Candreva, E. C., Sánchez, A. G., & Nunes, E. (2005). RAD6 gene is involved in heat shock induction of bleomycin resistance inSaccharomyces cerevisiae . Environmental and Molecular Mutagenesis, 45 (1), 36-43. doi:10.1002/em.20083
Kono, M., Kon, Y., Ohmura, Y., Satta, Y., & Terai, Y. (2020). In vitro resynthesis of lichenization reveals the genetic background of symbiosis-specific fungal-algal interaction in Usnea hakonensis .BMC Genomics, 21 (1), 671. doi:10.1186/s12864-020-07086-9
Kopke, K., Hoff, B., Bloemendal, S., Katschorowski, A., Kamerewerd, J., & Kück, U. (2013). Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. Eukaryotic Cell, 12 (2), 299-310. doi:10.1128/EC.00272-12
Koriem, A. M., & Ahmadjian, V. (1986). An ultrastructural study of lichenized and cultured Nostoc photobionts of Peltigera canina , Peltigera rufescens , and Peltigera spuria .Endocytobiosis and Cell Research, 3 , 65-78.
Kranner, I. (2002). Glutathione status correlates with different degrees of desiccation tolerance in three lichens. New Phytologist, 154 (2), 451-460. doi:https://doi.org/10.1046/j.1469-8137.2002.00376.x
Kranner, I., Beckett, R., Hochman, A., & Nash III, T. H. (2008). Desiccation-tolerance in lichens: A review. The Bryologist, 111 (4), 576-593. doi:10.1639/0007-2745-111.4.576
Kukwa, M., Kosecka, M., & Guzow-Krzemińska, B. (2020). One name – one fungus: The influence of photosynthetic partners on the taxonomy and systematics of lichenized fungi. Acta Societatis Botanicorum Poloniae, 89 (3). doi:10.5586/asbp.89311
Kurepa, J., Walker, J. M., Smalle, J., Gosink, M. M., Davis, S. J., Durham, T. L., Sung, D.Y., & Vierstra, R. D. (2003). The small ubiquitin-like modifier (SUMO) protein modification system inArabidopsis : Accumulation of SUMO1 and -2 conjugates is increased by stress. Journal of Biological Chemistry, 278 (9), 6862-6872. doi:10.1074/jbc.M209694200
Lange, O. L., & Green, T. G. A. (2005). Lichens show that fungi can acclimate their respiration to seasonal changes in temperature.Oecologia, 142 (1), 11-19. doi:10.1007/s00442-004-1697-x
Lange, O. L., Green, T. G. A., & Ziegler, H. (1988). Water status related photosynthesis and carbon isotope discrimination in species of the lichen genus Pseudocyphellaria with green or blue-green photobionts and in photosymbiodemes. Oecologia, 75 (4), 494-501. doi:10.1007/BF00776410
Lange, O. L., Kilian, E., & Ziegler, H. (1986). Water vapor uptake and photosynthesis of lichens: Performance differences in species with green and blue-green algae as phycobionts. Oecologia, 71 (1), 104-110. doi:10.1007/BF00377327
Leach, M. D., Stead, D. A., Argo, E., & Brown, A. J. P. (2011). Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans .Molecular Biology of the Cell, 22 (5), 687-702. doi:10.1091/mbc.E10-07-0632
Légeret, B., Schulz-Raffelt, M., Nguyen, H. M., Auroy, P., Beisson, F., Peltier, G., Blanc, G., & Li-Beisson, Y. (2016). Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. Plant, Cell & Environment, 39 (4), 834-847. doi:10.1111/pce.12656
Liang, W., Wang, L., Shi, J., Lei, X., Yang, J., Wu, S., & Chen, W. (2014). Differential expression of antioxidant proteins in the drought-tolerant cyanobacterium Nostoc flagelliforme under desiccation. Plant OMICS, 7 , 205-212.
