Reference
1. Huppert LA, Matthay MA, Ware LB. Pathogenesis of Acute Respiratory
Distress Syndrome. Semin Respir Crit Care Med. 2019;40(1):31-39.
2. Chi M, Mei YB, Feng ZC. [A review on neonatal acute respiratory
distress syndrome]. Zhongguo Dang Dai Er Ke Za Zhi.2018;20(9):724-728.
3. Khemani RG, Smith LS, Zimmerman JJ, Erickson S. Pediatric acute
respiratory distress syndrome: definition, incidence, and epidemiology:
proceedings from the Pediatric Acute Lung Injury Consensus Conference.Pediatr Crit Care Med. 2015;16(5 Suppl 1):S23-40.
4. Guo JY, Chen L, Shi Y. Interpretation of Montreux definition of
neonatal acute respiratory distress syndrome in 2017. Zhonghua Er
Ke Za Zhi. 2018;56(08):571-574.
5. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory
distress in adults. Lancet. 1967;2(7511):319-323.
6. Bernard GR, Artigas A, Brigham KL, et al. The American-European
Consensus Conference on ARDS. Definitions, mechanisms, relevant
outcomes, and clinical trial coordination. Am J Respir Crit Care
Med. 1994;149(3 Pt 1):818-824.
7. Artigas A, Bernard GR, Carlet J, et al. The American-European
Consensus Conference on ARDS, part 2. Ventilatory, pharmacologic,
supportive therapy, study design strategies and issues related to
recovery and remodeling. Intensive Care Med. 1998;24(4):378-398.
8. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory
distress syndrome: the Berlin Definition. Jama.2012;307(23):2526-2533.
9. Parvathaneni K, Belani S, Leung D, Newth CJ, Khemani RG. Evaluating
the Performance of the Pediatric Acute Lung Injury Consensus Conference
Definition of Acute Respiratory Distress Syndrome. Pediatr Crit
Care Med. 2017;18(1):17-25.
10. De Luca D, van Kaam AH, Tingay DG, et al. The Montreux definition of
neonatal ARDS: biological and clinical background behind the description
of a new entity. Lancet Respir Med. 2017;5(8):657-666.
11. Faix RG, Viscardi RM, DiPietro MA, Nicks JJ. Adult respiratory
distress syndrome in full-term newborns. Pediatrics.1989;83(6):971-976.
12. Avery ME, Mead J. Surface properties in relation to atelectasis and
hyaline membrane disease. AMA J Dis Child. 1959;97(5, Part
1):517-523.
13. Feng ZC, Zhao Z, Shi Y. Superimposition: a key word in neonatal
acute respiratory distress syndrome. Chinese Journal of Perinatal
Medicine. 2021;24(04):273-277.
14. Liu J, Shi Y, Dong JY, et al. Clinical characteristics, diagnosis
and management of respiratory distress syndrome in full-term neonates.Chin Med J (Engl). 2010;123(19):2640-2644.
15. Sweeney RM, McAuley DF. Acute respiratory distress syndrome.Lancet. 2016;388(10058):2416-2430.
16. Mora R, Arold S, Marzan Y, Suki B, Ingenito EP. Determinants of
surfactant function in acute lung injury and early recovery. Am J
Physiol Lung Cell Mol Physiol. 2000;279(2):L342-349.
17. Guo JY, Chen L, Shi Y. A single-center retrospective study of
neonatal acute respiratory distress syndrome
based on the Montreux definition. Zhongguo Dang Dai Er Ke Za Zhi.2020;22(12):1267-1272.
18. Tang S, Bao L. Clinical characteristics and prognosis-related
factors of neonatal acute respiratory
distress syndrome. Journal of Third Military Medical University.2019;41(09):898-902.
19. Wick KD, McAuley DF, Levitt JE, et al. Promises and challenges of
personalized medicine to guide ARDS therapy. Crit Care.2021;25(1):404.
20. Derwall M, Martin L, Rossaint R. The acute respiratory distress
syndrome: pathophysiology, current clinical practice, and emerging
therapies. Expert Rev Respir Med. 2018;12(12):1021-1029.
21. Thille AW, Esteban A, Fernández-Segoviano P, et al. Chronology of
histological lesions in acute respiratory distress syndrome with diffuse
alveolar damage: a prospective cohort study of clinical autopsies.Lancet Respir Med. 2013;1(5):395-401.
