Reference
1. Huppert LA, Matthay MA, Ware LB. Pathogenesis of Acute Respiratory Distress Syndrome. Semin Respir Crit Care Med. 2019;40(1):31-39.
2. Chi M, Mei YB, Feng ZC. [A review on neonatal acute respiratory distress syndrome]. Zhongguo Dang Dai Er Ke Za Zhi.2018;20(9):724-728.
3. Khemani RG, Smith LS, Zimmerman JJ, Erickson S. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference.Pediatr Crit Care Med. 2015;16(5 Suppl 1):S23-40.
4. Guo JY, Chen L, Shi Y. Interpretation of Montreux definition of neonatal acute respiratory distress syndrome in 2017. Zhonghua Er Ke Za Zhi. 2018;56(08):571-574.
5. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet. 1967;2(7511):319-323.
6. Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818-824.
7. Artigas A, Bernard GR, Carlet J, et al. The American-European Consensus Conference on ARDS, part 2. Ventilatory, pharmacologic, supportive therapy, study design strategies and issues related to recovery and remodeling. Intensive Care Med. 1998;24(4):378-398.
8. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin Definition. Jama.2012;307(23):2526-2533.
9. Parvathaneni K, Belani S, Leung D, Newth CJ, Khemani RG. Evaluating the Performance of the Pediatric Acute Lung Injury Consensus Conference Definition of Acute Respiratory Distress Syndrome. Pediatr Crit Care Med. 2017;18(1):17-25.
10. De Luca D, van Kaam AH, Tingay DG, et al. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir Med. 2017;5(8):657-666.
11. Faix RG, Viscardi RM, DiPietro MA, Nicks JJ. Adult respiratory distress syndrome in full-term newborns. Pediatrics.1989;83(6):971-976.
12. Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Dis Child. 1959;97(5, Part 1):517-523.
13. Feng ZC, Zhao Z, Shi Y. Superimposition: a key word in neonatal acute respiratory distress syndrome. Chinese Journal of Perinatal Medicine. 2021;24(04):273-277.
14. Liu J, Shi Y, Dong JY, et al. Clinical characteristics, diagnosis and management of respiratory distress syndrome in full-term neonates.Chin Med J (Engl). 2010;123(19):2640-2644.
15. Sweeney RM, McAuley DF. Acute respiratory distress syndrome.Lancet. 2016;388(10058):2416-2430.
16. Mora R, Arold S, Marzan Y, Suki B, Ingenito EP. Determinants of surfactant function in acute lung injury and early recovery. Am J Physiol Lung Cell Mol Physiol. 2000;279(2):L342-349.
17. Guo JY, Chen L, Shi Y. A single-center retrospective study of neonatal acute respiratory distress syndrome
based on the Montreux definition. Zhongguo Dang Dai Er Ke Za Zhi.2020;22(12):1267-1272.
18. Tang S, Bao L. Clinical characteristics and prognosis-related factors of neonatal acute respiratory
distress syndrome. Journal of Third Military Medical University.2019;41(09):898-902.
19. Wick KD, McAuley DF, Levitt JE, et al. Promises and challenges of personalized medicine to guide ARDS therapy. Crit Care.2021;25(1):404.
20. Derwall M, Martin L, Rossaint R. The acute respiratory distress syndrome: pathophysiology, current clinical practice, and emerging therapies. Expert Rev Respir Med. 2018;12(12):1021-1029.
21. Thille AW, Esteban A, Fernández-Segoviano P, et al. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical autopsies.Lancet Respir Med. 2013;1(5):395-401.
22. Li S, Cui HZ, Xu CM, Sun ZW, Tang ZK, Chen HL. RUNX3 protects against acute lung injury by inhibiting the JAK2/STAT3 pathway in rats with severe acute pancreatitis. Eur Rev Med Pharmacol Sci.2019;23(12):5382-5391.
