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ABSTRACT. The Darboux theorem, one of the fundamental results in analysis, states that the derivative
of a real (not necessarily continuously) differentiable function defined on a compact interval has the in-
termediate value property, i.e. attains each value between the derivatives at the endpoints. The Bolzano
intermediate value theorem, which implies Darboux’s theorem when the derivative is continuous, states
that a continuous real-valued function f defined on [−1,1] satisfying f (−1) < 0 and f (1) > 0 0, has a
zero, i.e. f (x) = 0 for at least one number −1 < x < 1. It has numerous counterparts in multivariate
calculus as well as in the infinite-dimensional setting. The present paper is devoted to the discussion of
some infinite-dimensional variants of the Darboux theorem, which does not seem to be sufficiently dee-
ply discussed. The study relies on different notions of non-smooth differentiability of real functions and
some appropriate compactness conditions. Problems involving functionals bounded below, monotone ope-
rators as well as some general questions concerning the existence of the so-called generalized equilibria
are discussed.

1. INTRODUCTION

Suppose that K is a closed subset of a Banach space X and f : K→ R is a sufficiently regular functi-
onal. We are going to study the existence of equilibria and generalized equilibria of f , i.e. points x ∈ K
such that 0 ∈ ∂ f or 0 ∈ ∂ f (x)+N(x;K), where ∂ f and N(x;K) stand for an appropriate subdifferential
of f and a (corresponding) normal cone to K at x.

If, for instance K = [−1,1], and f : [−1,1]→R is differentiable (one-sided derivatives are considered
at the end-points), then, in view of the Darboux theorem, there is x0 ∈ (−1,1) with f ′(x0) = 0 provi-
ded f ′+(−1) < 0 and f ′−(1) > 0. Observe that, in this case the (Bouligand) normal cone NB(−1;K) =

(−∞,0], NB(1;K) = [0,+∞) and NB(x;K) = {0} for any x ∈ (−1,1). Hence f ′+(−1)< 0 ⇔ f ′+(−1)∩
−NB(−1;K) = /0, f ′−(1) > 0 ⇔ ∩−NB(1;K) = /0, and f ′(x0) = 0 ⇔ 0 ∈ f ′(x0)+NB(x0;K) for x0 ∈
(−1,1). The Darboux theorem may therefore be stated as follows: if f ′(x)∩−NB(x;K) = /0 for x ∈ ∂K,
then there is x0 ∈ intK such that 0 ∈ f ′(x0)+NB(x;K).

The Darboux theorem did not receive many different generalizations to multi-dimensional or infinite-
dimensional setting as did the famous and fundamental intermediate value theorem of Bolzano, which
– in fact – implies the Darboux theorem in case of C1-function. The mean-value Bolzano theorem is
perhaps one of the most important topological devices when studying equations of the form f (x) = 0. It
was extensively studied and generalized by numerous authors for almost 150 years (see, e.g., [32] and
[33]) and various important results were established. One of the best known statements in this direction
is the Poincaré–Miranda theorem, which is a direct N-dimensional version of the Bolzano theorem.
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Bolzano’s and Darboux’s theorems strongly rely on the compactness of the domain which, together
with the Fermat rule and the Weierstrass theorems, allows to observe the existence of local extrema of
studied functions. It is to be noticed that a different argument for the Darboux theorem has been provi-
ded in [36]. The intrinsic lack of compactness is problematic in infinite-dimensional spaces. Hence, the
infinite-dimensional results require some additional assumptions. Such assumptions, having the charac-
ter of the so-called inf-compactness hypotheses in case of functionals bounded below, belong to the rich
family of the Palais-Smale type conditions and help to find equilibria

(
zeros of generalized gradients

)
.

Namely these conditions, combined with the Ekeland principle, make it possible to show that the argmin
set of a studied functionals is nonempty, which leads to the existence of equilibria via Fermat’s rule. A
similar approach has been applied in case of infinite dimensional versions of another milestone result of
analysis, i.e. the Rolle Theorem – see [3], where the approximate Rolle theorem was established and
[1], where the Palais-Smale condition was employed.

In case of generalized equilibria, i.e. coincidences of abstract maps F : K→ X∗, the topological dual
of X , with the normal bundle to K, different compactness assumptions are necessary. For instance one
can require that a map F is guided by an accretive operator having compact resolvent. This has proved to
be useful e.g. in [29], where the truly infinite-dimensional counterparts of the Bolzano theorem results,
i.e. going beyond compactness, were established.

A different approach to the existence of equilibria is available in case of monotone operators, which
correspond to subdifferentials of convex functionals. The celebrated Minty-Browder methods permits to
rely on reflexivity of an ambient space X and weak compactness issues rather. This attitude, for instance,
has been pursued in [34] in the context of equilibria.

In this paper, having its brevity in mind, we did not enter into the numerous possible applications.
However, we have provided several natural examples showing the scope of potential applications is very
wide. We also have not tried to study a different, but very interesting direction of Darboux’s theorem
extensions studied e.g. in [42] and [27], where the connectedness properties in Rn of the image of the
(connected) domain under the gradient of a smooth map were studied.

After this introduction, the paper is organized as follows. In the second section, we provide a brief
survey of concepts and results concerning the non-smooth differentiability of functionals defined on
closed sets. The results are, with a few exceptions, folklore or well-known and scattered over the very
abundant literature on the subject, though we mention only a couple of sources. We deal mainly with the
so-called Dini-Hadamard differentiability, and Clarke-Rockafellar differentiability, with emphasis put
on the Clarke generalized gradients for locally Lipschitz functionals. In the third section, we first study
functionals bounded below. Our approach is rather standard and depends on the Ekeland variations
principle with an aid of the above mentioned Palais-Smale type conditions. In particular, we provide
many examples of functionals satisfying various conditions of this type along with corresponding results.
In this way, we establish some new results or complement older ones. Next, we study the existence of
generalized equilibria of some general set-valued upper hemicontinuous operators defined on closed sets
in a Banach space with values in the dual X∗. The results stated here are new. The last part of the third
section is devoted to monotone operators. Here we establish some new results that correspond well to
results in [34]. The last secion is Appendix, where we collect some auxiliary facts concerning set-limits
in the sense of Painlevé-Kuratowski and concepts of tangency in Banach spaces.

Notation: In the paper X stands for a real Banach space X equipped with a norm ‖ · ‖; 0X is the zero
vector in X . By X∗ and 〈·, ·〉 we denote the (topological) dual of X and the duality pairing in X∗×X ,
respectively. The open (resp. closed) ball centered at x ∈ X with radius r > 0 is denoted by B(x,r)

(
resp.

D(x,r)
)
. For A ⊂ X , intA,A, ∂K, convA, and convA denote its interior, closure, boundary, convex

hull, and closed convex hull, respectively; B(A,r) := {x ∈ X | d(x,A) := infa∈A ‖x− a‖ < r}, r > 0.
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Moreover A− := {p ∈ X∗ | ∀x ∈ A 〈p,x〉 6 0} is the (negative) polar cone of K and A⊥ := {p ∈ X∗ |
∀x ∈ A 〈p,x〉= 0} is the annihilator of A. Throughout the work, we often use (conditional) set-limits
in the sense of Kuratowski-Painlevé and some "tangent" cones: the reader may recall these concepts in
the Appendix 4.1, 4.2. When speaking of a set-valued map ϕ : X ( Y , where Y is a space, we mean
a mapping assigning to each x ∈ X a (possibly empty) set ϕ(x) ⊂ Y ; Dom(ϕ) := {x ∈ X | ϕ(x) 6= /0};
always, if necessary, the properties of values are specified. For continuity concepts of set-valued maps –
see [2].

2. DIFFERENTIABLITY

There is a variety of methods to study differentiability properties of functionals defined on closed
domains: those of ad hoc character necessary in specific situations (i.e. in the divergence theorem)
and those following a systematic approach – see [25], for instance – and taking into account a possible
lack of any regularity of considered functionals. In the article, we are interested in generalizations of
the Darboux theorem and, thus, we pay rather limited attention to calculus issues and/or deeper insight
into the very notion of differentiability. However, to get a better understanding, we are going to treat
several cases and compare the resulting approaches. Most of the results concerning different methods
to introduce derivatives and their properties seem to be well-known, we include some of them for the
sake of completeness and a reader’s convenience. It is often difficult to point out who contributed to the
theory and to whom particular results should be attributed. Hence, we will rather restrict ourselves to
some general references as [2, 41, 9, 25, 6] and the extensive bibliography there.

Let K ⊂ X be closed and consider a functional f : K→R. With a view to have some sort of clearance
with variables, but with a slight abuse of notation, we consider the extension of f given as

f : X → R := (−∞,+∞], where f (x) = +∞ for x 6∈ K. (2.1)

The effective domain Dom( f ) := {x ∈ X | f (x) < ∞} = K. In order not to lose some basic regularity
exhibited by f we assume that f is at least lower semicontinuous on K, i.e., for any x ∈ K,

f (x) = sup
ε>0

inf
y∈B(x,ε)∩K

f (y). (2.2)

Then the extension of f is lower semicontinuous, too. Moreover, the epigraphs of f over K and over X
coincide

(1 ). If f is convex, then so is its extension and the domain K.

2.1. Hadamard subdifferential. For x ∈ K and u ∈ X the (lower right) Dini-Hadamard directional
derivative

f ′H(x;u) := liminf
t→0+,v→u

f (x+ tv)− f (x)
t

. (2.3)

It is clear that f ′H(x;u) = d ∈ R∪{−∞}.

Lemma 2.1. If u 6∈ TB(x;K), where TB(x;K) stands for the Bouligand (contingent) cone to K, then
f ′H(x;u) = ∞.

Proof. Suppose that d = f ′H(x;u) < +∞. Then there are sequences (un) ⊂ X and (tn) ⊂ R such that
un→ u, tn→ 0+, x+ tnun ∈ K for all n ∈ N, and d = limn→∞ t−1

n
(

f (x+ tnun)− f (x)
)
. This, in view of

(4.2), means that u ∈ TB(x;K). �

1Recall that the epigraph Epi( f ) :=
{
(x,λ ) ∈ X×R | f (x)6 λ

}
of a lower semicontinuous functional is closed.
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Example 2.2. Let f : R2→ (−∞,+∞] be given by

f (x,y) =


x3y−2 if x ∈ (0,1], x2 6 y6 x,
0 for x = 0 = y,
+∞ otherwise.

In this case K = {(x,y) ∈ R2 | x ∈ [0,1], x2 6 y6 x}, TB
(
(0,0);K

)
=
{

u = [x,y] ∈ R2 | x> y> 0
}

, f is
positive, convex, lower semicontinuous and f ′H

(
(0,0); [1,0]

)
=+∞. �

The following proposition provides a convenient geometric description of the Hadamard directional
derivative.

Proposition 2.3. Let x ∈ K and u ∈ X.

(1) Then (u,λ ) ∈ TB
(
(x, f (x));Epi( f )

)
if and only if u ∈ TB(x;K) and f ′H(x;u) 6 λ . In particular

f ′H(x;0X)6 0. If f ′H(x;0X)< 0, then f ′(x;0X) =−∞.

(2) More precisely

f ′H(x;u) = inf
{

λ ∈ R | (u,λ ) ∈ TB
(
(x, f (x));Epi( f )

)}
, (2.4)

where inf /0 :=+∞, and hence

Epi
(

f ′H(x; ·)
)
= TB

(
(x, f (x));Epi( f )

)
. (2.5)

(3) The functional X 3 u 7→ f ′H(x; ·) ∈R∪{−∞} is positively homogeneous and lower semicontinu-
ous;

(4) if f is convex, then so is f ′H(x; ·).

