References

Ackerly, D. D., & Reich, P. B. (1999). Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. American Journal of Botany , 86(9), 1272–1281. https://doi.org/10.2307/ 2656775
Adler, P. B., Fajardo, A., Kleinhesselink, A. R., & Kraft, N. J. (2013). Trait‐based tests of coexistence mechanisms. Ecology letters , 16(10), 1294–1306. https:// doi.org/10.1111/ele.12157
Amaral, E. J., Franco, A. C., Rivera, V. L., & Munhoz, C. B. R. (2021). Environment, phylogeny, and photosynthetic pathway as determinants of leaf traits in savanna and forest graminoid species in central Brazil.Oecologia , 197(1), 1–11. https://doi.org/ 10.1007/s00442–021–04923–w
Baraloto, C., Hardy, O. J., Paine, C. E. T., Dexter, K. G., & Chave, J. (2012). Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology , 100(3), 690–701. https://doi.org/10. 2307/ 41496117
Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution , 57, 717–745. https://doi.org /10.1111/ j.0014–3820.2003.tb00285.x
Borcard, D., & Legendre, P. (2002). All–scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices.Ecological Modelling , 153, 51–68. https://doi.org/10.1016/S0304–3800(01)00501–4
Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., & Jandt, U. (2018). Global trait– environment relationships of plant communities.Nature Ecology & Evolution , 2, 1906–1917. https://doi.org/10.1038/s41559–018–0699–8
Cadotte, M. W., Carboni, M., Si, X., & Tatsumi, S. (2019). Do traits and phylogeny support congruent community diversity patterns and assembly inferences?. Journal of Ecology , 107(5), 2065–2077. https://doi.org/10.1111/1365–2745. 13247
Cao, K., Rao M., Yu J., Liu X., Mi X., & Chen J. (2013). The phylogenetic signal of functional traits and their effects on community structure in an evergreen broad–leaved forest. Biodiversity Science , 21(5), 564–571. https://doi.org/10.3724/ SP.J.1003.2013.08068
Cavender–Bares, J., Kozak, K. H., Fine, P. V. A., & Kembel S. W. (2009) The merging of community ecology and phylogenetic biology.Ecology Letters , 12, 693–715. https://doi. org/10.1111/j.1461–0248.2009.01314.x
Chang, L. W., Zelený, D., Li, C. F., Chiu, S. T., & Hsieh, C. F. (2013). Better environmental data may reverse conclusions about niche– and dispersal–based processes in community assembly. Ecology , 94(10), 2145–2151. https://doi. org/ 10. 1890/12–2053.1
Chase, J. M. (2014). Spatial scale resolves the niche versus neutral theory debate. Journal Vegetation Science , 25(2), 319–322. https://doi.org/10.1111/jvs.12159
Chase, J. M., & Myers, J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales.Philosophical Transactions of the Royal Society of London B , 366(1576), 2351–2363. https://doi.org/10.1098/rstb. 2011. 0063.
Chen, W., Wang, J., Ma, R., Qi, W., Liu, K., Zhang, L., & Chen, X. (2016). Variance in leaf functional traits of 89 species from the eastern Guangdong of China. Chinese Journal of Ecology , 35(08), 2101–2109. https://doi.org/10.13292/j. 1000– 4890. 201608. 033
Cheng, Y., Zhang, H., Wang, X., Long, W., Li, C., Fang, Y., Fu, M., & Zhu, K. (2019). Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly. Chinese Journal of Plant Ecolog y, 43(3), 217–226. https://doi. org/10.17521/cjpe.2019.0003
Csecserits, A., Halassy, M., Lhotsky, B., Rédei, T., Somay, L. & Zoltán Botta–Dukát, Z. (2021). Changing assembly rules during secondary succession: evidence for non–random patterns. Basic and Applied Ecology , 52 (1), 46–56. https://doi. org/10.1016/j.baae.2021.02.009
Debastiani, V. J. & Duarte, L. D. S. (2014). PCPS –an R–package for exploring phylogenetic eigenvectors across metacommunities.Frontiers of Biogeography , 6(3), 144–148. https://doi.org/10.21425/F5FBG22943
Dray, S., Pélissier, R., Couteron, P., Fortin, M. J., Legendre, P., Peres–Neto, P. R., Bellier, E., Bivand, R., Blanchet, F. G., Cáceres, M. De, Dufour, A. B., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J., Thioulouse, J., & Wagner, H. H. (2012). Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs , 82, 257–275. https://doi.org/10. 1890/11–1183.1
Duarte, L. D., Debastiani, V. J., Freitas, A. V., & Pillar, V. D. (2016). Dissecting phylogenetic fuzzy weighting: theory and application in metacommunity phylogenetics. Methods in Ecology and Evolution , 7(8), 937–946. https://doi. org/10.1111/2041–210X. 12547
Funk, J. L., & Wolf, A. A. (2016). Testing the trait–based community framework: do functional traits predict competitive outcomes?Ecology , 97, 2206–2217. https:// doi.org/10.1002/ecy.1484
Gianuca, A. T., Declerck, S. A., Cadotte, M. W., Souffreau, C., De Bie, T., & De Meester, L. (2017). Integrating trait and phylogenetic distances to assess scale‐dependent community assembly processes.Ecography , 40(6), 742–752. https://doi.org/ 10.1111/ ecog.02263
