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1 INTRODUCTION

The averaging principle is an effective method to simplify deterministic and stochastic systems1. To some extent, it is an approx-
imation principle that can strike a balance between complex and simple systems. The basic idea of the averaging principle
is to establish an approximation theorem to simplify stochastic differential equations, which replace the original system in a
sense, and give the corresponding convergence theorem of optimal order. It is worthy to mention that the averaging method has
received extensive attention since Krylov and Bogolyubov2 proposed the non-periodic averaging principle for nonlinear system.
Furthermore, the averaging principle of stochastic differential equations was addressed deeply by Khasminskii3.
It is well known that stochastic processes are often seen as dynamic parts of probability theory. Stochastic processes have

developed vigorously in theory and application due to the needs of practical problems and the efforts of mathematicians. Up
to now, the stochastic averaging principle has been concerned by many scholars. For instance, using the averaging principle to
explore stochastic differential equations4. In5, the authors investigated the averaging principle of stochastic differential equations
with jumps, and they proved that the speed of weak convergence is essentially twice that of strong convergence. Guo6 studied
the averaging principle of a class of generalized stochastic differential equations satisfying local Lipschitz condition and mono-
tone condition. As an effective analysis tool, the stochastic averaging principle can help us approximate stochastic differential
equations with various noises, like Poisson noise7,8, multiplicative noise9 and so on.
As the researching goes further, investigators begin to focus on the study of fractional stochastic differential equations. In

recent decades, with the deepening influence of applied disciplines, the theory of fractional differential equations have gained
special attentions by many scholars10,11,12,13. Since fractional differential equations have more advantages than integer differ-
ential equations in simulating some natural physical phenomena and dynamic system, they have been extensively expanded in
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physics, engineering, finance and other fields14. Xu et al. verified the averaging principle of fractional stochastic system by estab-
lishing some new assumptions10,15,16. Luo and Ahmed explored the averaging principle of stochastic fractional system with time
delay11,12, and their research focused on how to deal with time delay �. In17, Xu analysed the averaging principle of fractional
neutral stochastic differential equations, and they proved that the mild solution before and after the average of two fractional
systems are equivalent in the mean square sense. These theoretical results are of great significance to the study of perturbation
theory and nonlinear dynamic system.
The impulsive effects are widely presented in many evolutionary processes in which state changes at a given moment. There-

fore, impulsive fractional stochastic differential equations are generally used in many scientific branches, such as biology,
economics, finance, telecommunications, electronics and medicine18,19. In particular, Liu and Xu developed an averaging result
for impulsive fractional neutral stochastic differential equations20. In21, Khalaf explored impulsive stochastic dynamical systems
driven by fractional Brownian motion under non-Lipschitz conditions and they had proved that the solutions of these equations
can be approximated to the solutions of the average stochastic differential equations without impulses in the sense of mean
square and probability. To the best of our knowledge, the averaging principle of fractional stochastic differential equations with
impulses is relatively less considered. So far, the research on the averaging principle of SFDEs with impulses is still immature
and more meaningful results need to be found by scholars.
With the development of SFDEs with impulses, the existence and uniqueness have been correspondingly emphasized. In

recent years, many scholars had studied the existence and uniqueness of solutions of the differential equations, see22,23,24,25.
There are various methods to study the existence and uniqueness of solutions. In26, the authors used Mönch fixed point theorem
to obtain the existence of the solutions for impulsive neutral stochastic functional differential equations. In27, the existence and
uniqueness of the solutions for fractional stochastic delayed system with noninstantaneous impulses are obtained by using the
Arzela-Ascoli theorem. In28, the researchers discussed the existence and uniqueness of random fractional differential equation
with impulses by Banach fixed point theorem and Schauder’s fixed point theorem. In29, the authors established a research
framework related to the impulsive fractional sample path. A sequence of Picard functions was further constructed, then the
successive approximation method was used to solve the impulsive fractional-order implicit differential equations with random
effects. From the perspective of studied system, the system studied in reference29 was more generalized than28. The mutation
described by a noninstantaneous impulses29 persists over a finite time interval.
Inspired by the previous discussions, we will consider the following SFDEs with impulses:

⎧

⎪

⎨

⎪

⎩

dL(s) = f (s, L(s)) ds + ℎ (s, L(s)) dW (s) + � (s, L(s)) (ds)� , s ∈ J ,
ΔL(si) = L(si+) − L(si−) = Ii(L(si)), s = si, i = 1, 2, ⋅ ⋅ ⋅, k,
L(0) = L0,