Proof. Part (1) follows from the definition of the Bouligand cone and (2.3). The second assertion is im-
mediate since (0X ,0)∈ TB

(
(x, f (x));Epi( f )

)
. If f ′H(x;0X) = d < 0, then (0X ,d′)∈ TB

(
(x, f (x));Epi( f )

)
for some d 6 d′ < 0, so (0,λd′) ∈ TB

(
(x, f (x));Epi( f )

)
, implying that f ′H(x;0X)6 λd′ for any λ > 0,

and hence f ′H(x;0X) = 0 or −∞.
The equality (2.4) (equivalently (2.5)) was established by numerous authors and follows immediately

from the definition (2.3) and the above part (1). Parts (3), (4) rely on (2.5) since TB
(
(x, f (x));Epi( f )

)
is

a closed cone being convex whenever so is f . �

We say that f is calm (resp. quiet) on K at x if there are ` ∈ R and ε > 0 such that f (y) > f (x)−
`‖y− x‖

(
resp. f (y)6 f (x)+ `‖y− x‖

)
, when y ∈ K∩B(x,ε). It is clear that if f is calm with constant

` and `′ > `, then f is calm with constant `′. In particular if f admits a local minimum at x ∈ X , then it
is calm at x on K with constant `= 0. Let us make the following observation.

Proposition 2.4. (1) Suppose that f is calm
(
resp. quiet

)
on K at x ∈ K with constant `. Then for any

u ∈ X,
f ′H(x;u)>−`‖u‖

(
resp. f ′H(x;u)|6 `‖u‖

)
. �

In particular if f has a local minimum at x, then f ′H(x;u)> 0 for any u ∈ X.
(2) In general f ′H(x;0X) = 0 if and only if f is calm on K at x.

Proof. (1) is immediate from definition (2.3). In view of (1) only the ‘only if’ part of (2) should be
shown. If f is not calm at x, then there is a sequence un → 0X such that x+ un ∈ K, ‖un‖ < 1/n and
f (x+un)− f (x)<−n‖un‖. If hn :=

√
n‖un‖ and vn := (

√
n‖un‖)−1un, then hn→ 0, vn→ 0 and for any

n ∈ N
f (x+hnvn)− f (x)

hn
<−
√

n.
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This implies that f ′H(x,0) =−∞. �

Remark 2.5. Let x ∈ K. For h > 0, h−1
(

Epi( f )−
(
x, f (x)

))
= Epi(ϕh), where

ϕh(u) := h−1( f (x+hu)− f (x)
)
, u ∈ X ,

and, therefore, in view of the definition of TB
(
(x, f (x));Epi( f )

) (
see (4.2)

)
we have

Epi
(

f ′H(x; ·)
)
= Limsup

h→0+
Epi(ϕh). (2.6)

This, together with the notion of epi-convergence (see e.g. [14, Theorem 4.16]), implies that

f ′H(x;u) = sup
ε>0

sup
η>0

inf
0<h<η

inf
v∈B(u,ε)

f (x+hv)− f (x)
h

; (2.7)

and provides the expression coinciding with the usual limes inferior in (2.3) and does not bring anything
new. �

Let x ∈ K. The Hadamard subdifferential

∂H f (x) :=
{

p ∈ X∗ | ∀u ∈ X 〈p,u〉6 f ′H(x;u)
}
.

Note that
∂H f (x) =

{
p ∈ X∗ | ∀u ∈ TB(x;K) 〈p,u〉6 f ′H(x;u)

}
. (2.8)

It is immediate to see that ∂H f (x) is convex and weakly∗-closed. Observe that if ∂H f (x) is nonempty,
then

∀u ∈ X ϕ(u) := sup
p∈∂H f (x)

〈p,u〉6 f ′H(x;u).

The function ϕ is lower semicontinuous, convex and positively homogeneous. This implies that

TB
(
(x, f (x));Epi( f )

)
⊂ Epi(ϕ),

i.e. f is ’almost’ convex at x in the sense that the Bouligand cone to Epi( f ) at x is contained in a convex
cone. Hence the normal cone

(
see Remark 4.2

)
NB
(
(x, f (x)),Epi( f )

)
:=
[
TB
(
(x, f (x));Epi( f )

)]− 6= /0.

If f has a local minimum at x, then the Fermat rule holds: 0 ∈ ∂H f (x).

Proposition 2.6. Let x ∈ K.

(1) For any p ∈ X∗

p ∈ ∂H f (x) ⇐⇒ (p,−1) ∈ NB
(
(x, f (x)),Epi( f )

)
, (2.9)

(2) If p ∈ ∂H f (x), q ∈ X∗ and q− p ∈ NB(x;K), then q ∈ ∂H f (x); in other words

∂H f (x)+NB(x;K) = ∂H f (x). (2.10)

Proof. The first part is standard and directly follows from Proposition 2.3. To see the second statement
take u ∈ TB(x;K). Then

〈q,u〉= 〈q− p,u〉+ 〈p,u〉6 f ′H(x;u).

This completes the proof in view of (2.8). �

Remark 2.7. It is immediate to see that (0,λ ) ∈ TB
(
(x, f (x));Epi( f )

)
for any x ∈ K and λ > 0. There-

fore
NB
(
(x, f (x));Epi( f )

)
⊂ X∗× (−∞,0]

and (p,0) ∈ NB
(
(x, f (x));Epi( f )

)
if p ∈ NB(x;K). �
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Let us compare the Hadamard derivative with the Dini derivative in case of a convex functional.
Suppose that now that f is convex (in addition to the above assumptions). Given x ∈ K and u ∈ X , the
Dini derivative

f ′D(x;u) := lim
h→0+

f (x+hu)− f (x)
h

.

It is clear that ± fD(x;u)< ∞ if and only if ±u ∈ A(x;K). This means that f ′(x;u) is finite for all u ∈ X
if and only if K− x absorbs X .

Evidently for any x ∈ K and u ∈ X , f ′H(x;u)6 f ′D(x;u); precisely one has the following proposition.

Proposition 2.8. (1) If f is convex, x ∈ K, then the Hadamard derivative f ′H(x; ·) is the lower closure
of f ′D(x; ·), i.e. the greatest among all lower semicontinuous functionals 6 f ′D(x; ·), and hence for any
u ∈ X

f ′H(x;u) = liminf
v→u

f ′D(x;v). (2.11)

For u ∈ X, f ′H(x;u) = f ′D(x;u) if and only if f ′D(x; ·) is lower semicontinuous at u.
(2) For any x ∈ K, ∂H f (x) = ∂D f (x), where

∂D f (x) :=
{

p ∈ X∗ | ∀u ∈ X f (x+u)> f (x)+ 〈p,u〉
}

is the subdifferential of f at x in the sense of convex analysis.

Proof. The characterization similar to that from Proposition 2.3 holds true. Namely it is immediate to
see that

f ′D(x,u) = inf
{

λ ∈ R | (u,λ ) ∈ A
(
(x, f (x));Epi( f )

)}
(2.12)

but

A
(
(x, f (x));Epi( f )

)
⊂ Epi

(
f ′D(x; ·)

)
⊂ TB

((
x, f (x)

)
;Epi( f )

)
= A

(
(x, f (x));Epi( f )

)
,

the second inclusion follows since, in general, f ′H(x;u)6 f ′D(x;u). Hence, for each x ∈ K,

Epi
(

f ′D(x; ·)
)
= Epi

(
f ′H(x; ·)

)
This completes the proof of (2.11) in view of the characterization of the lower closure. Next statements
are self evident. �

2.2. Rockafellar-Clarke subdifferential. Following the approach from Proposition 2.3, (2.5) and gi-
ven x ∈ K one defines the Rockafellar-Clarke directional derivative X 3 u 7→ f ′C(x;u) by

f ′C(x;u) := inf
{

λ ∈ R | (u,λ ) ∈ TC
(
(x, f (x));Epi( f )

)}
, (2.13)

i.e.
Epi
(

f ′C(x; ·)
)
= TC

(
(x, f (x));Epi( f )

)
, (2.14)

where TC
(
(x, f (x));Epi( f )

)
is the Clarke cone to Epi( f ) at

(
x, f (x)

) (
see (4.3)

)
.

For y ∈ K and h > 0 let

ϕy,h(v) :=
f (y+hv)− f (y)

h
, v ∈ X .

Clearly ϕy,h is lower semicontinuous, ϕy,h(v) ∈ R and ϕy,h(v)< ∞ if and only if y+hv ∈ K. It is easy to
see that

h−1(Epi( f )−
(
y, f (y)

))
= Epi(ϕy,h). (2.15)

Lemma 2.9. Let x ∈ K. Then

TC
(
(x, f (x));Epi( f )

)
= Liminf

h→0+,y K→x
f (y)→ f (x)

h−1(Epi( f )−
(
y, f (y)

))
.
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The condition determining the right-hand side set-limit is non-void: there are sequences xn → x with
f (xn)→ f (x) (see (2.2)).

Proof. The set in the left-hand side is contained in the one in the right side. Suppose that

(u,λ ) ∈ Liminf
h→0+,y K→x
f (y)→ f (x)

h−1(K− y)

and take (hn)⊂ R, (xn,µn)⊂ Epi( f ) with hn→ 0+, xn→ x and µn→ f (x). Hence f (xn)→ f (x) since

f (x)6 liminf
n→∞

f (xn)6 limsup
n→∞

f (xn)6 lim
n→∞

µn = f (x).

There are sequences un→ u and λn→ λ such that
(
xn +hnun, f (xn)+hnλn

)
∈ Epi( f ), i.e.

f (xn +hnun)6 f (xn)+hnλ 6 µn +hnλn,

showing the assertion. �

Lemma 2.9, (2.14) and (2.15) show that for x ∈ K,

Epi
(

f ′C(x; ·)
)
= TC

(
(x, f (x));Epi( f )

)
= Liminf

h→0+,y K→x
f (y)→ f (x)

Epi(ϕy,h). (2.16)

According to [14, Theorem 4.16], for u ∈ X ,

f ′C(x;u) = sup
ε>0

limsup
h→0+,y K→x
f (y)→ f (x)

inf
v∈B(u,ε)

f (y+hv)− f (y)
h

.
(2.17)

As we see the analytic expression for f ′C(x;u) is not very convenient to deal with.

Remark 2.10. (1) In general for x ∈ K, the function X 3 u 7→ f ′C(x;u) ∈ R∪{−∞} is lower semiconti-
nuous, convex and positively homogeneous. It is clear that for any x ∈ K and u ∈ X

f ′H(x;u)6 f ′C(x;u) (2.18)

since TC
(
(x, f (x));Epi( f )

)
⊂ TB

(
(x, f (x));Epi( f )

)
.

(2) If f ′C(x;u)< ∞, then u ∈ TC(x,K). Indeed in this case there is λ ∈ R such that

(u,λ ) ∈ TC
(
(x, f (x));Epi( f )

)
and for any sequences xn

K→ x and hn → 0+ there are sequences un → u and λn → λ such that f (xn +

hnun)6 f (xn)+hnλn. In particular this shows that xn +hnun ∈ K, i.e. u ∈ TC(x;K).
(3) If f is calm on K at x ∈ K with constant ` ∈ R, then for any u ∈ X ,

f ′C(x;u)>−`‖u‖

by (2.18) and Proposition 2.4 (1).
(4) If f is locally Lipschitz on K at x ∈ K, i.e. there is ε > 0 and ` > 0 such that | f (x′)− f (x′′)| 6

`‖x′− x′′‖ for x′,x′′ ∈ B(x,ε), then f ′C(x;u) 6 `‖u‖ for u ∈ TC(x;K). To this aim take u ∈ TC(x;K). We

shall show that (u,λ ) ∈ TC
(
(x, f (x));Epi( f )

)
, where λ = `‖u‖. Take sequence xn

K→ x (then f (xn)→
f (x)) and hn→ 0+. Since u∈ TC(x;K) there is a sequence un→ u such that xn+hnun ∈K for all n. Thus

f (xn +hnun)6 f (xn)+hnλn,

where λn := `‖un‖, showing the claim. Having this we infer that f ′C(x;u)6 `‖u‖.
(5) Summing up: if f is Lipschitz on K at x ∈ K, then for any u ∈ X , f ′C(x;u) ∈ R ⇔ u ∈ TC(x;K)

and in this situation
−`‖u‖6 f ′C(x;u)6 `‖u‖. �
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Proposition 2.11. (comp. [9, Proposition 2.2.1]) Let u ∈ TC(x;K), f be locally Lipschitz on K at x with
constant ` > 0. Then

f ′C(x;u) = limsup
h→0+,y→x,v→u,

y,y+hv∈K

h−1( f (y+hv)− f (y)
)
.