Guerfel, M., Baccouri, O., Boujnah, D., Chaïbi, W. & Zarrouk, M. (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.). Scientia Horticulturae , 119, 257–263. https://doi.org/10.1016/j.scienta.2008.08.006
He, B., Li, Q., Feng, T., Xue, X., Li, W., & Liu, Y. (2020). Variation in leaf functional traits of different–aged Pinus massonianacommunities and relationships with soil nutrients. Journal of Nanjing Forestry University Natural Sciences Edition , 44(2), 181–190. https://doi.org/10.3969/j.issn.1000–2006.201904038
Hubbell, S. P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional ecology , 19(1), 166–172. https://www.jstor. org/stable/3599285
Jiang, F., Xun, Y., Cai, H., Jin, G. (2018). Functional traits can improve our understanding of niche– and dispersal–based processes.Oecologia , 186(3), 783–792. https://doi.org/10.1007/s00442–018–4060–3
Kang, Y., Xiong, M., Huang, J., Long, W., Yang, X., Zang, R., Wang, X., Lin, D. (2017). Variation in woody plant functional traits of the tropical cloud forests in Bawangling, Hainan Island. Acta Ecologica Sinica , 37(5), 1572–1582. https: //doi.org/ 10.5846/stxb201510082023
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., & Ack, D. D. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatic s, 26, 1463–1464. https://doi.org/ 10.1093/bioinformatics/btq166
Kraft, N. J. B., Valencia, R., & Ackerly, D. D. (2008). Functional traits and niche– based tree community assembly in an amazonian forest.Science , 332, 580– 582. https://doi.org/10.1126/axuwbxw,1160662
Kraft, N. J., & Ackerly, D. D. (2010). Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological monographs , 80(3), 401–422. https://doi.org/10.1890/09–1672.1
Lai J., Zou Y., Zhang J., & Peres–Neto P. (2022). Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution , 13(4), 782–788. https://doi.org/10.1111/2041–210X.13800
Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I. F., & He, F. (2009). Partitioning beta diversity in a subtropical broad–leaved forest of China. Ecology , 90, 663–674. https://doi.org/10.1890/07–1880.1
Leibold, M. A. (1998). Similarity and local co–existence of species in regional biotas. Evolutionary Ecology ,12(1),95–110.https://doi.org/10.1023/A:10065 11124428
Levine, J., Bascompte, J., Adler, P., & Allesina, S. (2017). Beyond pairwise mechanisms of species coexistence in complex communities.Nature , 546, 56–64. https://doi.org/10.1038/nature22898
Li, J., Xu, W., Xiong, G., Wang, Y., Zhao, C., Lu, Z., Li, Y., & Xie, Z. (2017). Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China. Chinese Journal of Plant Ecology , 41(1), 31–42. https://doi.org/10.17521/cjpe.2016.0251
Liu, W., Zheng, L., & Qi, D. (2020). Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecology and Evolution , 10(15), 8166-8175. https://doi.org/10.1002/ece3.651
Li, Y., Bin, Y., Xu, H., Ni, Y., Zhang, R., Ye, W., & Lian, J. (2019). Understanding community assembly based on functional traits, ontogenetic stages, habitat types and spatial scales in a subtropical forest.Forests , 10 (12), 1055–1070. https://doi. org/10.3390/f10121055
Liu, X., Chen, H., Sun, T., Li, D., Wang, X., Mo, W., Wang, R., & Zhang, S. (2021). Variation in woody leaf anatomical traits along the altitudinal gradient in Taibai Mountain, China. Global Ecology and Conservation , 26, e01523. https://doi. org/10.1016/j.gecco.2021.e01523
Liu, X., Swenson, N. G., Zhang, J., & Ma, K. (2013). The environment and space, not phylogeny, determine trait dispersion in a subtropical forest. Functional Ecology , 27(1), 264–272. https://doi.org/10.1111/1365–2435.12018
Liu, Y., Li, G., Wu, X., Niklas, K. J., Yang, Z., & Sun, S. (2021). Linkage between species traits and plant phenology in an alpine meadow. Oecologia , 195(2), 409–419. https://doi.org/10.1007/s00442–020–04846–y
Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters , 11, 995–1003. https://doi.org/10.1111/j.1461–0248. 2008. 01229.x
McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution , 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B., Simpson, G. L., Solymos, P., Stevens M. H. H., Szoecs, E., & Wagner, H. (2013). Community ecology package. R package version 2.0 , 1–295. https://github. com/vegandevs/vegan
Ouyang, S., Xiang, W., Wang, X., Zeng, Y., Lei, P., Deng, X., & Peng, C. (2016). Significant effects of biodiversity on forest biomass during the succession of subtropical forest in south China. Forest Ecology & Management , 372: 291–302. https://doi.org/10.1016/j.foreco.2016.04.020
Paine, C., Baraloto, C., Chave, J., & B Hérault. (2011). Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests.Oikos ,120(5),720–727.https://doi.org/10.1111/j.1600–0706.2010. 19110. x
Pérez–Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bretharte, M. S., Cornwell, W.K., Graine, J. M., & Gurvich, D. E. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany , 61:167–234. https://doi.org/10.1071/ BT12225.