23. Sun K, Huang R, Yan L, et al. Schisandrin Attenuates Lipopolysaccharide-Induced Lung Injury by Regulating TLR-4 and Akt/FoxO1 Signaling Pathways. Front Physiol. 2018;9:1104.
24. Chang HY, Chen YC, Lin JG, et al. Asatone Prevents Acute Lung Injury by Reducing Expressions of NF-[Formula: see text]B, MAPK and Inflammatory Cytokines. Am J Chin Med. 2018;46(3):651-671.
25. He YQ, Zhou CC, Yu LY, et al. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res. 2021;163:105224.
26. Dembinski R, Mielck F. [ARDS - An Update - Part 1: Epidemiology, Pathophysiology and Diagnosis]. Anasthesiol Intensivmed Notfallmed Schmerzther. 2018;53(2):102-111.
27. Deliloglu B, Tuzun F, Cengiz MM, Ozkan H, Duman N. Endotracheal Surfactant Combined With Budesonide for Neonatal ARDS. Front Pediatr. 2020;8:210.
28. Berair R, Brightling CE. Asthma therapy and its effect on airway remodelling. Drugs. 2014;74(12):1345-1369.
29. Barnes PJ, Adcock IM. How do corticosteroids work in asthma?Ann Intern Med. 2003;139(5 Pt 1):359-370.
30. Donnelly R, Seale JP. Clinical pharmacokinetics of inhaled budesonide. Clin Pharmacokinet. 2001;40(6):427-440.
31. Barnes PJ. Molecular mechanisms of glucocorticoid action in asthma.Pulm Pharmacol Ther. 1997;10(1):3-19.
32. Meduri GU, Annane D, Confalonieri M, et al. Pharmacological principles guiding prolonged glucocorticoid treatment in ARDS.Intensive Care Med. 2020;46(12):2284-2296.
33. Pelaia G, Vatrella A, Busceti MT, et al. Molecular and cellular mechanisms underlying the therapeutic effects of budesonide in asthma.Pulm Pharmacol Ther. 2016;40:15-21.
34. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids.Nat Rev Immunol. 2017;17(4):233-247.
35. Ayroldi E, Cannarile L, Migliorati G, Nocentini G, Delfino DV, Riccardi C. Mechanisms of the anti-inflammatory effects of glucocorticoids: genomic and nongenomic interference with MAPK signaling pathways. Faseb j. 2012;26(12):4805-4820.
36. Parente L, Solito E. Association between glucocorticosteroids and lipocortin 1. Trends Pharmacol Sci. 1994;15(10):362.
37. Beaulieu E, Morand EF. Role of GILZ in immune regulation, glucocorticoid actions and rheumatoid arthritis. Nat Rev Rheumatol. 2011;7(6):340-348.
38. Bruscoli S, Di Virgilio R, Donato V, et al. Genomic and non-genomic effects of different glucocorticoids on mouse thymocyte apoptosis.Eur J Pharmacol. 2006;529(1-3):63-70.
39. Barnes PJ. Corticosteroid effects on cell signalling. Eur Respir J. 2006;27(2):413-426.
40. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med.2005;353(16):1711-1723.
41. Riccardi C, Zollo O, Nocentini G, et al. Glucocorticoid hormones in the regulation of cell death. Therapie. 2000;55(1):165-169.
42. Doyle SL, O’Neill LA. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem Pharmacol. 2006;72(9):1102-1113.
43. Bladh LG, Lidén J, Dahlman-Wright K, Reimers M, Nilsson S, Okret S. Identification of endogenous glucocorticoid repressed genes differentially regulated by a glucocorticoid receptor mutant able to separate between nuclear factor-kappaB and activator protein-1 repression. Mol Pharmacol. 2005;67(3):815-826.
44. Wieslander E, Delander EL, Järkelid L, Hjertberg E, Tunek A, Brattsand R. Pharmacologic importance of the reversible fatty acid conjugation of budesonide studied in a rat cell line In vitro. Am J Respir Cell Mol Biol. 1998;19(3):477-484.