Lommen, P. W., Schwintzer, C. R., Yocum, C. S., & Gates, D. M. (1971). A model describing photosynthesis in terms of gas diffusion and enzyme kinetics. Planta, 98 (3), 195-220. doi:10.1007/BF00387066
Love, M., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15 (12), 550. doi:10.1186/s13059-014-0550-8
Lu, J., Magain, N., Miądlikowska, J., Coyle, J. R., Truong, C., & Lutzoni, F. (2018). Bioclimatic factors at an intrabiome scale are more limiting than cyanobiont availability for the lichen-forming genusPeltigera . American Journal of Botany, 105 (7), 1198-1211. doi:10.1002/ajb2.1119
Lu, Z., Kong, X., Lu, Z., Xiao, M., Chen, M., Zhu, L., Shen, Y., Hu, X., & Song, S. (2014). Para-aminobenzoic acid (PABA) synthase enhances thermotolerance of mushroom Agaricus bisporus . PLoS one, 9 (3), e91298. doi:10.1371/journal.pone.0091298
Magain, N., & Sérusiaux, E. (2014). Do photobiont switch and cephalodia emancipation act as evolutionary drivers in the lichen symbiosis? A case study in the Pannariaceae (Peltigerales). PLoS one, 9 (2), e89876. doi:10.1371/journal.pone.0089876
Martínez, I., Burgaz, A. R., Vitikainen, O., & Escudero, A. (2003). Distribution patterns in the genus Peltigera Willd. The Lichenologist, 35 (4), 301-323. doi:https://doi.org/10.1016/S0024-2829(03)00041-0
Morel, M., Ngadin, A. A., Droux, M., Jacquot, J.-P., & Gelhaye, E. (2009). The fungal glutathione S-transferase system. Evidence of new classes in the wood-degrading basidiomycete Phanerochaete chrysosporium . Cellular and Molecular Life Sciences, 66 (23), 3711-3725. doi:10.1007/s00018-009-0104-5
Müller, W. H., van der Krift, T. P., Krouwer, A. J., Wösten, H. A., van der Voort, L. H., Smaal, E. B., & Verkleij, A. J. (1991). Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum . The EMBO Journal, 10 (2), 489-495.
Muñoz-López, M., & García-Pérez, J. L. (2010). DNA transposons: nature and applications in genomics. Current Genomics, 11 (2), 115-128. doi:10.2174/138920210790886871
Nair, S., & Finkel, S. E. (2004). Dps protects cells against multiple stresses during stationary phase. Journal of Bacteriology, 186 (13), 4192-4198. doi:10.1128/JB.186.13.4192-4198.2004
Negi, P., Rai, A. N., & Suprasanna, P. (2016). Moving through the stressed genome: Emerging regulatory roles for transposons in plant stress response. Frontiers in Plant Science, 7 (1448). doi:10.3389/fpls.2016.01448
O’Brien, H. E., Miądlikowska, J., & Lutzoni, F. (2005). Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera . European Journal of Phycology, 40 (4), 363-378. doi:10.1080/09670260500342647
O’Brien, H. E., Miądlikowska, J., & Lutzoni, F. (2009). Assessing reproductive isolation in highly diverse communities of the lichen-forming fungal genus Peltigera . Evolution, 63 (8), 2076-2086. doi:https://doi.org/10.1111/j.1558-5646.2009.00685.x
Ocampo-Friedmann, R., & Friedmann, E. I. (1993). Biologically active substances produced by antarctic cryptoendolithic fungi. Antarctic Journal of the United States, 28 (5), 252-254.
Oei, A. L., Vriend, L. E. M., Crezee, J., Franken, N. A. P., & Krawczyk, P. M. (2015). Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiation Oncology, 10 (165). doi:10.1186/s13014-015-0462-0
Onesti, S., Miller, A. D., & Brick, P. (1995). The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli .Structure, 3 (2), 163-176. doi:https://doi.org/10.1016/S0969-2126(01)00147-2
Palmqvist, K., Dahlman, L., Jonsson, A., & Nash, T. H. (2008). The Carbon Economy of Lichens. In T. H. Nash III (Ed.), Lichen Biology (2 ed., pp. 182-215). Cambridge: Cambridge University Press.