If u is a hypertangent, then

f ′C(x;u) = limsup
h→0+,y→x,y∈K

h−1( f (y+hu)− f (y)
)
.

In particular if x ∈ intK, then for any u ∈ X

f ′C(x;u) = limsup
h→0+,y→x

h−1( f (y+hu)− f (y)
)

(2.19)

is the Clarke directional derivative, usually denoted by f ◦(x;u). Hence the function intK×X 3 (x,u) 7→
f ′C(x;u) is upper semicontinuous.

Proof. It is immediate to see that if (u,λ ) ∈ TC
(
(x, f (x));E pi( f )

)
, then for any sequences hn → 0+,

xn→ x, xn ∈ K, there is a sequence un→ u such that xn +hnun ∈ K for all n and

limsup
n→∞

h−1
n
(

f (xn +hnun)− f (xn)
)
6 λ .

Since f is locally Lipschitz on K at x and Clarke’s tangent cone is closed, from (2.13) and Remark 2.10
(4),

(
u, f ′C(x;u)

)
∈ TC

(
(x, f (x));Epi( f )

)
. Fix ε > 0. For sufficiently large n we have ‖un− u‖ < ε .

Hence

inf
v∈B(u,ε)

h−1
n
(

f (xn +hnv)− f (xn)
)
6 h−1

n
(

f (xn +hnun)− f (xn)
)
.

The sequences (xn),(hn) are arbitrary, therefore

limsup
h→0+,y→x,

y∈K

inf
v∈B(u,ε)

h−1( f (y+hv)− f (y)
)
6 limsup

h→0+,y→x,v→u,
y,y+hv∈K

h−1( f (y+hv)− f (y)
)
,

with the right hand side being less or equal to f ′C(x;u). Passing to the least upper bound on the left hand
side over ε > 0 gives the equality

f ′C(x;u) = limsup
h→0+,y→x,v→u,

y,y+hv∈K

h−1( f (y+hv)− f (y)
)
.

In order to complete the proof, observe that, from the definition of a hypertangent, for any sequences
xn→ x,xn ∈ K, hn→ 0+, for sufficiently large n we have xn +hnu,xn +hnun ∈ K and∣∣h−1

n
(

f (xn +hnun)− f (xn)
)
−h−1

n
(

f (xn +hnu)− f (xn)
)∣∣6 `‖un−u‖.

The sequences xn,hn,un were arbitrary, therefore

limsup
h→0+,y→x,v→u,

y,y+hv∈K

h−1( f (y+hv)− f (y)
)
= limsup

h→0+,y→x,y∈K
h−1( f (y+hu)− f (y)

)
.

�

Proposition 2.12. Let x ∈ K. Then

∀u ∈ X f ′H(x;u) = f ′C(x;u) ⇔ TC
(
(x, f (x));Epi( f )

)
= TB

(
(x, f (x));Epi( f )

)
.

If, for some u∈ TB(x;K), the function f ′H(·;u) is upper semicontinuous on K at x, then f ′H(x;u)= f ′C(x;u).
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Proof. The ‘if’ part follows readily from (2.13) and (2.4). If (u,λ )∈TB
(
(x, f (x));Epi( f )

)
, then f ′C(x;u)=

f ′H(x;u)6 λ . For any ε > 0 there is µ ∈R with f ′C(x;u)6 µ < λ +ε and (u,µ)∈ TC
(
(x, f (x));Epi( f )

)
.

This implies that (u,λ ) ∈ TC
(
(x, f (x));Epi( f )

)
and that TB

(
(x, f (x));Epi( f )

)
⊂ TC

(
(x, f (x));Epi( f )

)
.

To see the second part we shall first show that the multivalued map

K 3 y 7→ G(y) :=
{

λ ∈ R | (u,λ ) ∈ TB
(
(y, f (y));Epi( f )

)}
is lower semicontinuous at x, i.e.

G(x)⊂ Liminf
y K→x

G(y). (2.20)

It is clear that the set G(y) is closed. To this aim take a sequence xn
K→ x and λ ∈G(x). Then f ′H(x;u)6 λ .

The function f ′H(·;u) is upper semicontinuous, i.e.

limsup
n→∞

f ′H(xn;u)6 d := f ′H(x;u).

Hence for any ε > 0 and for almost all n, f ′H(xn,u) < d + ε . Thus (u,d + ε) ∈ G(xn) for almost all n.
This implies that λ ∈ G(xn) for large n and shows (2.20).

Recall that, in view of [47, Theorem 3.1],

Liminf
(y,λ )

Epi( f )−→ (x, f (x))

TB
(
z;Epi( f )

)
⊂ TC

(
(x, f (x));Epi( f )

)
. (2.21)

We shall now prove that

Liminf
y K→x

G(y)⊂ Liminf
(y,λ )

Epi( f )−→ (x, f (x))

TB
(
(y,λ );Epi( f )

)
.

Note that if (x,λ ) ∈ Epi( f ), then, directly from the definition of the Bouligand cone,

TB
(
(x, f (x));Epi( f )

)
⊂ TB

(
(x,λ );Epi( f )

)
.

Let λ ∈ Liminf
y K→x

G(y) and (yn,λn)
Epi( f )−→ (x, f (x)). Then, in particular, yn

K→ x; therefore, there is λn →

λ such that λn ∈ G(yn). But then (u,λn) ∈ TB
(
(yn, f (yn));Epi( f )

)
and (u,λn)→ (u,λ ), so (u,λn) ∈

TB
(
(yn,kn);Epi( f )

)
. Since (yn,λn) was arbitrary, we finally get that

(u,λ ) ∈ Liminf
(y,k)

Epi( f )−→ (x, f (x))

TB
(
(y,k);Epi( f )

)
as required. This, together with (2.20) and (2.21), shows that

G(x)⊂ Liminf
y K→x

G(y)⊂
{

λ | (u,λ ) ∈ TC
(
(x, f (x));Epi( f )

)}
⊂ G(x).

This clearly implies the second assertion. �

The Rockafellar-Clarke subdifferential

∂C f (x) :=
{

p ∈ X∗ | ∀u ∈ X 〈p,u〉6 f ′C(x;u)
}
. (2.22)

In view of Remark 2.10 (2)

∂C f (x) =
{

p ∈ X | ∀TC(x;K) 〈p,u〉6 f ′C(x;u)
}
.

Hence, in analogy with (2.10)

∂C f (x) = ∂C f (x)+NC(x;K), (2.23)

where NC(x;K) := [TC(x;K)]− is the (Clarke) normal cone – see Remark 4.2.
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Remark 2.13. (1) Clearly ∂C f (x) 6= /0 if and only if f ′C(x;u) > −∞ for all u ∈ X for then f ′C(x; ·), as
a convex, lower semicontinuous and positively homogeneous function, is the support function of the
nonempty set in the right-hand side of (2.22), i.e.

f ′C(x;u) = sup
p∈∂C f (x)

〈p,u〉, u ∈ X .

In particular if f is calm on K at x (with constant `> 0), then by Remark 2.10 (2), f ′C(x;u)>−`‖u‖
for all u ∈ X . Thus ∂C f (x) 6= /0 and, by the use of an appropriate version of the separation theorem, we
may separate Epi

(
f ′C(x; ·)

)
from the cone {(u,λ ) ∈ X×R | λ 6−`‖u‖}. So there is p ∈ X∗ such that

−`‖u‖6 〈p,u〉6 f ′C(x;U).

Thus p ∈ ∂C f (x) and ‖p‖6 `. By the min-max inequality

sup
u∈X ,‖u‖61

inf
p∈∂C f (x)

〈p,u〉6 inf
p∈∂C f (x)

sup
u∈X ,‖u‖61

〈p,u〉= inf
p∈∂C f (x)

‖p‖6 `. (2.24)

(2) If x ∈ K and f locally Lipschitz on K at x, then ∂C f (x) is a convex and weakly∗-compact subset
of X∗. If f is Lipschitz on a ball B(x,ε), ε > 0, (i.e., in particular, x ∈ intK), then the set-valued
map B(x,ε) 3 y 7→ ∂C f (y) ⊂ X∗ is upper hemicontinuous, i.e. for any u ∈ X the function B(x,ε) 3
y 7→ supp∈∂C f (y)〈p,u〉 is upper semicontinuous (as a real extended function) – see [2, Sec. 2.6], having
nonempty convex, closed and bounded values.

(3) Exactly as before one can establish the following fact:

p ∈ ∂C f (x) ⇐⇒ (p,−1) ∈ NC
(
(x, f (x));Epi( f )

)
:=
[
TC
(
(x, f (x));Epi( f )

)]−
.

It is often very convenient to have that the graph of ∂C f
(
i.e. the set {(x, p) ∈ K×X∗ | p ∈ ∂C f (x)}

)
is closed with respect to the product of the strong topology in K and the weak∗-topology in X∗. It is
always the case locally over x ∈ intK provided f is Lipschitz around x in view of Remark 2.13 (2).
In general we may define a ‘subdifferential’ ∂C f as the (sequential) closure of the graph of ∂C in the
strong×weak∗-topology. Therefore

p ∈ ∂C f (x) ⇔ ∃xn→ x, f (xn)→ f (x) ∃ pn ∈ ∂C f (xn) pn
∗
⇀ p,

i.e. ∂C f (x) is the weak∗-upper limit of ∂C f (y), where y→ x along with f (y)→ f (x).

2.3. Hadamard and Fréchet differentiablity. Let us conclude this section by considering variants of
Hadamard’s and Fréchet’s differentiablity of f

(2 ). We say that f is H-differentiable at x if there is
p ∈ X∗ such that for any u ∈ TB(x;K) and for any ε > 0 there is δ > 0 such that∣∣ f (x+hv)− f (x)−h〈p,v〉

∣∣6 ε|h|

if h ∈ R, v ∈ X are such that |h| < δ , ‖v− u‖ < δ and x+ hv ∈ K. We say that p ∈ X∗ satisfying the
above condition is a H-gradient of f at x.

Example 2.14. Let f : R→R with K = Dom( f ) = [a,b]. Then f is H-differentiable at x ∈ (a,b)
(
resp.

x = a or x = b
)

if and only if the ordinary derivative f ′(x) exists
(
resp. there exist one-sided derivatives

f ′+(a) or f ′−(b)
)
. �

It is easy to see that f is H-differentiable at x and p ∈ X∗ is an H-gradient of f at x if and only if for
any u ∈ TB(x;K), sequences hn→ 0+ and un→ u such that x+hnun ∈ K for all n one has

〈p,u〉= lim
n→∞

f (x+hnun)− f (x)
hn

. (2.25)

2H-differentiablity is discussed at length in a somewhat forgotten but very useful book [20, Chapter 4.2].
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Hence in this case
∀u ∈ TB(x;K) f ′H(x;u) = 〈p,u〉 and p ∈ ∂H f (x). (2.26)

In view of (2.10) we have the following

Proposition 2.15. If f is H-differentiable at x ∈ K, then

∂H f (x) = p+NB(x;K),

where p is an H-gradient of f at x. �

Remark 2.16. (1) Observe that not all elements in ∂H f (x) are H-gradients. Precisely, in view of (2.25),
q ∈ X∗ is an H-gradient of f at x ∈ K if and only if q− p ∈ TB(x;K)⊥, where p is an H-gradient of f at
x.

