Teleost fishes are a highly diverse and ecologically essential group of aquatic vertebrates and include coho salmon, Onchorhynchus kisutch. Coho are semelparous and all ovarian follicles develop synchronously. Owing to their ubiquitous distribution, teleost provide critical sources of food worldwide through subsistence, commercial fisheries, and aquaculture. Enhancement of commercial hatchery practices requires a detailed knowledge of teleost reproductive physiology. Despite decades of research on teleost reproductive processes, an in-depth proteome of teleost ovarian development has yet to be generated. We describe a coho salmon ovarian proteome of over 5700 proteins, generated with data independent acquisition, revealing the suite of detectable proteins that change through the transition from primary to secondary ovarian follicle development. This transition is critical for puberty onset, egg quality, and further embryonic development. Primary ovarian follicle development was marked by differential abundances of proteins involved in carbohydrate metabolism, protein turnover, and the complement pathway, suggesting elevated metabolism as the oocytes enter maturation. The greatest proteomic shift occurred during the transition from primary to secondary follicle growth, with increased abundance of proteins underlying cortical alveoli formation, extracellular matrix reorganization, iron binding, and cell-cell signaling. This work provides a foundation for identifying biomarkers of salmon oocyte stage and quality.

Amy Maas

and 5 more

Zooplankton undergo a vertical migration which exposes them to gradients of light, temperature, oxygen and food availability on a predictable daily schedule. Anticipating and responding to these environmental conditions, which independently are known to influence metabolic rates, likely has an appreciable effect on the delivery of waste products to the distinctly different daytime (deep) and nighttime (surface) habitats. Disentangling the co-varying and potentially synergistic interactions on metabolic rates has proven difficult, despite the importance of this migration to oceanic biogeochemical cycling. This study examines the transcriptomic and proteomic profile of the circumglobal migratory copepod, Pleuromamma xiphias, over the diel cycle. The transcriptome showed a large number of up-regulated genes during the middle of the day – the period often considered to be of lowest metabolic activity. There were proteomic and transcriptomic peaks in oxidative stress response and muscle proteins after the periods of migration, suggestive of a physiological consequence of migration. There were changes in metabolic pathways over time, with increased ammonium production signals during the evening and chitin synthesis and degradation pathways during the day. Comparisons of patterns across the paired datasets suggest that 1) estimates of physiological rates made in the laboratory in steady state conditions that don’t account for time of day may not be adequate to predict in situ phenotypes 2) use of ‘omics datasets to predict organismal phenotypes must be done cautiously as highly dynamic patterns in the transcriptome and proteome are often dampened and sometimes asynchronous at the enzyme or organismal level.