22. Li S, Cui HZ, Xu CM, Sun ZW, Tang ZK, Chen HL. RUNX3 protects
against acute lung injury by inhibiting the JAK2/STAT3 pathway in rats
with severe acute pancreatitis. Eur Rev Med Pharmacol Sci.2019;23(12):5382-5391.
23. Sun K, Huang R, Yan L, et al. Schisandrin Attenuates
Lipopolysaccharide-Induced Lung Injury by Regulating TLR-4 and Akt/FoxO1
Signaling Pathways. Front Physiol. 2018;9:1104.
24. Chang HY, Chen YC, Lin JG, et al. Asatone Prevents Acute Lung Injury
by Reducing Expressions of NF-[Formula: see text]B, MAPK and
Inflammatory Cytokines. Am J Chin Med. 2018;46(3):651-671.
25. He YQ, Zhou CC, Yu LY, et al. Natural product derived phytochemicals
in managing acute lung injury by multiple mechanisms. Pharmacol
Res. 2021;163:105224.
26. Dembinski R, Mielck F. [ARDS - An Update - Part 1: Epidemiology,
Pathophysiology and Diagnosis]. Anasthesiol Intensivmed
Notfallmed Schmerzther. 2018;53(2):102-111.
27. Deliloglu B, Tuzun F, Cengiz MM, Ozkan H, Duman N. Endotracheal
Surfactant Combined With Budesonide for Neonatal ARDS. Front
Pediatr. 2020;8:210.
28. Berair R, Brightling CE. Asthma therapy and its effect on airway
remodelling. Drugs. 2014;74(12):1345-1369.
29. Barnes PJ, Adcock IM. How do corticosteroids work in asthma?Ann Intern Med. 2003;139(5 Pt 1):359-370.
30. Donnelly R, Seale JP. Clinical pharmacokinetics of inhaled
budesonide. Clin Pharmacokinet. 2001;40(6):427-440.
31. Barnes PJ. Molecular mechanisms of glucocorticoid action in asthma.Pulm Pharmacol Ther. 1997;10(1):3-19.
32. Meduri GU, Annane D, Confalonieri M, et al. Pharmacological
principles guiding prolonged glucocorticoid treatment in ARDS.Intensive Care Med. 2020;46(12):2284-2296.
33. Pelaia G, Vatrella A, Busceti MT, et al. Molecular and cellular
mechanisms underlying the therapeutic effects of budesonide in asthma.Pulm Pharmacol Ther. 2016;40:15-21.
34. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids.Nat Rev Immunol. 2017;17(4):233-247.
35. Ayroldi E, Cannarile L, Migliorati G, Nocentini G, Delfino DV,
Riccardi C. Mechanisms of the anti-inflammatory effects of
glucocorticoids: genomic and nongenomic interference with MAPK signaling
pathways. Faseb j. 2012;26(12):4805-4820.
36. Parente L, Solito E. Association between glucocorticosteroids and
lipocortin 1. Trends Pharmacol Sci. 1994;15(10):362.
37. Beaulieu E, Morand EF. Role of GILZ in immune regulation,
glucocorticoid actions and rheumatoid arthritis. Nat Rev
Rheumatol. 2011;7(6):340-348.
38. Bruscoli S, Di Virgilio R, Donato V, et al. Genomic and non-genomic
effects of different glucocorticoids on mouse thymocyte apoptosis.Eur J Pharmacol. 2006;529(1-3):63-70.
39. Barnes PJ. Corticosteroid effects on cell signalling. Eur
Respir J. 2006;27(2):413-426.
40. Rhen T, Cidlowski JA. Antiinflammatory action of
glucocorticoids–new mechanisms for old drugs. N Engl J Med.2005;353(16):1711-1723.
41. Riccardi C, Zollo O, Nocentini G, et al. Glucocorticoid hormones in
the regulation of cell death. Therapie. 2000;55(1):165-169.
42. Doyle SL, O’Neill LA. Toll-like receptors: from the discovery of
NFkappaB to new insights into transcriptional regulations in innate
immunity. Biochem Pharmacol. 2006;72(9):1102-1113.