45. Jonat C, Rahmsdorf HJ, Park KK, et al. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell. 1990;62(6):1189-1204.
46. Ratman D, Vanden Berghe W, Dejager L, et al. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol. 2013;380(1-2):41-54.
47. Buttgereit F, Scheffold A. Rapid glucocorticoid effects on immune cells. Steroids. 2002;67(6):529-534.
48. Rolfe DF, Brand MD. The physiological significance of mitochondrial proton leak in animal cells and tissues. Biosci Rep.1997;17(1):9-16.
49. Gonzales LW, Guttentag SH, Wade KC, Postle AD, Ballard PL. Differentiation of human pulmonary type II cells in vitro by glucocorticoid plus cAMP. Am J Physiol Lung Cell Mol Physiol.2002;283(5):L940-951.
50. Kothe TB, Kemp MW, Schmidt A, et al. Surfactant plus budesonide decreases lung and systemic inflammation in mechanically ventilated preterm sheep. Am J Physiol Lung Cell Mol Physiol.2019;316(5):L888-l893.
51. Li L, Yang C, Feng X, Du Y, Zhang Z, Zhang Y. Effects of intratracheal budesonide during early postnatal life on lung maturity of premature fetal rabbits. Pediatr Pulmonol. 2018;53(1):28-35.
52. Hillman NH, Kothe TB, Schmidt AF, et al. Surfactant plus budesonide decreases lung and systemic responses to injurious ventilation in preterm sheep. Am J Physiol Lung Cell Mol Physiol.2020;318(1):L41-l48.
53. Hillman NH, Kemp MW, Fee E, et al. Budesonide with surfactant decreases systemic responses in mechanically ventilated preterm lambs exposed to fetal intra-amniotic lipopolysaccharide. Pediatr Res.2021;90(2):328-334.
54. Gie AG, Regin Y, Salaets T, et al. Intratracheal budesonide/surfactant attenuates hyperoxia-induced lung injury in preterm rabbits. Am J Physiol Lung Cell Mol Physiol.2020;319(6):L949-l956.
55. Kothe TB, Sadiq FH, Burleyson N, Williams HL, Anderson C, Hillman NH. Surfactant and budesonide for respiratory distress syndrome: an observational study. Pediatr Res. 2020;87(5):940-945.
56. Edsbäcker S, Brattsand R. Budesonide fatty-acid esterification: a novel mechanism prolonging binding to airway tissue. Review of available data. Ann Allergy Asthma Immunol. 2002;88(6):609-616.
57. Miller-Larsson A, Mattsson H, Hjertberg E, Dahlbäck M, Tunek A, Brattsand R. Reversible fatty acid conjugation of budesonide. Novel mechanism for prolonged retention of topically applied steroid in airway tissue. Drug Metab Dispos. 1998;26(7):623-630.
58. Tunek A, Sjödin K, Hallström G. Reversible formation of fatty acid esters of budesonide, an antiasthma glucocorticoid, in human lung and liver microsomes. Drug Metab Dispos. 1997;25(11):1311-1317.
59. Heo M, Jeon GW. Intratracheal administration of budesonide with surfactant in very low birth weight infants to prevent bronchopulmonary dysplasia. Turk J Pediatr. 2020;62(4):551-559.
60. Kothe TB, Royse E, Kemp MW, et al. Effects of budesonide and surfactant in preterm fetal sheep. Am J Physiol Lung Cell Mol Physiol. 2018;315(2):L193-l201.
61. Ricci F, Catozzi C, Ravanetti F, et al. In vitro and in vivo characterization of poractant alfa supplemented with budesonide for safe and effective intratracheal administration. Pediatr Res.2017;82(6):1056-1063.
62. Yeh TF, Chen CM, Wu SY, et al. Intratracheal Administration of Budesonide/Surfactant to Prevent Bronchopulmonary Dysplasia. Am J Respir Crit Care Med. 2016;193(1):86-95.
