On a nonlinear transmission eigenvalue problem with a Neumann-Robin
boundary condition
Abstract
Let $\Omega$ be a bounded domain in
$\mathbb{R}^N, N\geq 2,$ with
smooth boundary $\Sigma$ and let
$\Omega_1$ be a subdomain of $\Omega$
with smooth boundary $\Gamma,$ such that
$\overline{\Omega}_1\subset
\Omega$. Denote $\Omega_2 =
\Omega \setminus
\overline{\Omega}_1.$ Consider the
transmission eigenvalue problem \begin{equation*}
\left\{\begin{array}{l}
-\Delta_p
u_1+\gamma_1(x)\mid
u_1\mid ^{r-2}u_1=\lambda
\mid u_1\mid
^{p-2}u_1\ \
\mbox{in} ~
\Omega_1,\\[1mm]
-\Delta_q
u_2+\gamma_2(x)\mid
u_2\mid ^{s-2}u_2=\lambda
\mid u_2\mid
^{q-2}u_2\ \
\mbox{in} ~
\Omega_2,\\[1mm]
u_1=u_2,~~\frac{\partial
u_1}{\partial\nu_{p}}=\frac{\partial
u_2}{\partial\nu_{q}}
~~ \mbox{on}
~
\Gamma,\\[1mm]
\frac{\partial
u_2}{\partial\nu_{q}}+\beta
(x) \mid
u_2\mid^{\zeta-2} u_2=0
~~ \mbox{on}
~ \Sigma,
\end{array}\right.
\end{equation*} where $\lambda$ is a
real parameter $p, q, r, s, \zeta \in (1,
\infty)$ and
$\gamma_i\in
L^{\infty}(\Omega_i),
~i=1, 2, \beta\in
L^{\infty}(\Sigma),$
$\beta\geq 0$ a.e. on
$\Sigma.$ Under additional suitable assumptions on $p,
q, r, s, \zeta$ we prove the existence of a sequence of
eigenvalues
$\big(\lambda_n\big)_n,
\lambda_n\rightarrow
\infty.$ The proof is based on the
Lusternik-Schnirelmann theory on $C^1-$ manifolds.