43. Bladh LG, Lidén J, Dahlman-Wright K, Reimers M, Nilsson S, Okret S.
Identification of endogenous glucocorticoid repressed genes
differentially regulated by a glucocorticoid receptor mutant able to
separate between nuclear factor-kappaB and activator protein-1
repression. Mol Pharmacol. 2005;67(3):815-826.
44. Wieslander E, Delander EL, Järkelid L, Hjertberg E, Tunek A,
Brattsand R. Pharmacologic importance of the reversible fatty acid
conjugation of budesonide studied in a rat cell line In vitro. Am
J Respir Cell Mol Biol. 1998;19(3):477-484.
45. Jonat C, Rahmsdorf HJ, Park KK, et al. Antitumor promotion and
antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by
glucocorticoid hormone. Cell. 1990;62(6):1189-1204.
46. Ratman D, Vanden Berghe W, Dejager L, et al. How glucocorticoid
receptors modulate the activity of other transcription factors: a scope
beyond tethering. Mol Cell Endocrinol. 2013;380(1-2):41-54.
47. Buttgereit F, Scheffold A. Rapid glucocorticoid effects on immune
cells. Steroids. 2002;67(6):529-534.
48. Rolfe DF, Brand MD. The physiological significance of mitochondrial
proton leak in animal cells and tissues. Biosci Rep.1997;17(1):9-16.
49. Gonzales LW, Guttentag SH, Wade KC, Postle AD, Ballard PL.
Differentiation of human pulmonary type II cells in vitro by
glucocorticoid plus cAMP. Am J Physiol Lung Cell Mol Physiol.2002;283(5):L940-951.
50. Kothe TB, Kemp MW, Schmidt A, et al. Surfactant plus budesonide
decreases lung and systemic inflammation in mechanically ventilated
preterm sheep. Am J Physiol Lung Cell Mol Physiol.2019;316(5):L888-l893.
51. Li L, Yang C, Feng X, Du Y, Zhang Z, Zhang Y. Effects of
intratracheal budesonide during early postnatal life on lung maturity of
premature fetal rabbits. Pediatr Pulmonol. 2018;53(1):28-35.
52. Hillman NH, Kothe TB, Schmidt AF, et al. Surfactant plus budesonide
decreases lung and systemic responses to injurious ventilation in
preterm sheep. Am J Physiol Lung Cell Mol Physiol.2020;318(1):L41-l48.
53. Hillman NH, Kemp MW, Fee E, et al. Budesonide with surfactant
decreases systemic responses in mechanically ventilated preterm lambs
exposed to fetal intra-amniotic lipopolysaccharide. Pediatr Res.2021;90(2):328-334.
54. Gie AG, Regin Y, Salaets T, et al. Intratracheal
budesonide/surfactant attenuates hyperoxia-induced lung injury in
preterm rabbits. Am J Physiol Lung Cell Mol Physiol.2020;319(6):L949-l956.
55. Kothe TB, Sadiq FH, Burleyson N, Williams HL, Anderson C, Hillman
NH. Surfactant and budesonide for respiratory distress syndrome: an
observational study. Pediatr Res. 2020;87(5):940-945.
56. Edsbäcker S, Brattsand R. Budesonide fatty-acid esterification: a
novel mechanism prolonging binding to airway tissue. Review of available
data. Ann Allergy Asthma Immunol. 2002;88(6):609-616.
57. Miller-Larsson A, Mattsson H, Hjertberg E, Dahlbäck M, Tunek A,
Brattsand R. Reversible fatty acid conjugation of budesonide. Novel
mechanism for prolonged retention of topically applied steroid in airway
tissue. Drug Metab Dispos. 1998;26(7):623-630.
58. Tunek A, Sjödin K, Hallström G. Reversible formation of fatty acid
esters of budesonide, an antiasthma glucocorticoid, in human lung and
liver microsomes. Drug Metab Dispos. 1997;25(11):1311-1317.
59. Heo M, Jeon GW. Intratracheal administration of budesonide with
surfactant in very low birth weight infants to prevent bronchopulmonary
dysplasia. Turk J Pediatr. 2020;62(4):551-559.
60. Kothe TB, Royse E, Kemp MW, et al. Effects of budesonide and
surfactant in preterm fetal sheep. Am J Physiol Lung Cell Mol
Physiol. 2018;315(2):L193-l201.