(2) If f is H-differentiable at x, then it is continuous and locally stable at x. The linearity implies that
f ′H(x;0X) = 0. Hence, in view of Proposition 2.4 (2), f is calm. The H-differentiability of − f implies
that f is quiet; the continuity follows indirectly. �

We say that f is F-differentiable at x ∈ K and that p ∈ X∗ is an F-gradient of f at x if for any ε > 0
there is δ > 0 such that for any u ∈ X such that x+u ∈ K and ‖u‖< δ∣∣ f (x+u)− f (x)−〈p,u〉

∣∣6 ε‖u‖.

It is clear that if f is F-differentiable at x, then it is H-differentiable and any F-gradient is an H-gradient.

2.4. Lipschitz continuous case. Here we follow closely [24] with some minor changes. Suppose now
that f is Lipschitz on K, i.e. there is ` > 0 such that | f (x)− f (y)| 6 `‖x− y‖ for any x,y ∈ K. In this
situation the restriction f |K

(
i.e. the ‘original’ f

)
admits the so-called infimal convolution extension

f̃ : X → R defined by
f̃ (y) := inf

x∈K

(
f (x)+L‖y− x‖

)
, y ∈ X ,

where L > ` (see [45] and [24]). Observe that for y ∈ K and x ∈ K, f (x)+ L‖y− x‖ > f (y) because
f (y)− f (x)6 `‖y− x‖6 L‖y− x‖, and

f (y)> f̃ (y) = inf
x∈K

(
f (x)+L‖y− x‖

)
> f (y).

Therefore f̃ = f on K. For any y,z ∈ X and x ∈ K we have

f (x)+L‖y− x‖6 f (x)+L‖y− z‖+L‖z− x‖

and passing to g.l.b with x ∈ K we get that

f̃ (y)6 f̃ (z)+L‖y− z‖.

This shows that f̃ is Lipschitz continuous.
According to Proposition 2.11 and (2.19) for any y ∈ X and u ∈ X

f̃ ′C(y;u) = f̃ ◦(y;u) = limsup
z→y,h→0+

f̃ (z+hu)− f̃ (z)
h

= sup
p∈∂ f̃ (y)

〈p,u〉,

where
∂ f̃C(y) :=

{
p ∈ X∗ | ∀u ∈ X 〈p,u〉6 f̃ ◦(y;u)

}
and

∀ p ∈ ∂C f̃ (x) ‖p‖6 L. (2.27)

Proposition 2.17. Let x ∈ K. Then

(1) for any u ∈ X, f̃ ◦(x;u)6 f ′C(x;u);
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(2) ∂C f̃ (x)⊂
{

p ∈ ∂C f (x) | ‖p‖6 L
}

;

(3) ∂C f (x) = ∂C f̃ (x)+NC(x;K).

Proof. It is obvious that Epi( f )⊂ Epi( f̃ )∩K× [0,+∞. Hence

TB
(
(x, f (x));Epi( f )

)
⊂ TB

(
(x, f (x));Epi( f̃ )

)
and f̃ ′H(x;u) 6 f ′H(x;u) for any u ∈ X . In general a similar inclusion is not true. However, following a
delicate argument from [24, Theorem 2], we get that

TC
(
(x, f (x));Epi( f )

)
⊂ TC

(
(x, f (x));Epi( f̃ )

)
.

This implies that (1) holds true and then ∂C f̃ (x) ⊂ ∂C f (x). Therefore ∂C f̃ (x)+NC(x;K) ⊂ ∂C f (x)+
NC(x;K) = ∂C f (x) by (2.23). In view of (2.27) property (2) follows. It is clear that f = f̃ + IK , where
IK denotes the indicator of K. Therefore

∂C f (x)⊂ ∂C f̃ (x)+NC(x;K)

in view of [40, Theorem 2] and (4.5). �

3. EQUILIBRIA AND GENERALIZED EQUILIBRIA OF NONSMOOTH FUNCTIONALS

3.1. Functionals bounded below. In this section, we are going to study some minimization techniques
for nonsmooth functionals. The celebrated Ekeland variational principle will constitute the main tool to
deal with these problems. We shall survey some known results and complement them with some new
examples and facts relying on a systematic study of various inf-compactness conditions of the Palais-
Smale type. The proofs are very simple thanks to the preliminary facts provided above.

Let us recall the following version of the Ekeland principle (stated in terms of our functional f , i.e.
f : X → R∪{+∞} is lower semicontinuous, Dom( f ) = K is closed) – see [18] and [38]. We suppose
that f is bounded from below and let

m := inf
x∈K

f (x) = inf
x∈X

f (x). (3.1)

Theorem 3.1. For any ε > 0, λ > 0 and x0 ∈ K such that f (x0)6 m+ ελ there is xε ∈ K such that

(1) ‖xε − x0‖6 λ ;

(2) f (xε)+ ε‖xε − x0‖6 f (x0);

(3) f (xε)< f (x)+ ε‖x− xε‖ for any x ∈ X, x 6= xε . �

Putting it briefly: if f is lower semicontinuous and bounded from below, then for any ε > 0 there is
xε such that f (·)+ ε‖xε −·‖ attains its minimum at xε .

As de Figueiredo in [19] writes - ‘...this principle discovered in 1972 has found a multitude of appli-
cations in different fields of analysis. It has also served to provide simple and elegant proofs of known
results (...) it is a tool that unifies many results where the underlying idea is some sort of approximation.’
To see this idea take a sequence (yn) ⊂ K such that f (yn) 6 m+ n−2, i.e. a minimizing sequence. In
view of Ekeland’s principle one is in a position to ‘improve’ it by choosing a sequence (xn) ⊂ K such
that

(a) f (xn)6 f (yn),

(b) ‖xn− yn‖6 n−1,

(c) ∀x ∈ X ,x 6= xn f (xn)< f (x)+n−1‖xn− x‖.
(3.2)

Recall that, having the lower semicontinuity of f , the so-called inf-compactness of f , i.e. the hypot-
hesis concerning compactness of sublevel sets f λ := {x∈K | f (x)6 λ}, m< λ , guarantees the existence
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a minimizer x0, f (x0) = m. If X is reflexive and f is additionally convex, then level sets are weakly com-
pact provided they are bounded.

In order to deal with a general problem of minimization some relaxed forms of inf-compactness are
needed. For instance one can consider a functional f such that

lim
λ→m+

α f (λ ) = 0,

where α f (λ ) := χ
(

f λ ) is the ball (or Hausdorff) measure of noncompactness of f λ . This can be achie-
ved if (a generalized) pseudo-gradient field of sorts associated with f is condensing with respect to χ .
This topic however, as quite distant, will not be pursued here. Instead we will discuss some forms of the
compactness assumptions generally known as Palais-Smale type conditions. There is a variety of such
conditions considered for smooth and non-smooth functionals – see [31] for an excellent survey of many
results concerning the Palais-Smale conditions, and e.g [49] for a survey of such conditions in case of
nonsmooth situation and rather an extensive discussion and bibliography.

Let us recall some of these conditions (in a slightly different form).

Hypothesis 3.2. The functional f is said to satisfy the compactness condition :

• (C1), the Palais-Smale condition in the sense of Costa and Goncalves, if given sequences (xn)⊂
K and (εn), (δn) of positive numbers such that εn,δn→ 0+,

f (xn)→ m and f (xn)6 f (x)+ εn‖xn− x‖ if x ∈ K, ‖x− xn‖6 δn,

then (xn) has an accumulation point;

• (C2) if for any sequence (xn)⊂ K such that

f (xn)→ m and liminf
n→∞

inf
‖u‖61

f ′H(xn,u)> 0

has a convergent subsequence.

• (C3), the Palais-Smale condition in the sense of Chang, if for any sequence such that

f (xn)→ m and inf
p∈∂C f (xn)

‖p‖→ 0

possesses a convergent subsequence.

Remark 3.3. (1) (C2) implies (C1). Given sequences (xn) ⊂ K and (εn) and (δn) of positive numbers
such that εn,δn→ 0, f (xn)→m and f (xn)6 f (x)+εn‖xn−x‖ if x ∈ K when ‖x−xn‖6 δn, we actually
get that, for any n, f is calm (with constant ` = εn) on K ∩B(xn,δn). Therefore in view of Proposition
for 2.4

inf
‖u‖61

f ′H(xn;u)6−εn.

Thus (xn) has an accumulation point.
In a similar manner we prove that (C3) implies (C1). Given a sequence as above we may refer to

Remark 2.13 (1) in order to obtain for any n ∈ N an element pn ∈ ∂C f (xn) with ‖pn‖6 εn. Having this
condition (C3) gives a convergent subsequence of (xn).

(2) Condition (C1) implies the standard Palais-Smale condition for F-differentiable functionals (see
subsection 2.3): if (xn) ⊂ K is a sequence such that f (xn)→ m, pn is an F-gradient of f at xn and
‖pn‖ → 0, then xn has a convergent subsequence. If we have such a sequence, then for a sequence
εn→ 0 such that εn > 2‖pn‖ there is δn > 0 such that for any x ∈ K∣∣ f (x)− f (xn)−〈pn,x− xn〉

∣∣6 2−1
εn‖x− xn‖

if ‖x− xn‖< δn. Hence

f (x)> f (xn)+ 〈p,x− xn〉−2−1
εn‖x− xn‖>−εn‖x− xn‖ i ‖x− xn‖6 δn.
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In view of (C1), (xn) possesses a convergent subsequence.
(3) In view of Theorem [49, Theorem 1] if (C1) is satisfied, then (C3) holds true if f is convex.

We are in a position to get the following theorem that corresponds to numerous minimization results
obtained by different authors. Let us mention only a few references: [16], where the set K of constraints
was assumed to be convex and where results of Struwe [46] have been generalized and [13].

Theorem 3.4. Let f : K → R be lower semicontinuous and bounded from below, let m = infx∈K f (x).
Suppose that it f satisfies one of conditions (C1), (C2) or (C3). Then there is x0 ∈ K such that 0 ∈
∂H f (x0)⊂ ∂C(x0) and f (x0) = 0. Moreover NB(x0;K)⊂ ∂H f (x0) and NC(x0;K)⊂ ∂C f (x0).

Proof. By the Ekeland principle one gets a sequences (xn) and (yn) satisfying (3.2). Clearly m 6
limn→∞ f (xn) 6 limn→∞ f (yn) = m. By condition (C1) (in view of Remark 3.3 (C2) (resp. (C3)) im-
plies (C1)), up to a subsequence, xn→ x0. Thus, by lower semicontinuity,

m6 f (x0)6 liminf
n→∞

f (xn) = m.

Since x0 is a minimizer of f we gather that f is calm (with constant ` = 0). Therefore 0 6 f ′h(x0;u) 6
f ′C(x0;u) for any u ∈ X and, hence, 0 ∈ ∂H f (x0)⊂ ∂C f (x0). The last statement follows from (2.10) and
(2.23), respectively. �

Let us now provide some examples of functionals satisfying Palais-Smale type conditions. We start
with the following lemma (after [17]) – for the sake of completeness we provide a proof.

Lemma 3.5. Suppose that Y is a Banach space such that j : X ↪→↪→Y (i.e. the embedding j is continuous
and compact). Let G : Y → R be locally Lipschitz. Then the functional g := G ◦ j : X → R is locally
Lipschitz and the set-valued map

X 3 x 7→ ϕ(x) := ∂Cg(x)⊂ X∗

is completely continuous with nonempty compact convex values, i.e. it is upper semicontinuous, has
compact values and the image ϕ(B) is relatively compact nonempty values in X∗, provided B ⊂ X is
bounded.