Purschke, O., Michalski, S. G., Bruelheide, H., & Durka, W. (2017). Phylogenetic turnover during subtropical forest succession across environmental and phylogenetic scales. Ecology and Evolution , 7, 11079–11091. https://doi.org/ 10.1002/ece3.3564
Qiao, X., Li, Q., Jiang, Q., Lu, J., Franklin, S., Tang, Z., Wang, Q., Zhang, J., Lu, Z., Bao, D., Guo, Y., Liu, H., Xu, Y., & Jiang, M. (2015). Beta diversity determinants in Badagongshan, a subtropical forest in central China. Scientific Reports , 5, 17043. https://doi.org/10.1038/ srep17043
R Core Team. (2016). R: a language and environment for statistical computing . R Foundation for Statistical Computing, Vienna, Austria. https://www.R–project. org/
Saura–Mas, S., Shipley, B., & Llore, F. (2009). Relationship between post–fire regeneration and leaf economics spectrum in Mediterranean woody species. Functional Ecology, 23, 103–110. https://doi.org/10.1111/j.1365–2435.2008. 01474.x
Schulze, E. D., Kelliher, F. M., Körner, C., Lloyd, J., & Leuning R. (1994). Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Annual Review of Ecology & Systematics , 25(1): 629–662. https://doi.org/10.1146/annurev.es.25.110194.003213
Surya, M. I., Ismaini, L., Normasiwi, S., Putri, D. M., & Kurniawan, V. (2020). Plant growth regulators affecting leaf traits of Loquat seedling. Annual Research & Review in Biology , 35(11), 73–85. https://doi.org/10.9734/ARRB/2020/ V35I1130301
Swenson, N. G. (2013). The assembly of tropical tree communities – the advances and shortcomings of phylogenetic and functional trait analyses.Ecography , 36 (3): 264–276. https://doi.org/10.1111/j.1600–0587.2012.00121.x
Tian, M., Yu, G., He, N., & Hou, J. (2016). Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors. Scientific Report s, 6, 19703. https://doi.org/10.1038/srep19703
Uriarte, M., Condit, R., & Hubbell, C. (2004). A spatially explicit model of sapling growth in a tropical forest: does the identity of neighbours matter? Journal of Ecology , 92(2):348–360. https://doi.org/10.1111/j.0022–0477.2004.00867.x
Wang, R., Chen, H., Liu, X., Wang, Z., Wen, J., & Zhang, S. (2020). Plant phylogeny and growth form as drivers of the altitudinal variation in woody leaf vein traits. Frontiers in plant science , 10, 1735. https://doi.org/10.3389/fpls.2019. 01735
Wang, X., Song, N. P., Yang, X. G., Chen, L., Qu, W. J., & Wang, L. (2021). Inferring community assembly mechanisms from functional and phylogenetic diversity: the relative contribution of environmental filtering decreases along a sand desertification gradient in a desert steppe community. Land Degradation & Development , 32(7), 2360–2370. https://doi.org/10.1002/ldr.3906
Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics , 33: 475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
Webb, C. O., Ackerly, D. D., & Kembel, S. W. (2008). Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics , 24(18), 2098–2100. https://doi.org/10.1016/j.ejcts.2008.03. 025
Werden, L. K., Waring, B. G., Smith–Martin, C. M., & Powers, J. S. (2017). Tropical dry forest trees and lianas differ in leaf economic spectrum traits but have overlapping Water–use strategies. Tree Physiology , 38, 517–530. https://doi. org/10.1093/treephys/tpx135
Westerband, A. C., Funk, J. L., & Barton, K. E. (2021). Intraspecific trait variation in plants: a renewed focus on its role in ecological processes. Annals of Botany , 127(4), 397–410. https://doi.org/10.1093/aob/mcab011