61. Ricci F, Catozzi C, Ravanetti F, et al. In vitro and in vivo
characterization of poractant alfa supplemented with budesonide for safe
and effective intratracheal administration. Pediatr Res.2017;82(6):1056-1063.
62. Yeh TF, Chen CM, Wu SY, et al. Intratracheal Administration of
Budesonide/Surfactant to Prevent Bronchopulmonary Dysplasia. Am J
Respir Crit Care Med. 2016;193(1):86-95.
63. Huang LT, Yeh TF, Kuo YL, Chen PC, Chen CM. Effect of surfactant and
budesonide on the pulmonary distribution of fluorescent dye in mice.Pediatr Neonatol. 2015;56(1):19-24.
64. Roberts JK, Stockmann C, Dahl MJ, et al. Pharmacokinetics of
Budesonide Administered with Surfactant in Premature Lambs: Implications
for Neonatal Clinical Trials. Curr Clin Pharmacol.2016;11(1):53-61.
65. Christensson C, Thorén A, Lindberg B. Safety of inhaled budesonide:
clinical manifestations of systemic corticosteroid-related adverse
effects. Drug Saf. 2008;31(11):965-988.
66. Quan-Jun Y, Jian-Ping Z, Jian-Hua Z, et al. Distinct Metabolic
Profile of Inhaled Budesonide and Salbutamol in Asthmatic Children
during Acute Exacerbation. Basic Clin Pharmacol Toxicol.2017;120(3):303-311.
67. Doyle LW, Cheong JL, Ehrenkranz RA, Halliday HL. Early (<
8 days) systemic postnatal corticosteroids for prevention of
bronchopulmonary dysplasia in preterm infants. Cochrane Database
Syst Rev. 2017;10(10):Cd001146.
68. Anderson CD, Kothe TB, Josephsen JB, et al. Budesonide mixed with
surfactant did not affect neurodevelopmental outcomes at 6 or 18 months
corrected age in observational cohorts. J Perinatol.2021;41(7):1681-1689.
69. Bassler D, Shinwell ES, Hallman M, et al. Long-Term Effects of
Inhaled Budesonide for Bronchopulmonary Dysplasia. N Engl J Med.2018;378(2):148-157.
70. Brattsand R, Miller-Larsson A. The role of intracellular
esterification in budesonide once-daily dosing and airway selectivity.Clin Ther. 2003;25 Suppl C:C28-41.
71. Jendbro M, Johansson CJ, Strandberg P, Falk-Nilsson H, Edsbäcker S.
Pharmacokinetics of budesonide and its major ester metabolite after
inhalation and intravenous administration of budesonide in the rat.Drug Metab Dispos. 2001;29(5):769-776.
72. Moore CD, Roberts JK, Orton CR, et al. Metabolic pathways of inhaled
glucocorticoids by the CYP3A enzymes. Drug Metab Dispos.2013;41(2):379-389.
73. Yeh TF, Lin HC, Chang CH, et al. Early intratracheal instillation of
budesonide using surfactant as a vehicle to prevent chronic lung disease
in preterm infants: a pilot study. Pediatrics.2008;121(5):e1310-1318.
74. Ballard PL, Torgerson D, Wadhawan R, et al. Blood metabolomics in
infants enrolled in a dose escalation pilot trial of budesonide in
surfactant. Pediatr Res. 2021;90(4):784-794.
75. Hillman NH, Abugisisa L, Royse E, et al. Dose of budesonide with
surfactant affects lung and systemic inflammation after normal and
injurious ventilation in preterm lambs. Pediatr Res.2020;88(5):726-732.
76. Szefler SJ, Eigen H. Budesonide inhalation suspension: a nebulized
corticosteroid for persistent asthma. J Allergy Clin Immunol.2002;109(4):730-742.
77. Berger WE. Budesonide inhalation suspension for the treatment of
asthma in infants and children. Drugs. 2005;65(14):1973-1989.
78. Baker JW, Mellon M, Wald J, Welch M, Cruz-Rivera M, Walton-Bowen K.
A multiple-dosing, placebo-controlled study of budesonide inhalation
suspension given once or twice daily for treatment of persistent asthma
in young children and infants. Pediatrics. 1999;103(2):414-421.