Proof. It is clear that g is locally Lipschitz, the values of ϕ are convex weakly∗-compact and ϕ is upper
hemicontinuous. In order to prove the upper semicontinuity and the compactness of values of ϕ it is
sufficient to show that given sequences xn→ x in X and pn ∈ ϕ(xn), there is a subsequence (pnk) of (pn)

such that limk→∞ pnk = p ∈ ϕ(x). To this aim observe that, by the upper hemicontinuity of ∂CG
(3), the

image ∂CG
(

j(Z)
)
, where Z := {xn | n ∈ N}, is bounded as j(Z) is relatively compact. By the Schauder

Theorem, the adjoint j∗ : Y ∗→ X∗ is compact. Therefore the set j∗ ◦ ∂CG
(

j(Z)
)

is relatively compact.
In view of [10, Theorem 2.3.11, Remark 2.3.11] for each n ∈ N,

pn ∈ ϕ(xn)⊂ j∗ ◦∂CG
(

j(xn)
)
⊂ j∗ ◦∂CG

(
j(Z)

)
.

Passing to a subsequence if necessary, we may suppose that pn → p ∈ X∗. In particular pn
w∗
⇀ p

(weakly∗). The closeness of the graph of ϕ (in X ×X∗ with X∗ considered with the weak∗-topology)
implies that p ∈ ϕ(x) as required.

In order to complete the proof it is enough to show that given a bounded sequence (xn) in X , if
pn ∈ ϕ(xn), then (pn) has a convergent subsequence. Indeed: in view of the compactness of j, the set
C :=

{
j(xn) | n ∈ N

}
⊂ X is compact; hence ∂CG(C) is bounded in X∗. The same proof as above shows

that, for each n> 1, pn ∈ j∗ ◦∂CG(C). The relative compactness of j∗ ◦∂CG(C)) ends the proof. �

3For the definition and properties of upper hemicontinuous set-valued maps – see [2, Section 2.6].
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Suppose that the space X is reflexive and let a : X×X→R be a symmetric continuous bilinear form.
Consider a linear operator A : X → X∗ given by

∀y ∈ X 〈Ax,y〉= a(x,y), x ∈ X . (3.3)

It is immediate to see that A is continuous and self-adjoint, i.e. A = A∗ ◦ J, where J : X → X∗∗ is the
canonical evaluation isomorphism. By N(A) and R(A) we denote the null-space and the range of A. Let
us suppose that the dimension dimN(A)< ∞ and that R(A) is closed. Then, by the closed range theorem
codimR(A) = dim⊥R(A) = dimN(A). This shows that A is a Fredholm operator of index 0.

Example 3.6. In the context of Lemma 3.5 assume that Y is reflexive and there is a constant c > 0 such
that for any x ∈ X

c‖x‖6 ‖Ax‖+‖ j(x)‖.
Then, by Peetre’s lemma (see e.g. [30, Chapter 2, Section 5.2.]) dimN(A)< ∞ and R(A) is closed. �

Proposition 3.7. Let a bilinear, symmetric and continuous form a(·, ·) be nonnegative, i.e. a(x,x) > 0
for any x ∈ X, and let g is given in Lemma 3.5 be bounded from below. Then f : X → R given by

f (x) =
1
2

a(x,x)+g(x) for x ∈ X ,

satisfies condition (C3) on any bounded subset of X.

Proof. Since the function X 3 x 7→ a(x,x) is continuously Fréchet differentiable, it is immediate to see
that f is locally Lipschitz and bounded below; moreover, in view of [10, Proposition 2.3.3, Proposition
2.2.1] for any x,u ∈ X ,

f ′C(x;u) = f ◦(x;u)6 〈Ax,u〉+g◦(x;u),

where A : X → X∗ given by (3.3). Hence, for all x ∈ X ,

∂C f (x)⊂ Ax+∂Cg(x).

Let m = inf f and take a bounded sequence (xn) such that f (xn)→ m and infq∈∂C f (xn) ‖q‖ → 0. This
implies that that there are sequences (qn) and (pn) such that qn = Axn + pn, where pn ∈ ∂Cg(xn) and
‖qn‖ → 0 as n→ ∞. In view of Proposition 3.5, there is a subsequence limk→∞ pnk = p ∈ X∗. Hence
Axnk → p as k→ ∞.

Since A is a Fredholm operator, X and X∗ admit direct sum decompositions of the form

X = N(A)⊕X1, X∗ = R(A)⊕Z,

where X1 and Z are closed linear subspaces of X and X∗, respectively. Consider the continuous projection
P : X → N(A) onto N(A) and Z. In view of the Banach inverse mapping theorem A|X1 : X1 → R(A)
is a linear homeomorphism. Let B := [A|X1 ]

−1 : R(A)→ X1 be the (continuous) inverse of A|X1 . Let
xnk = ynk + znk , where ynk = B

(
Axnk

)
∈ X1 and zn ∈ N(A). Since N(A) is finite-dimensional we may

assume without loss of generality that znk is convergent. �

Proposition 3.8. Suppose that X is a reflexive space endowed with a norm ‖ · ‖ (the so-called the Troy-
anski norm) under which X and X∗ are locally uniformly convex and let f : X → R be given by

f (x) =
1
2
‖x‖2 +g(x), x ∈ X ,

where g is as in Lemma 3.5 and bounded from below. Then f satisfies condition (C3) on bounded sets.

Proof. Again f is locally Lipschitz, bounded below and

∂C f (x)⊂ J(x)+∂Cg(x) for x ∈ X ,
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where J is the (normalized) duality mapping, i.e., J(x) := {p ∈ X∗ | 〈p,x〉= ‖x‖2 = ‖p‖2}, x ∈ X . Since
X and X∗ are locally uniformly convex J is a single-valued homoeomorphism (see e.g. [4, Theorem 1.2].
Take a bounded sequence (xn) such that f (xn)→ m = inf f and J(xn)+ pn→ 0 for some pn ∈ ∂Cg(xn).
Again, passing to a subsequence if necessary we may assume that pn → p ∈ X∗. This implies that
J(xn)→ p and, therefore, xn→ J−1(p). �

Palais-Smale compactness conditions are related to the so-called (S)-type conditions.

Hypothesis 3.9. Let A : X ( X∗ be a multivalued operator. We say A satisfies condition (S) provided,
for a sequence (xn)⊂ Dom(A) such that xn ⇀ x, if infp∈A(xn)〈p,xn− x〉 → 0, then xn→ x.

Condition (S), introduced by F. Browder, seems to be a very weak monotonicity property – see [22]
for details.

Lemma 3.10. Suppose that X is uniformly convex. If a map A : X ( X∗ is d-monotone, i.e. there is a
gauge, i.e. an increasing function ρ : [0,+∞)→ R such that for all x,y ∈ X, p ∈ A(x) and q ∈ A(y)

〈p−q,x− y〉>
(
ρ(‖x‖)−ρ(‖y‖)

)(
‖x‖−‖y‖

)
,

then A satisfies condition (S).

Proof. Indeed if xn ⇀ x, and infp∈A(xn)〈p,xn− x〉 → 0, the there is a sequence (pn) such that pn ∈ A(xn)

and 〈pn,xn− x〉 → 0. Take p ∈ A(x), then 〈p,xn− x〉 → 0; hence 〈pn− p,xn− x〉 → 0. Then(
ρ(‖xn‖)−ρ(‖x‖)

)(
‖xn‖−‖x‖

)
→ 0.

This clearly implies that ‖xn‖→ ‖x‖. The uniform convexity of X entails that xn→ x. �

Corollary 3.11. Let X be reflexive with uniformly convex X∗ and let g : X → R be convex and bounded
below. If f : X → R is given by

f (x) :=
1
s
‖x‖s +g(x), x ∈ X ,

where s > 1, then f satisfies condition (C3) on bounded sets.

Proof. Evidently f is convex (and locally Lipschitz) and bounded below. Moreover the function h : X 3
x 7→ 1

s ‖x‖
s is continuously Fréchet differentiable and, for any x ∈ X ,

h′(x) = Js(x) ∈ X∗,

where 〈Js(x),x〉= ‖x‖s, ‖Js(x)‖= ‖x‖s−1, i.e. Js is the so-called duality mapping with the gauge ρ(t) =
ts−1, t > 0. Observe that Js is d-monotone

(
with the same gauge

)
since for any x,y ∈ X ,〈

Js(x)− Js(y),x− y
〉
= ‖x‖s−

〈
Js(x),y

〉
−
〈
Js(y),x

〉
+‖y‖s >

> ‖x‖s−‖y‖s−‖x‖‖y‖s−1 +‖y‖‖x‖s−1 =

=
(
‖x‖−‖y‖

)(
‖x‖s−1−‖y‖s−1).

On the other hand ∂Cg is (maximal) monotone in view of [12]. Hence

∂C f (x)⊂ Js(x)+∂g(x), x ∈ X ,

is d-monotone and satisfies condition (S).
Take a bounded sequence (xn) ⊂ X such that f (xn)→ inf f and qn = Js(xn)+ pn → 0, where pn ∈

∂ f (xn). In view reflexivity, passing to a subsequence, xn ⇀ x ∈ X . Then 〈qn,xn− x〉 → 0. Hence
xn→ x. �
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As we have seen all the above testing of the Palais Smale condition included an additional assumption
concerning the boundedness of ‘Palais-Smale’ sequences necessary to handle compact embedding issues
to prove strong convergence (or to get a weak accumulation point in a reflexive space). This shows
that often problems in verifying the Palais-Smale condition are related to the missing boundedness.
Therefore, in order, to get respective minimization results for functionals studied above we need to
assume that the constraining set K is bounded or additional assumptions concerning a functional are
considered.

Proposition 3.12. Let us consider the situation of Proposition 3.7 and, additionally assume that the
form a is positive definite, i.e. a(x,x)> α‖x‖2, where α > 0, and there is γ > 2 and R > 0 such that

γg(x)> sup
p∈∂C(x)

〈p,x〉 for ‖x‖> R. (AR)

Then f satisfies the Palais-Smale type condition (C3).

Remark 3.13. Assumption (AR) concerns the ‘subquadratic’ growth of g and corresponds to the cele-
brated Ambrosetti-Rabinowitz condition considered e.g. in a semilinear Dirichlet problem illustration
the Mountain Pass Theorem – see [39].

Proof. It is sufficient to show that a sequence (xn) such that f (xn)→m, infq∈∂C f (xn) ‖pn‖→ 0 is bounded.
Suppose it is not the case and for almost all n ∈ N, ‖xn‖ > R. Take pn ∈ ∂Cg(xn) such that ‖Axn +

pn‖→ 0. For sufficiently large n

m+1+‖xn‖> f (xn)− γ
−1〈Axn + pn,xn〉

=

(
1
2
− 1

γ

)
a(xn,xn)+

(
g(xn)− γ

−1〈pn,xn〉
)

>

(
1
2
− 1

γ

)
α‖xn‖2,

in view of (AR). This implies that ‖xn‖ is bounded. �

Another remedy of sorts for difficulties with boundedness of Palais-Smale sequences is provided by
weaker comapctness conditions, e.g. the so-called Cerami-type conditions.

Hypothesis 3.14. Let α : [0,+∞)→ (0,+∞) be a continuous nonincreasing function such that
∫

∞
α(t)d t+

+∞. We say the f satisfies condition

• (C4), the Cerami condtion if given sequences (xn) ⊂ K, εn,δn → 0+ such that f (xn)→ m :=
infx∈K f (x) and

f (xn)6 f (x)+ εn
‖x− xn‖
1+‖xn‖

for x ∈ K, ‖x− xn‖6 δn,

then (xn) has a convergent subsequence;

• (C5) if for any sequence (xn)⊂ K such that

f (xn)→ m and
(
1+‖xn‖

)
inf

p∈∂C f (xn)
‖p‖→ 0

has a convergent subsequence.