Pardo-De la Hoz, C. J., Magain, N., Lutzoni, F., Goward, T., Restrepo, S., & Miądlikowska, J. (2018). Contrasting symbiotic patterns in two closely related lineages of trimembered lichens of the genusPeltigera . Frontiers in Microbiology, 9 (2770). doi:10.3389/fmicb.2018.02770
Patel, P. K., & Free, S. J. (2019). The genetics and biochemistry of cell wall structure and synthesis in Neurospora crassa , a model filamentous fungus. Frontiers in Microbiology, 10 (2294). doi:10.3389/fmicb.2019.02294
Pawlowski, K., & Bergman, B. (2007). Plant Symbioses withFrankia and Cyanobacteria. In H. Bothe, S. J. Ferguson, & W. E. Newton (Eds.), Biology of the Nitrogen Cycle (pp. 165-178). Amsterdam: Elsevier.
Peredo, E. L., & Cardon, Z. G. (2020). Shared up-regulation and contrasting down-regulation of gene expression distinguish desiccation-tolerant from intolerant green algae. Proceedings of the National Academy of Sciences, 117 (29), 17438. doi:10.1073/pnas.1906904117
Prudden, J., Perry, J. J. P., Arvai, A. S., Tainer, J. A., & Boddy, M. N. (2009). Molecular mimicry of SUMO promotes DNA repair. Nature Structural & Molecular Biology, 16 (5), 509-516. doi:10.1038/nsmb.1582
Purvis, O. W. (2000). Lichens . London: Natural History Museum.
Ranković, B., & Mišić, M. (2008). The antimicrobial activity of the lichen substances of the lichens Cladonia furcata ,Ochrolechia androgyna , Parmelia caperata andParmelia conspresa . Biotechnology & Biotechnological Equipment, 22 (4), 1013-1016. doi:10.1080/13102818.2008.10817601
Richardson, D. H. S., & Smith, D. C. (1968). Lichen physiology. X. The isolated algal and fungal symbionts of Xanthoria aureola .New Phytologist, 67 (1), 69-77.
Richardson, D. H. S., Smith, D. C., & Lewis, D. H. (1967). Carbohydrate movement between the symbionts of lichens. Nature, 214 (5091), 879-882. doi:10.1038/214879a0
Sakaki, K., Tashiro, K., Kuhara, S., & Mihara, K. (2003). Response of genes associated with mitochondrial function to mild heat stress in yeast Saccharomyces cerevisiae . The Journal of Biochemistry, 134 (3), 373-384. doi:10.1093/jb/mvg155
Sayers, E. W., Beck, J., Brister, J. R., Bolton, E. E., Canese, K., Comeau, D. C., . . . Ostell, J. (2020). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 48 (D1), D9-D16. doi:10.1093/nar/gkz899
Schrank, B. R., Aparicio, T., Li, Y., Chang, W., Chait, B. T., Gundersen, G. G., . . . Gautier, J. (2018). Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature, 559 (7712), 61-66. doi:10.1038/s41586-018-0237-5
Schwendener, S. (1868). Ueber die Beziehungen zwischen Algen und Flechtengonidien. Botanische Zeitung, 26 (18), 289-292.
Shrestha, G., & St. Clair, L. L. (2013). Lichens: a promising source of antibiotic and anticancer drugs. Phytochemistry Reviews, 12 (1), 229-244. doi:10.1007/s11101-013-9283-7
Skult, H. (1997). Notes on the chemical and morphological variation of the lichen Ophioparma ventosa in East Fennoscandia. Annales Botanici Fennici, 34 (4), 291-297.
Smith, D., Muscatine, L., & Lewis, D. (1969). Carbohydrate movement from autotrophs to heterotrophs in mutualistic symbiosis.Biological Reviews, 44 (1), 17-85. doi:https://doi.org/10.1111/j.1469-185X.1969.tb00821.x
Smith, D. C. (1963). Studies in the physiology of lichens. IV. Carbohydrates in Peltigera polydactyla and the utilization of absorbed glucose. New Phytologist, 62 (2), 205-216.