79. Wennergren G, Nordvall SL, Hedlin G, Möller C, Wille S, Asbrink
Nilsson E. Nebulized budesonide for the treatment of moderate to severe
asthma in infants and toddlers. Acta Paediatr.1996;85(2):183-189.
80. Herting E, Gan X, Rauprich P, Jarstrand C, Robertson B. Combined
treatment with surfactant and specific immunoglobulin reduces bacterial
proliferation in experimental neonatal group B streptococcal pneumonia.Am J Respir Crit Care Med. 1999;159(6):1862-1867.
81. van’t Veen A, Mouton JW, Gommers D, Lachmann B. Pulmonary surfactant
as vehicle for intratracheally instilled tobramycin in mice infected
with Klebsiella pneumoniae. Br J Pharmacol.1996;119(6):1145-1148.
82. Hidalgo A, Garcia-Mouton C, Autilio C, et al. Pulmonary surfactant
and drug delivery: Vehiculization, release and targeting of
surfactant/tacrolimus formulations. J Control Release.2021;329:205-222.
83. Kopincova J, Kolomaznik M, Mikolka P, et al. Recombinant Human
Superoxide Dismutase and N-Acetylcysteine Addition to Exogenous
Surfactant in the Treatment of Meconium Aspiration Syndrome.Molecules. 2019;24(5).
84. Wahl HB, Hütten MC, Monz D, et al. Vitamin A Supplementation by
Endotracheal Application of a Nano-encapsulated Preparation Is Feasible
in Ventilated Preterm Lambs. J Aerosol Med Pulm Drug Deliv.2018;31(6):323-330.
85. Das P, Curstedt T, Agarwal B, et al. Small Molecule Inhibitor
Adjuvant Surfactant Therapy Attenuates Ventilator- and Hyperoxia-Induced
Lung Injury in Preterm Rabbits. Front Physiol. 2020;11:266.
86. Mikolka P, Kopincova J, Kosutova P, Kolomaznik M, Calkovska A, Mokra
D. Anti-IL-8 antibody potentiates the effect of exogenous surfactant in
respiratory failure caused by meconium aspiration. Exp Lung Res.2018;44(1):40-50.
87. Kopincova J, Mikolka P, Kolomaznik M, Kosutova P, Calkovska A, Mokra
D. Selective inhibition of NF-kappaB and surfactant therapy in
experimental meconium-induced lung injury. Physiol Res.2017;66(Suppl 2):S227-s236.
88. Gharehbaghi MM, Mhallei M, Ganji S, Yasrebinia S. The efficacy of
intratracheal administration of surfactant and budesonide combination in
the prevention of bronchopulmonary dysplasia. J Res Med Sci.2021;26:31.
89. Elfarargy MS, Al-Ashmawy GM, Abu-Risha SM, Khattab HA. Inhaled
Budesonide in Neonatal Respiratory Distress Syndrome of Near-Term
Neonates: A Randomized, Placebo-Controlled Trial. J Pediatr
Pharmacol Ther. 2022;27(1):38-44.
90. Tang W, Chen S, Shi D, et al. Effectiveness and safety of early
combined utilization of budesonide and surfactant by airway for
bronchopulmonary dysplasia prevention in premature infants with RDS: A
meta-analysis. Pediatr Pulmonol. 2022;57(2):455-469.
91. Wang J, Wang JM, Cui FY, Xu MM. Effects of budesonide administration
combined with pulmonary surfactant on pulmonary function and safety in
children with respiratory distress syndrome. International Journal
of Respiration. 2019(15):1163-1168.
92. Chen CM, Chang CH, Chao CH, Wang MH, Yeh TF. Biophysical and
chemical stability of surfactant/budesonide and the pulmonary
distribution following intra-tracheal administration. Drug Deliv.2019;26(1):604-611.
93. Venkataraman R, Kamaluddeen M, Hasan SU, Robertson HL, Lodha A.
Intratracheal Administration of Budesonide-Surfactant in Prevention of
Bronchopulmonary Dysplasia in Very Low Birth Weight Infants: A
Systematic Review and Meta-Analysis. Pediatr Pulmonol.2017;52(7):968-975.
94. Zecchi R, Franceschi P, Tigli L, et al. Surfactant-Assisted Distal
Pulmonary Distribution of Budesonide Revealed by Mass Spectrometry
Imaging. Pharmaceutics. 2021;13(6).