Exactly as above we observe that condition (C5) implies (C4). It is also clear that (C1) implies (C4)

while (C3) implies (C5).
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Theorem 3.15. Under assumptions of Theorem 3.4 if f satsfies condtion (C4) or (C5), then there is
x0 ∈K such that f (x0)=m and 0∈ ∂H f (x0)⊂ ∂C f (x0). Moreover NB(x0;K)⊂ ∂H f (x0) and NC(x0;K)⊂
∂C f (x0).

Proof. Evidently
∫

∞

0 (1+ t)−1 dt = ∞. In view of the generalized version of the Ekeland Principle due to
C. K. Zhong [50] for any n ∈ N and yn ∈ K such that f (yn)6 m+n−2, there is xn ∈ K such that

f (xn)6 f (yn), ‖xn− yn‖6 rn and f (xn)6 f (x)+
‖x− xn‖

n
(
1+‖xn‖

) for all x ∈ X ,

where rn > 0 is such that n
∫ rn

0 (1+ t)−1 dt > 1 for any n. This, together with condition (C4), completes
the proof. �

We say that g is asymptotically quadratic (in the sense of Fréchet) if there is p ∈ X∗ such that

limsup
‖x‖→∞

supq∈∂Cg(x) ‖q− p‖
‖x‖

= 0. (3.4)

This condition says actually that the Clark subdifferential is asymptotically linear.
Again let us consider the situation of Proposition 3.12.

Lemma 3.16. If a is positive definite and g is asymptotically quadratic, then any sequence such that
(1+‖xn‖) infp∈∂C f (xn) ‖pn‖→ 0 is bounded.

Proof. Take a sequence (xn) such that f (xn)→m and a sequence pn ∈ ∂Cg(xn) such that
(
1+‖xn‖

)
‖pn‖→

0. Since (
1+‖xn‖

)
‖pn‖>

∣∣〈pn,xn〉
∣∣= ∣∣〈Axn +qn,xn〉

∣∣
for some qn ∈ ∂Cg(xn), we get that that the sequence (a(xn,xn)+ 〈qn,xn〉) is bounded. Take 0 < ε < α .
Due to (3.4) there is R > 0 such that for ‖x‖> R and q ∈ ∂Cg(x), ‖q− p‖6 ε‖x‖. If ‖xn‖> R for large
n, then

〈Axn +qn,xn〉=a(xn,xn)+ 〈qn− p,xn〉+ 〈p,xn〉
>(α− ε)‖xn‖2−‖p‖‖xn‖.

showing that (xn) is bounded. �

It actually appears that conditions (C1) and (C4) are equivalent (as do conditions (C3) and (C5)). To
see this we can argue as in [13].

Lemma 3.17. If f satisfies (C4) condition, then the sublevel f λ is bounded for some λ >m. This implies
that (C4) implies (C1).

Proof. If not then, for all large n the sublevel f m+n−2
is not bounded and there are sequences (xn) and

(yn) as in (3.2), where additionally ‖yn‖> n. But this prevents (xn) from having a partial limit. �

The observation made in the above Lemma corresponds to the question concerning relations of dif-
ferent Palais-Smale conditions (recall that f is coercive if for every λ ∈ R (equivalently for all large λ ),
the sublevel f λ is bounded). For other results in this direction – see e.g. [7] where the differentiable
case was studied, [48] for the Lipschitz functionals and [28] for some other issues.

It is possible to get a piece of slightly more precise information in the spirit of the Karush-Kuhn-
Tucker theory

(
not being a trivial consequence of (2.10) or (2.23)

)
.

Corollary 3.18. Suppose that f : K→R is locally Lipschitz, bounded below and satisfy one of conditions
(Ci), i = 1,2, ...,5. Then there is x0 ∈ K such that 0 ∈ ∂C f (x0)+NC(x0;K).
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Proof. In view of Theorems 3.4 or 3.15 there is x0 ∈ K such that f (x0) = m = infx∈K f (x). Take ε > 0
such that f is Lipschitz with constant ` > 0 continuous on the closed set S = {x ∈ K | ‖x−x0‖6 ε} and
let f̃ : X →R be a Lipschitz continuous extension of the restriction f |S given in Subsection 2.4. In view
of Proposition 2.17 (3) and (2) there is p ∈ ∂C f̃ (x0)∩

[
−NC(x0;K)

]
and p ∈ ∂C f (x0). �

The above result does not seem to be very interesting as long as we are not in a position to establish
the existence x ∈ K with a nontrivial p ∈ ∂C f (x)∩ [−NC(x;K)]. This is what we are going to get in the
next subsection.

3.2. Generalized equilibria. Now we are going to study a different situation being a general counter-
part of the problem outlined above. Assume K ⊂ X is closed, F : K( X∗ is a set-valued map, for any
x ∈ K, F(x)⊂ X∗ is weakly∗-compact and nonempty. We will look for generalized equilibria of F , i.e.,
x ∈ K such that

F(x)∩
[
−NC(x;K)

]
6= /0.

The origin of this problem is clear: in a typical situation F(x) is a subdifferential (of some kind) of a
functional f : K→ R – see Corollary 3.25.

Observe that x ∈ K is a generalized equilibrium if and only if

sup
u∈−TC(x;K),‖u‖61

inf
p∈F(x)

〈p,u〉= 0. (3.5)

Indeed, the necessity of (3.5) is evident. Observe that, due to the Sion min-max equality – see [43],

inf
p∈F(x)

sup
u∈−TC(x;K),‖u‖61

〈p,u〉= sup
u∈−TC(x;K),‖u‖61

inf
p∈F(x)

〈p,u〉.

Hence if (3.5) holds, then there is p0 ∈ F(x) such that 〈p,u〉 6 0 for any u ∈ −TC(x;K) since the
function F(x)3 p 7→ supu∈−TC(x;K),‖u‖61〈p,u〉, as the upper envelope of the family {〈·,u〉}u∈TC(x;K),‖u‖61

of weakly∗-continuous functions, is weakly∗-lower semicontinuous and F(x) is a weakly∗-compact set.

Let us now study the following situation.

Hypothesis 3.19. We assume that

• A : D(A)⊂ X → X is a densely defined closed linear operator generating a strongly continuous
semigroup

{
e−tA

}
t>0 of linear contractions, i.e. for each T > 0, e−tA : X → X is a linear

(bounded) operator with
∥∥e−tA

∥∥6 1;

• A is resolvent compact, i.e. for any h > 0, the resolvent Jh := (I +hA)−1 : X → X is compact;

• a closed K ⊂ X is resolvent invariant, i.e. for all h > 0, Jh(K)⊂ K.

Remark 3.20. (1) In view of the Lumer-Phillips theorem the above hypotheses are satisfied if and only
if A is a densely defined m-accretive operator, i.e. for any x ∈ D(A) and λ > 0, ‖x‖ 6 ‖x+λAx‖ and
R(I +A) = X – see e.g. [44], [37]. Moreover (0,+∞) ⊂ ρ(A), where ρ(A) stands for the resolvent set
of −A. Hence, for any h > 0, the resolvent is well-defined and for x,y ∈ X

x = Jλ y ⇔ x ∈ D(A) and x+λAx = y.

For x ∈ X , t > 0,
e−tAx := lim

n→∞
Jn

t/n.

The operator A is resolvent compact if and only if the embedding D(A) ⊂ X , where D(A) is endowed
with the graph norm, is compact.

(2) The most natural example of the situation studied is given by the following example – see e.g.
[23, Section 7.3.2, Corollary 7.3.5]. Let X be a Hilbert space and let a Banach Y densely embedded in
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X . Assume that a : Y ×Y → R is a symmetric continuous and positive definite bilinear form. Similarly
as in (3.3), let A : Y → Y ∗ be given by 〈A x,y〉 := a(x,y) for x,y ∈ Y . The part A of A in X = X∗,
i.e. given by Au = A u for u ∈ D(A) =

{
u ∈ Y | A u ∈ X∗

}
is a densely defined m-accretive operator.

Moreover, A is resolvent compact if j is compact.
(3) In view of [29, Propositions 4.5, 4.6] if K is convex, then the following conditions are equivalent:

(i) K is resolvent invariant;

(ii) K is semigroup invariant, i.e. e−tA(K)⊂ K;

(iii) K∩D(A) is dense in K and −Ax ∈ TC(x;K) for any x ∈ K∩D(A);

(iv) if A is defined via procedure described in (2) above then π(Y ) ⊂ Y and a
(
π(x),x−π(x)

)
> 0

for any x ∈ Y , where π : X → K is the metric projection of X onto K, i.e.
∥∥x−π(x)

∥∥ = dK(x)
for x ∈ X .

Proposition 3.21. Under Hypothesis 3.19 suppose that the set K is convex and bounded, the map F is
upper hemicontinuous and bounded and guided by A, i.e.

∀ x ∈ D(A)∩K inf
p∈F(x)

〈p,Ax〉6 0. (3.6)

Then, for any ε > 0 there is x̄ ∈ K such that

inf
p∈F(x̄)

sup
u∈−TC(x̄;K),‖u‖61

〈p,u〉6 ε. (3.7)

Proof. We shall prove that for any ε > 0 there is x̄ ∈ K and δ > 0 such that for any u ∈ X , ‖u‖6 1

d◦K(x̄;u)< δ =⇒ inf
p∈F(x̄)

〈p,u〉6 ε. (3.8)

Note that, in view of (4.4), condition (3.8) implies (3.7).
Suppose to the contrary that there ε > 0 such that for all x ∈ K, and all δ > 0 there is u ∈ X with

‖u‖6 1 such that d◦K(x;u)< δ but infp∈F(x)〈p,u〉> ε .
Now choose 0 < δ < ε/2M, where sup

{
‖p‖ | p ∈ F(x), x ∈ K

}
6M. For each x ∈ K let

ϕ(x) :=
{

u ∈ X | ‖u‖6 1, d◦K(x;u)< δ and inf
p∈F(x)

〈p,u〉> ε
}
.

Observe that ϕ(x) is a nonempty convex set. Let u ∈ X , ‖u‖6 1, and consider the set

ϕ
−1(u) =

{
x ∈ K | u ∈ ϕ(x)

}
.

The function d◦K(;u) is upper semicontinuous and the function K 3 x 7→ infp∈F(x)〈p,u〉 is lower semi-
continuous. This shows that the set ϕ−1(u) is open. Hence the family

{
ϕ−1(u)

}
u∈X ,‖u‖61 is an open

covering of K. Let
{

λi
}

i∈I be a partition of unity subordinated to this covering, i.e. for each i ∈ I, the
function λi : K→ [0,1] is continuous, there is ui ∈ X , ‖ui‖6 1 such that the support suppλi ⊂ ϕ−1(ui),
the family {suppλi}i∈I is locally finite and ∑i∈I λi(x) = 1 for any x ∈ X . Having this define

g(x) = ∑
i∈I

λi(x)ui, K.

Then g is a well-defined continuous function, ‖g(x)‖ 6 1 and g(x) ∈ ϕ(x) for any x ∈ K since if x ∈
suppλi, then x ∈ ϕ−1(ui), i.e. ui ∈ ϕ(x).

Now let r : X → K be a retraction. It is well-know that we may take r such that

‖x− r(x)‖6 2dK(x), x ∈ K.

Now let, for h > 0, a map fh : K→ X be given by

fh(x) = Jh ◦ r
(
x+hg(x)

)
, x ∈ K. (3.9)
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By assumption 3.19 K is resolvent invariant. Hence fh(K) ⊂ K. On the other hand Jh is compact, K is
bounded and so is g. Thus, by the Schauder fixed point theorem, for any h > 0, there is xh ∈ K ∩D(A)
such that fh(xh) = xh. This means that

xh +hAxh = r
(
xh +hg(xh)

)
,

so consequently

h
∥∥g(xh)−Axh

∥∥= ∥∥xh +hg(xh)− (xh +hAxh)
∥∥=∥∥xh +hg(xh)− r

(
x+h+hg(xh)

)∥∥6 2dK
(
xh +hg(xh)

)
and hence for all h > 0 ∥∥g(xh)−Axh

∥∥6 2‖g(xh)‖6 2.