Westoby, M., & Wright, I. J. (2006). Land–plant ecology on the basis of functional traits. Trends in Ecology & Evolution , 21(5):261–268. https://doi.org/10.1016/j.tree. 2006.02.004
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender–Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M. L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., & Villar, R. (2004). The worldwide leaf economics spectrum. Nature , 428(6985), 821–827. https://doi.org/10.1038/ nature02403
Wu, H., Xiang, W., Ouyang, S., Forrester, D. I., Zhou, B., Chen, L., Zeng, Y., Song, X., Peñuelas, J., & Peng, C. (2019). Linkage between tree species richness and soil microbial diversity improves phosphorus bioavailability. Functional Ecology , 33(8), 1549–1560. https://doi.org /10.1111/1365–2435.13355
Wyka, T. P., Oleksyn, J., Ytkowiak, R., Karolewski, P., Jagodziński, A. M., & Reich, P. B. (2012). Responses of leaf structure and photosynthetic properties to intra–canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species. Oecologia , 170(1): 11–24. https://doi.org 10.1007/s00442–012–2279–y
Xiao, Q., Ye, W., Zhu, Z., Chen, Y., & Zheng, H. (2005). A simple non–destructive method to measure leaf area using digital camera and Photoshop software. Chinese Journal of Ecology , 24(6): 711–714.
Xu, Y., Shen, Z., Ying, L., Wang, Z., Huang, J., Zang, R., & Jiang, Y. (2017). Hotspot analyses indicate significant conservation gaps for evergreen broadleaved woody plants in China. Scientific reports , 7(1), 1–10. https://doi.org/10. 1038/ s41598–017–02098–0
Xun, Y., Di, X., & Jin, G. (2020). Vertical variation and economic strategy of leaf trait of major tree species in a typical mixed broadleaved–Korean pine forest. Chinese Journal of Plant Ecology , 44(07), 730–741. https://doi.org/10. 17521/ cjpe.2019.0307
Yang, Y., Xiao, C., Wu, X., Long, W., Feng, G., & Liu, G. (2021). Differing Trade–Off Patterns of Tree Vegetative Organs in a Tropical Cloud Forest. Frontiers in Plant Science , 12:680379. https://doi.org/10.3389/fpls.2021. 680379
Zhang, C., Cadotte, M. W., Chiarucci, A., Loreau, M., Willis, C. G., Si, X., Li, L., & Cianciaruso, M. V. (2021). Scale–dependent shifts in functional and phylogenetic structure of Mediterranean island plant communities over two centuries. Journal of Ecology , 109(10), 3513–3523. https://doi.org/10.1111/ 1365– 2745.13733.
Zhang, J., Swenson, N. G., Liu, J., Liu, M., Qiao, X., & Jiang, M. (2020). A phylogenetic and trait‐based analysis of community assembly in a subtropical forest in central China. Ecology and Evolution , 10(15), 8091–8104. https:// doi.org/10.1002/ece3.6465
Zhao, G., Liu, M., Shi, P., Zong, N., Zhang, X., & Zhang, X. (2020). Variation of leaf and root traits and ecological adaptive strategies along a precipitation gradient on Changtang Plateau. Acta Ecologica Sinica , 40(01), 295–309. https://doi. org/ 10. 5846/ stxb201811262562
Zhao, L., Xiang, W., Li, J., Lei, P., Deng, X., Fang, X., & Peng, C. (2015). Effects of topographic and soil factors on woody species assembly in a Chinese subtropical evergreen broadleaved forest.Forests , 6(3):650–669. https://doi. org/10.3390/ f6030650
Zhou, S. R., & Zhang, D. Y. (2008). A nearly neutral model of biodiversity. Ecology , 89(1), 248–258. https://doi.org/10.1890/06–1817.1
Zhou, W., Zhang, Y., Zhang, S., Yakimov, B. N., & Ma, K. (2021). Phylogenetic and Functional Traits Verify the Combined Effect of Deterministic and Stochastic Processes in the Community Assembly of Temperate Forests along an Elevational Gradient. Forests , 12(5), 591. https://doi.org/10.3390/f12050591