Song, Y., Zhao, J., Chen, J., Luo, Q., Yang, R., Xu, J., . . . Yan, X. (2018). Heat shock‐induced metabolic conversion of membrane lipids, fatty acids and volatile organic compounds of Pyropia haitanensisunder different heat shock time. Phycological Research, 66 , 89-99. doi:doi: 10.1111/pre.12206
Spribille, T., Resl, P., Stanton, D. E., & Tagirdzhanova, G. (2022). Evolutionary biology of lichen symbioses. New Phytologist, 234 , 1566–1582. doi:10.1111/nph.18048
Steinhäuser, S. S., Andrésson, Ó. S., Pálsson, A., & Werth, S. (2016). Fungal and cyanobacterial gene expression in a lichen symbiosis: Effect of temperature and location. Fungal Biology, 120 (10), 1194-1208. doi:10.1016/j.funbio.2016.07.002
Sundberg, B., Ekblad, A., Näsholm, T., & Palmqvist, K. (1999). Lichen respiration in relation to active time, temperature, nitrogen and ergosterol concentrations. Functional Ecology, 13 (1), 119-125. doi:https://doi.org/10.1046/j.1365-2435.1999.00295.x
Tarkowski, Ł. P., & Van den Ende, W. (2015). Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Frontiers in Plant Science, 6 (203). doi:10.3389/fpls.2015.00203
The UniProt Consortium. (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 49 (D1), D480-D489. doi:10.1093/nar/gkaa1100
Tønsberg, T., & Holtan-Hartwig, J. (1983). Phycotype pairs inNephroma , Peltigera and Lobaria in Norway.Nordic Journal of Botany, 3 (6), 681-688. doi:https://doi.org/10.1111/j.1756-1051.1983.tb01479.x
Vančurová, L., Muggia, L., Peksa, O., Řídká, T., & Škaloud, P. (2018). The complexity of symbiotic interactions influences the ecological amplitude of the host: A case study in Stereocaulon (lichenized Ascomycota). Molecular Ecology, 27 (14), 3016-3033. doi:https://doi.org/10.1111/mec.14764
Wagner, S., Bader, M. Y., & Zotz, G. (2014). Physiological Ecology of Tropical Bryophytes. In D. T. Hanson & S. K. Rice (Eds.),Photosynthesis in Bryophytes and Early Land Plants (pp. 269-289). Dordrecht: Springer.
Werth, S. (2011). Biogeography and Phylogeography of Lichen Fungi and their Photobionts. In D. Fontaneto (Ed.), Biogeography of Microscopic Organisms. Is Everything Small Everywhere? (pp. 191-208). Cambridge: Cambridge University Press.
Werth, S., & Sork, V. L. (2014). Ecological specialization inTrebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America. American Journal of Botany, 101 (7), 1127-1140. doi:https://doi.org/10.3732/ajb.1400025
Woitzik, D., Weckesser, J., & Jürgens, U. J. (1988). Isolation and characterization of cell wall components of the unicellular cyanobacterium Synechococcus sp. PCC 6307. Journal of General Microbiology, 134 (3), 619-627. doi:https://doi.org/10.1099/00221287-134-3-619
Wu, X. R., Kenzior, A., Willmot, D., Scanlon, S., Chen, Z., Topin, A., . . . Folk, W. R. (2007). Altered expression of plant lysyl tRNA synthetase promotes tRNA misacylation and translational recoding of lysine. The Plant Journal, 50 (4), 627-636. doi:https://doi.org/10.1111/j.1365-313X.2007.03076.x
Zhang, X., Wu, C., Hu, C., Li, Y., Sun, X., & Xu, N. (2020). Lipid remodeling associated with chitooligosaccharides-induced heat tolerance of marine macroalgae Gracilariopsis lemaneiformis . Algal Research, 52 , 102113. doi:https://doi.org/10.1016/j.algal.2020.102113
Zhou, W., Ryan, J. J., & Zhou, H. (2004). Global analyses of sumoylated proteins in Saccharomyces cerevisiae . Induction of protein sumoylation by cellular stresses. The Journal of Biological Chemistry, 279 (31), 32262-32268. doi:10.1074/jbc.M404173200