This implies that the set {Axh}h>0 is bounded. Fix a λ > 0 and observe that for any h > 0

xh = Jλ

(
xh +λAxh

)
.

The compactness of Jλ implies that, passing to a subsequence, if necessary we can assume that xh→ x0.
Next ∥∥g(xh)−Axh

∥∥6 2

(
dK
(
xh +hg(x0)

)
h

+
∥∥g(xh)−g(x0)

∥∥) .

Hence

limsup
h→0+

∥∥g(xh)−Axh
∥∥6 limsup

h→0+

dK
(
xh +hg(x0)

)
h

= d◦K
(
x0;g(x0)

)
< 2δ < ε/M

since g(x0) ∈ ϕ(x0). There is η > 0 such that for all 0 < h < η ,
∥∥g(xh)−Axh

∥∥< ε/M. Take 0 < h < η .
Then, for any p ∈ F(xh),

〈
p,g(xh)

〉
> ε since g(xh) ∈ ϕ(xh). On the other hand, in view (3.6), there is

p̄ ∈ F(xh) such that 〈p̄,Axh〉6 0. Therefore

ε <
〈

p̄,g(xh)−Axh
〉
6 ‖ p̄‖

∥∥g(xh)−Axh
∥∥6 ε.

A contradiction completes the proof of (3.8) and (3.7). �

Proposition 3.21 asserts the existence of ‘approximate’ generalized equilibria. In oredr to establish
the existence of generalized equilibria we need to impose the next compactness condition corresponding
to Palais-Smale type conditions studied above.

Hypothesis 3.22. Suppose that K is convex. Condition (SC), the Struwe-Chang compactness condition
is satisfied if a sequence (xn)⊂ K such that

inf
p∈F(xn)

sup
y∈K,‖y−xn‖61

〈p,xn− y〉 → 0, (3.10)

has a convergent subsequence.

Condition (SC) in case F = f ′, where f is a C1-functional, has been introduced by Struwe (see [46])
in the ontext of the Plateau problem and, independently, by Chang (see [8]). A similar condition has
been studied in [16].

Recall that if x ∈ K, then
TC(x;K) =

⋃
h>0

h−1(K− x).

Hence the coefficient
γF(x) := inf

p∈F(x)
sup

y∈K, ‖y−x‖61
〈p,x− y〉, x ∈ K

and condtion (SC) well-corresponds to (3.7). Namely if (3.7) holds, them γF(x̄) 6 ε and if γF(x0) = 0
for some x0 ∈ K, then there is p0 ∈ F(x0) such that 〈p,x0− y〉= 0 for any y ∈ K, i.e. p0 ∈ −NC(x0;K).
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Example 3.23. It is easy to see that operators satisfying condition (S) (see definition in 3.9) satisfy
(SC), too. Let us consider a different situation. Let X be uniformly convex, F(x) = F1(x)+F2(x), x ∈K,
where F1 : X ( X∗ is d-monotone (see definition in Lemma 3.10), K ⊂ Dom(F1), and F2 : X → X∗,
K ⊂ Dom(F2), satisfies condition (P): if xn ⇀ x in K, then limsupn→∞ infq∈F2(xn)〈q,xn− x〉 > 0

(4).
Then F has the (SC) property.

Indeed: take a sequence (xn) such that

inf
p∈F(xn)

sup
y∈K,‖y−xn‖61

〈p,xn− y〉 → 0.

Since K is bounded and weakly closed, we may assume without loss of generality that xn ⇀ x ∈ K. For
any n ∈ N there are rn ∈ F1(xn) and qn ∈ F2(xn) such that

〈rn,xn− x〉+ 〈qn,xn− x〉 → 0.

In view of condition (P), limsupn→∞〈qn,xn − x〉 > 0. Therefore liminfn→∞〈rn,xn − x〉 6 0. Hence
liminfn→∞〈rn− r,xn− x〉 6 0, where r ∈ F1(x). This, together with d-monotonicity of F1, implies that
(xn) has a convergent subsequence.

Theorem 3.24. Assume that in addition to hypotheses of Proposition 3.21 condition (SC) is satisfied.
Then F has a generalized equilibrium.

Proof. We are going to show that γF : K→ R is lower semicontinuous.
Claim: The function

K×X 3 (y,u)→ σ(y,u) := sup
p∈F(y)

〈p,u〉

is upper semicontinuous. To this aim take λ ∈R and sequences (ym)⊂ K, (um)⊂ X such that ym→ y ∈
K, um→ u and for any m ∈ N, σ(ym,um)> λ . We are to show that σ(y,u)> λ . Fix ε > 0 and, for each
m∈N, take pm ∈ F(ym) such that 〈pm,um〉> λ−ε/2. Since F is upper hemicontinuous and ym→ y, the
image

⋃
∞
m=1 F(ym) is bounded, i.e. there is L > 0 such that for any m and p ∈ F(ym), ‖p‖6 L. For large

m, L‖um−u‖ 6 ε/2. Hence for such m, we have that 〈pm,u〉 > λ − ε . Again by upper semicontinuity
of F

σ(y,u)> lim
m→∞

σ(ym,u)> limsup
m→∞

〈pm,u〉> λ − ε.

Since ε was arbitrary, the proof of the upper semicontinuity of σ is completed.
Now observe that, in view of e.g. [2, Theorem 4.2.2], the map K 3 x( TC(x;K) is lower semiconti-

nuous. Therefore the map K 3 x(
{

u ∈ TC(x;K) | ‖u‖6 1
}

is lower semicontinuous, too.
Finally

γF(x) = sup
u∈TC(x;k),‖u‖61

(
−σ(x,u)

)
, x ∈ K.

By the standard properties of the so-called marginal functions – see [2, Theorem 1.4.16], we gather that
γF is lower semicontinuous.

In view of Proposition 3.21 there is a sequence (xn) such that γF(xn)→ 0. The (SC) condition implies
that (passing to a subsequence), xn→ x0 ∈ K. Therefore

06 γF(x0)6 liminf
n→∞

γF(xn) = 0. �

Let us now derive a couple of corollaries.

Corollary 3.25. Assume that K and A are as above in Proposition 3.21, let f : K → R be Lipschitz
continuous, f ′C(x,Ax)6 0 for x ∈ D(A)∩K and such that

4Condition (P) was introduced by P. Hess
(
see also [22]

)
. It is again a mild monotonicity condition satisfied by monotone

maps, pseudomonotone maps and many others.
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• any sequence (xn)⊂ K with

inf
y∈K,‖y−xn‖61

f ′C(xn,y− xn)→ 0,

has a convergent subsequence.

Then there is x0 ∈ K such that 0 ∈ ∂C f (x0)+NC(x0;K).

As we shall see the compactness condition considered above is a version of (SC) expressed in terms
of the Clarke subdifferential. Actually this is the condition considered in [8] in case f is smooth.

Proof. Let f̃ : X → R be a Lipschitz continuous extension of f as given in subsection 2.4 and let F :
K→ X∗ be given by

F(x) := ∂C f̃ (x), x ∈ K.

Then F is upper hemicontinuous, bounded (supp∈F(K) ‖p‖ 6 L, where L is the Lipschitz constant of f̃ )
and for x ∈ D(A)∩K and p ∈ F(x)

〈p,Ax〉6 f̃ ◦(x;Ax)6 f ′C(x;Ax)6 0

We now show that condition (SC) is satisfied. Take a sequence (xn)⊂ K such that γF(xn)→ 0. Then

γF(xn) = sup
y∈K,‖y−xn‖61

(
− sup

p∈F(xn)

〈p,y− xn〉
)
= sup

y∈K,‖y−xn‖61

(
− f̃ ◦(xn;y− xn)

)
> sup

y∈K,‖y−xn‖61

(
− f ′C(xn,y− xn)

)
> 0.

This implies that infy∈K,‖y−xn‖61 f ′C(xn,y− xn)→ 0. Hence (xn) has a convergent subsequence. In view
of Theorem 3.24, there are x0 ∈ K and p0 ∈ F(x0)⊂ ∂C f (x0) such that p0 ∈ −NC(x0;K). �

Corollary 3.26. Let K ⊂ Rn be compact and convex.

(1) If F : K→ Rn is an upper semicontinuous set-valued mapping with nonempty compact convex
values, then there is x ∈ K such that 0 ∈ F(x)+NC(x;K). If the interior intK 6= /0 and F(x)∩
−NC(x;K) = /0 for x ∈ ∂K, then there is x ∈ intK such that 0 ∈ F(x0).

(2) If intK 6= /0, f : K→ R is locally Lipschitz and ∂C f (x)∩−NC(x;K) = /0 for x ∈ ∂K, then there
is x0 ∈ intK with 0 ∈ ∂C f (x0).

(3) If f : K→R, where K = {x ∈Rn | ‖x‖6 R}, is locally Lipschitz and f ′C(x;−x)< 0 for ‖x‖= R,
then there is x0 ∈ K, ‖x0‖< 1, such that 0 ∈ ∂C f (x0).

Proof. It is sufficient to show (1). It is easy to see that all assumptions of Theorem 3.24 are satisfied for
A≡ 0. �

3.3. Monotone mappings. Now we shall establish the existence of equilibria of some operators of the
monotone type via approach related to the Minty-Browder method.

We say that G : X ( X∗ is radially upper hemicontinuous at x ∈ Dom(G) if for any z ∈ X such that
x+ tz ∈ Dom(G) for t ∈ [0,1], the function

[0,1] 3 t 7→ sup
p∈G(x+tz)

〈p,z〉 ∈ R

is upper semicontinuous at t = 0.
Note that if G is upper demicontinuous (i.e. upper semicontinuous from X to X∗ endowed with the

weak∗-topology), then it is upper hemicontinuous and it is upper hemicontinuous along straight lines in
Dom(G) and, hence radially upper hemicontinuous. G is said to be radially upper hemicontinuous if it
is so at any x ∈ Dom(G).
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Let us start with the following ‘maximality’ property of monotone operators, being actually a variant
of the well-know criterion for maximal monotonicity.

Lemma 3.27. Suppose that G : X ( X∗ is a radially upper hemicontinuous monotone operator with
closed convex values. For any y ∈ int Dom(G) and q ∈ X∗, if

∀x ∈ Dom(G), p ∈ G(x) 〈p−q,x− y〉> 0, (3.11)

then q ∈ G(y).

Proof. Assume that there is a pair (y,q) ∈ int Dom(G)×X∗ satisfying condition (3.11), but q 6∈ G(y).
Then, by the separation theorem, there is z ∈ X such that

〈q,z〉> sup
p∈G(y)

〈p,z〉.

We may assume that y+ tz ∈ int Dom(G) for t ∈ [0,1] since, otherwise, we may take λ z with λ > 0
small enough guarantee that y+ tλ z ∈ int Dom(G) for all t ∈ [0,1]. Let yt := y+ tz, t ∈ [0,1]. Then for
any t ∈ (0,1] and q ∈ G(yt),

06 〈p−q,y− yt〉= t〈q− p,z〉.

Hence for t ∈ (0,1]

sup
q∈G(yt)

〈q,z〉> 〈p,z〉.

The radial upper hemicontinuity implies that the function [0,1] 3 t 7→ supq∈G(yt)〈q,z〉 is upper semicon-
tinuous (as a real function). Thus

〈p,z〉> sup
q∈G(y)

〈q,z〉> limsup
t→0+

sup
q∈G(yt)

〈q,z〉> 〈p,z〉..

The contradiction completes the proof. �

The next result is a noncompact, infinite dimensional version of the Debrunner-Flor extension ine-
quality [15].