63. Huang LT, Yeh TF, Kuo YL, Chen PC, Chen CM. Effect of surfactant and budesonide on the pulmonary distribution of fluorescent dye in mice.Pediatr Neonatol. 2015;56(1):19-24.
64. Roberts JK, Stockmann C, Dahl MJ, et al. Pharmacokinetics of Budesonide Administered with Surfactant in Premature Lambs: Implications for Neonatal Clinical Trials. Curr Clin Pharmacol.2016;11(1):53-61.
65. Christensson C, Thorén A, Lindberg B. Safety of inhaled budesonide: clinical manifestations of systemic corticosteroid-related adverse effects. Drug Saf. 2008;31(11):965-988.
66. Quan-Jun Y, Jian-Ping Z, Jian-Hua Z, et al. Distinct Metabolic Profile of Inhaled Budesonide and Salbutamol in Asthmatic Children during Acute Exacerbation. Basic Clin Pharmacol Toxicol.2017;120(3):303-311.
67. Doyle LW, Cheong JL, Ehrenkranz RA, Halliday HL. Early (< 8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2017;10(10):Cd001146.
68. Anderson CD, Kothe TB, Josephsen JB, et al. Budesonide mixed with surfactant did not affect neurodevelopmental outcomes at 6 or 18 months corrected age in observational cohorts. J Perinatol.2021;41(7):1681-1689.
69. Bassler D, Shinwell ES, Hallman M, et al. Long-Term Effects of Inhaled Budesonide for Bronchopulmonary Dysplasia. N Engl J Med.2018;378(2):148-157.
70. Brattsand R, Miller-Larsson A. The role of intracellular esterification in budesonide once-daily dosing and airway selectivity.Clin Ther. 2003;25 Suppl C:C28-41.
71. Jendbro M, Johansson CJ, Strandberg P, Falk-Nilsson H, Edsbäcker S. Pharmacokinetics of budesonide and its major ester metabolite after inhalation and intravenous administration of budesonide in the rat.Drug Metab Dispos. 2001;29(5):769-776.
72. Moore CD, Roberts JK, Orton CR, et al. Metabolic pathways of inhaled glucocorticoids by the CYP3A enzymes. Drug Metab Dispos.2013;41(2):379-389.
73. Yeh TF, Lin HC, Chang CH, et al. Early intratracheal instillation of budesonide using surfactant as a vehicle to prevent chronic lung disease in preterm infants: a pilot study. Pediatrics.2008;121(5):e1310-1318.
74. Ballard PL, Torgerson D, Wadhawan R, et al. Blood metabolomics in infants enrolled in a dose escalation pilot trial of budesonide in surfactant. Pediatr Res. 2021;90(4):784-794.
75. Hillman NH, Abugisisa L, Royse E, et al. Dose of budesonide with surfactant affects lung and systemic inflammation after normal and injurious ventilation in preterm lambs. Pediatr Res.2020;88(5):726-732.
76. Szefler SJ, Eigen H. Budesonide inhalation suspension: a nebulized corticosteroid for persistent asthma. J Allergy Clin Immunol.2002;109(4):730-742.
77. Berger WE. Budesonide inhalation suspension for the treatment of asthma in infants and children. Drugs. 2005;65(14):1973-1989.
78. Baker JW, Mellon M, Wald J, Welch M, Cruz-Rivera M, Walton-Bowen K. A multiple-dosing, placebo-controlled study of budesonide inhalation suspension given once or twice daily for treatment of persistent asthma in young children and infants. Pediatrics. 1999;103(2):414-421.
79. Wennergren G, Nordvall SL, Hedlin G, Möller C, Wille S, Asbrink Nilsson E. Nebulized budesonide for the treatment of moderate to severe asthma in infants and toddlers. Acta Paediatr.1996;85(2):183-189.
80. Herting E, Gan X, Rauprich P, Jarstrand C, Robertson B. Combined treatment with surfactant and specific immunoglobulin reduces bacterial proliferation in experimental neonatal group B streptococcal pneumonia.Am J Respir Crit Care Med. 1999;159(6):1862-1867.
81. van’t Veen A, Mouton JW, Gommers D, Lachmann B. Pulmonary surfactant as vehicle for intratracheally instilled tobramycin in mice infected with Klebsiella pneumoniae. Br J Pharmacol.1996;119(6):1145-1148.
82. Hidalgo A, Garcia-Mouton C, Autilio C, et al. Pulmonary surfactant and drug delivery: Vehiculization, release and targeting of surfactant/tacrolimus formulations. J Control Release.2021;329:205-222.
83. Kopincova J, Kolomaznik M, Mikolka P, et al. Recombinant Human Superoxide Dismutase and N-Acetylcysteine Addition to Exogenous Surfactant in the Treatment of Meconium Aspiration Syndrome.Molecules. 2019;24(5).
84. Wahl HB, Hütten MC, Monz D, et al. Vitamin A Supplementation by Endotracheal Application of a Nano-encapsulated Preparation Is Feasible in Ventilated Preterm Lambs. J Aerosol Med Pulm Drug Deliv.2018;31(6):323-330.
85. Das P, Curstedt T, Agarwal B, et al. Small Molecule Inhibitor Adjuvant Surfactant Therapy Attenuates Ventilator- and Hyperoxia-Induced Lung Injury in Preterm Rabbits. Front Physiol. 2020;11:266.
86. Mikolka P, Kopincova J, Kosutova P, Kolomaznik M, Calkovska A, Mokra D. Anti-IL-8 antibody potentiates the effect of exogenous surfactant in respiratory failure caused by meconium aspiration. Exp Lung Res.2018;44(1):40-50.
87. Kopincova J, Mikolka P, Kolomaznik M, Kosutova P, Calkovska A, Mokra D. Selective inhibition of NF-kappaB and surfactant therapy in experimental meconium-induced lung injury. Physiol Res.2017;66(Suppl 2):S227-s236.
88. Gharehbaghi MM, Mhallei M, Ganji S, Yasrebinia S. The efficacy of intratracheal administration of surfactant and budesonide combination in the prevention of bronchopulmonary dysplasia. J Res Med Sci.2021;26:31.
89. Elfarargy MS, Al-Ashmawy GM, Abu-Risha SM, Khattab HA. Inhaled Budesonide in Neonatal Respiratory Distress Syndrome of Near-Term Neonates: A Randomized, Placebo-Controlled Trial. J Pediatr Pharmacol Ther. 2022;27(1):38-44.
90. Tang W, Chen S, Shi D, et al. Effectiveness and safety of early combined utilization of budesonide and surfactant by airway for bronchopulmonary dysplasia prevention in premature infants with RDS: A meta-analysis. Pediatr Pulmonol. 2022;57(2):455-469.
91. Wang J, Wang JM, Cui FY, Xu MM. Effects of budesonide administration combined with pulmonary surfactant on pulmonary function and safety in children with respiratory distress syndrome. International Journal of Respiration. 2019(15):1163-1168.
92. Chen CM, Chang CH, Chao CH, Wang MH, Yeh TF. Biophysical and chemical stability of surfactant/budesonide and the pulmonary distribution following intra-tracheal administration. Drug Deliv.2019;26(1):604-611.
93. Venkataraman R, Kamaluddeen M, Hasan SU, Robertson HL, Lodha A. Intratracheal Administration of Budesonide-Surfactant in Prevention of Bronchopulmonary Dysplasia in Very Low Birth Weight Infants: A Systematic Review and Meta-Analysis. Pediatr Pulmonol.2017;52(7):968-975.
94. Zecchi R, Franceschi P, Tigli L, et al. Surfactant-Assisted Distal Pulmonary Distribution of Budesonide Revealed by Mass Spectrometry Imaging. Pharmaceutics. 2021;13(6).