Lemma 3.28. Assume that the space X is reflexive, K is closed and convex, G : X ( X∗ is monotone
0 ∈ Dom(G)⊂ K, g : X → X∗ single valued monotone, demicontinuous

(
i.e. continuous with respect to

the weak∗-topology in X∗
)

and coercive
(
in the sense that lim‖x‖→∞ ‖x‖−1

〈
g(x),x

〉
= ∞

)
. Then there is

x0 ∈ K such that

∀x ∈ Dom(G), p ∈ G(x)
〈

p+g(x0),x− x0
〉
> 0. �

For the proof – see [4, Theorem 2.1].

Theorem 3.29. Let X be reflexive, let U ⊂ X be open and 0 ∈U. We assume that

• G : X ( X∗ is a radially upper hemicontinuous monotone set-valued map with closed convex
values and let U ⊂ Dom(G);

• g : X → X∗ is a montone demicontinuous and coercive single-valued mapping;

If for any x ∈ ∂U

inf
p∈G(x)

〈
p+g(x),x

〉
> 0, (3.12)

then there is x0 ∈U such that 0 ∈ G(x0)+g(x0).
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Proof. Let K := convU . Then all assumptions of Debrunner-Flor lemma 3.28 are satisfied
(
if necessary

we may redefine G by putting G(x) = /0 for x 6∈ K to guarantee that 0 ∈U ⊂Dom(G)⊂ K
)
. Hence there

is x0 ∈ K such that 〈
p+g(x0),x− x0

〉
> 0 (3.13)

for all x ∈ Dom(G) and p ∈ G(x).
Claim 1: x0 ∈U . If not, then there is x := λx0 ∈ ∂U , 0 < λ < 1 (x lies in the intersection of the

segment joining 0 to x0 with the boundary ∂U). Take p ∈ G(x). Then in view of (3.13) and (3.12)

06
〈

p+g(x)+g(x0)−g(x),x− x0
〉
=
〈

p+g(x),(1−λ
−1)x

〉
−
〈
g(x0)−g(x),x0− x

〉
< 0

since g is monotone. This contradiction justifies Claim 1.
Claim 2: x0 ∈U . Suppose that x0 ∈ ∂U . We may suppose that sx0 ∈U for all s ∈ [0,1). In view of

(3.12)
inf

p∈G(x0)

〈
p+g(x0),x0

〉
= inf

p∈G(x0)
〈p,x0〉+

〈
g(x0),x0

〉
> 0.

The radial upper semicontinuity implies that the function

σ(t) := [0,1] 3 t 7→ inf
p∈G
(
(1−t)x0

)〈p,x0〉+
〈
g((1− t)x0),x0

〉
is lower semicontinuous. Since σ(0) > 0, we find 0 < δ < 1 such that σ(t) > 0 for t ∈ [0,δ ]. Take
p ∈ G(δx0); then by (3.13)

06
〈

p+g(δx0)+g(x0)−g(δx0),δx0−x0
〉
= (δ−1)

〈
p+g(δx0),x0

〉
−
〈
g(x0)−g(δx0),x0−δx0

〉
< 0.

This is again a contradiction proving Claim 2.
By Lemma 3.27 G is ‘maximal’ over U . Therefore, in view of (3.13), we infer that −g(x0) ∈ G(x0).

This completes the proof. �

As consequence we get the following variant of the Minty-Browder theorem – see [4, Theorem 2.2].
Recall that a reflexive Banach space X is usually considered equivalently renormed as a strictly convex
space with X∗ strictly convex, too.

Corollary 3.30. Let X be a reflexive space, G : X ( X∗ be a radially upper hemicontinuous set-valued
map with closed convex values and let U ⊂Dom(G), where U ⊂ X is open and 0 ∈U. If for any x ∈ ∂U

inf
p∈G(x)

〈p,x〉> 0, (3.14)

then for any λ > 0, there is xλ ∈ U such that 0 ∈ Jxλ +G(xλ ), where J stands for the
(
normalized

)
duality operator J : X → X∗.

If U is bounded or G is coercive, U ⊂ int Dom(G) or condition (3.14) holds with the sharp inequality,
i.e. infp∈G(x)〈p,x〉> 0 for x ∈ ∂U, then there exists x0 ∈U such that 0 ∈ G(x0).

Proof. The duality operator is monotone and, since X is reflexive with X∗ strictly convex. It is also
coercive since for an x ∈ X , 〈Jx,x〉= ‖x‖2. This also show that condition (3.12) is satisfied when g = J.
Thus the first part follows immediately from Theorem 3.29.

To see the second part take xn ∈ U such that 0 ∈ n−1Jxn +G(xn), i.e. 0 = n−1Jxn + pn, for some
pn ∈ G(xn). The exisitence of (xn) follows from the first part.

For any n ∈ N
0 = 〈pn +n−1Jxn,xn〉= 〈pn,xn〉+n−1‖xn‖2.

If U is not bounded, then in view of the coercivity we infer that (xn) is bounded. Hence, passing to a
subsequence if necessary, we may assume that xn ⇀ x0 ∈ K = convU . Moreover pn→ 0, since (Jxn) is
bounded.
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As in the proof of Theorem 3.29 we show that x0 ∈U . Now, if (3.14) holds with sharp inequality,
then one shows that x0 ∈U . Otherwise x0 ∈ int Dom(G). Hence in both cases x0 ∈ int Dom(G).

We have that xn ⇀ x0, pn→ p. Take any y ∈D(G) and q ∈G(y). The monotonicity of G implies that

06 〈pn−q,xn− y〉 → 〈−q,x0− y〉.

Lemma 3.27 implies that 0 ∈ G(x0). �

Remark 3.31. (1) Theorem 3.29 and Corollary 3.30 has been stated in the language of monotone opera-
tors. We leave it to the interested reader to state it in terms of functionals and their subdifferentials, as it
is very well-know that the subdifferential of a convex function is monotone (and maximal monotone if X
is rotund – see [5]); moreover, in view of [12], the Clarke subdifferential ∂C f of a lower semicontinuous
function f on a reflexive space is monotone if and only if f is convex.

(2) The above results depend on boundary conditions (3.12) or (3.14). It would be very interesting to
replace them by geometrical conditions stated in terms of normal (or tangent) cones. For instance if X
is a Hilbert space and U =

{
x ∈ X | ‖x‖< 1

}
, then (3.14) means

(
after identification of X with X∗

)
that

G(x)⊂ TC(x,U).

4. APPENDIX

4.1. Kuratowski-Painlevé conditional limits. Let E be a set, let ϕ : E ( X , where X is a Banach
space, be a set-valued map, i.e. for any y ∈ E, ϕ(y) is a nonempty subset of X . Additionally consider a
function η : E→ R and a condition (predicate) w(y), y ∈ E. Assume that

∀δ > 0 Aδ :=
{

y ∈ E | |η(y)|< δ , w(y) is satisfied
}
6= /0.

Having this it is very convenient to introduce the following concepts of the conditional set-limits being
simple variants of the original notions due to Kuratowski and Painlevé. Namely the Kuratowski-Painlevé
upper (resp. lower) set-limit of ϕ(y) as η(y)→ 0 under condition w(y) are defined by

Liminf
η(y)→0,w(y)

ϕ(y) :=
{

u ∈ X | inf
δ>0

sup
y∈Aδ

d
(
u,ϕ(y)

)
= 0
}
,

Limsup
η(y)→0,w(y)

ϕ(y) :=
{

u ∈ X | sup
δ>0

inf
y∈Aδ

d
(
u,ϕ(y)

)
= 0
}
.

(4.1)

For instance if E is a subset of another metric space
(
with the distance denoted by ρ

)
, y0 is an accumu-

lation point of E and η : E→ R is given as η(y) = ρ(y,y0) for y ∈ E, then one writes

Liminf
y→y0,w(y)

ϕ(y) := Liminf
η(y)→0,w(y)

ϕ(y);

similarly for Limsup y→y0, w(y) ϕ(y).
It is easy to show that

u ∈ Limsup
η(y)→0,w(y)

ϕ(y) ⇐⇒

∃ (yn)
∞
n=1 ⊂ E, η(yn)→ 0, w(yn) ∃(un)

∞
n=1 un ∈ ϕ(yn) for all n ∈ N, and un→ u,

u ∈ Liminf
η(y)→0,w(y)

ϕ(y) ⇐⇒

∀ (yn)
∞
n=1 ⊂ E, η(yn)→ 0, w(yn) ∃(un)

∞
n=1 un ∈ ϕ(yn) for all n ∈ N, and un→ u.

Both limits are closed sets in X , the lower limit is contained in the upper limit and, in general, the
inclusion is strict.
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4.2. Approximate cones. Let K be a closed subset of X and x∈K. The contingent (or Bouligand) cone
TB(x;K) is defined by

TB(x;K) := Limsup
h→0+

h−1(K− x); (4.2)

here E := (0,∞) and η(h) := h for h > 0, the condition w(h) is absent and ϕ(h) := h−1(K− x). Hence
u ∈ TK(x) if and only if there are sequences hn→ 0 and un→ u such that x+hnun ∈ K for all n ∈ N. It
is immediate to see that the TB(x;K) is a closed cone, i.e. if u ∈ TK(x), λ > 0, then λu ∈ TK(x).

Apart from the contingent cone we shall consider the tangent or the Clarke cone

TC(x;K) := Liminf
h→0+,y K→x

h−1(K− y), x ∈ K, (4.3)

where y K→ x means that y→ x and y∈K. Here E := X×(0,+∞), η(y,h) := ‖y−x‖∨h for y∈ X , h > 0,
w(y)≡ [y∈K], and ϕ(y,h) := h−1(K−y). Therefore u∈ TC(x;K) if and only if for any sequences yn→ x
such that yn ∈ K for all n ∈ N and hn→ 0+ there is a sequence un→ u such that yn + hnun ∈ K for all
n ∈ N. A remarkable property is that the cone TC(x;K) is always convex.

A vector u ∈ X is an admissible (with respect to K at x ∈ K) direction if there is a sequence (hn)
∞
n=1

such that hn→ 0+ and x+hnu ∈ K for all n> 1. The set of admissible directions will be denoted by by
A(x;K). In general

A(x;K)⊂
⋃
h>0

h−1(K− x)

and in case of a convex closed K

A(x;K) =
⋃
t>0

t−1(K− x) =
⋃
t>0

⋂
0<h6t

h−1(K− x).

Lemma 4.1. For any closed K ⊂ X and x ∈ K

TC(x;K)⊂ TB(x;K)⊂ A(x;K).

If K ⊂ X is convex, then
TC(x;K) = TB(x;K) = A(x;K). �

Remark 4.2. (1) Observe that for any x ∈ K and r > 0

TB(x;K) = TB
(
x;K∩D(x,r)

)
,

where D(x,r) is the closed ball around x of radius r > 0. The similar statements are true with regard to
other cones TC(x;K) and A(x;K).

(2) It is immediate to see that

TC(x;k) =
{

u ∈ X | limsup
y→x,h→0+

h−1dK(y+hu) = 0
}

=
{

u ∈ X | d◦K(x;u)6 0
}
= ∂CdK(x)−,

(4.4)

where dK(y) := infk∈K ‖y− k‖ and

TB(x;K) =
{

u ∈ X | liminf
h→0+

h−1dK(x+hu) = 0
}

⊂
{

u ∈ X | (dK)
′
H(x;u) = 0

}
⊂ ∂HdK(x)−.

In a similar manner

NC(x;K) = TC(x;K)− = ∂CIK(x) and NB(x;K) = ∂HIK(x), (4.5)

where IK is the indicator of K.
(3) Observe that if M ⊂ X is closed and x ∈ K ⊂M, then TB(x;K)⊂ TB(x;M). This property does not

hold true for the Clarke cones.
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We say that a vector u ∈ X is hypertangent (comp. [2, Def. 4.5.8]) to K at x ∈ K if

∃ε > 0 ∀y ∈ B(x,ε)∩K ∀h ∈ (0,ε) y+hu ∈ K. (4.6)

Hypertangent vectors belong to TC(x;K).
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