(1)

where J = [0, T ], 1
2
< � < 1, f, � ∶ [0, T ] × ℝd → ℝd , and ℎ ∶ [0, T ] × ℝd → ℝd×m, and f, ℎ, � are measurable continuous

functions. {W (s) ∶ s ∈ J} is a m-dimensional standardWiener process. Ii ∶ ℝd → ℝd(i = 1, 2, · · · , k) represent the impulsive
disturbance of L(s) at time si, si satisfy 0 = s0 < s1 < · · · < si < · · · < sk < sk+1 = T . L

(

s−i
)

and L
(

s+i
)

represent the left
and right limits of L(s) at time si, respectively. ΔL

(

si
)

represents the jump in the state L at time si. ℝd is a Banach space with
norm ‖⋅‖ and L0 satisfies E ‖

‖

L0‖‖
2 <∞.

Compared with12,13,26, the contributions of this paper are mainly reflected in the following two aspects:

• Due to the differences of systems, although the methods adopted in the study of existence are similar to26, but there are
discrepancies in the proof process. We apply the inequality to scale the fractional part of the system under consideration.

• In references12,13, Luo and Guo investigate the averaging principle of fractional stochastic differential equations without
impulsive effects, but the system (1) has impulsive term. Impulsive functions can more truly reflect the objective process
of change and it is more widely model. Moreover, impulsive effects may bring new challenges in computation, and we
are committed to overcoming hardships to achieve the desired results.

The arrangement for the rest article are outlined as belows: In Section 2, we present some necessary preliminaries to prepare
for the later parts. In Section 3, we aim to prove the existence and uniqueness theorem of SFDEs with impulses. The averaging
principle results are given in section 4. Finally, we give an example to verify the correctness of our conclusion in Section 5.
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2 PRELIMINARY

In this section, we introduce some preliminaries needed to establish our main results.

Definition 1. (Luo,Zhu and Luo12) Let’s consider a function f ∈ L1
[

[0, T ];ℝd], for any � ∈ (0, 1), the Riemann-Liouville
fractional integral operator of order � is defined for all 0 < t < T by

I�f (t) = 1
Γ(�)

t

∫
0

(t − s)�−1f (s)ds, t > 0,

where Γ(⋅) is defined as Γ(�) = ∫ ∞
0 x�−1e−xdx, which is a Gamma function.

Definition 2. (Luo,Zhu and Luo12) Assume � ∈ (0, 1] and �(t) denotes a continuous function, then the integral of �(t) with
respect to (dt)� is defined by

t

∫
0

�(s)(ds)� = �

t

∫
0

(t − s)�−1�(s)ds.

In this paper, we define the space

U = {L ∶ ℝd → ℝd ∶ there exist L(s+i ) and L(s
−
i ) with L(si) = L(s

−
i ), i = 1, 2, · · · , k, L(0) = L0},

and ‖⋅‖U defined by
‖L‖U = sup

t∈[0,T ]
(E ‖L(t)‖2)1∕2, L ∈ U.

Then (U, ‖⋅‖U ) is a Banach space.
In order for our work to proceed smoothly, we make the following assumptions:

• (A1) For f, ℎ, � in system (1), ∀x, y ∈ U , there exists a positive bounded function �(s) satisfying

‖f (s, x) − f (s, y)‖2 ∨ ‖ℎ(s, x) − ℎ(s, y)‖2 ∨ ‖�(s, x) − �(s, y)‖2 ≤ �(s) ‖x − y‖2 ,

and sup
0≤s≤T

�(s) = Λ.

• (A2) Impulsive functions Ii satisfy Lipschitz condition and boundedness. Namely, ∀x, y ∈ U , there exists a positive
constant m such that

‖

‖

Ii(x) − Ii(y)‖‖
2 ≤ m ‖x − y‖2 , ‖

‖

Ii(0)‖‖ = 0.

Lemma 1. For any r > 0, suppose Ur = {L ∈ U ∶ ‖L‖2 ≤ r}, then Ur ⊂ U is a bounded,closed and convex subset.

Next, on each bounded subset B of Banach space X, the Hausdorff measure of noncompactness �(⋅) is given by

�(B) = inf{" > 0;B has a finite " net in X}.

Then some basic properties of �(⋅) are given as follows:

Definition 3. (Deng,Shu and Mao26) Assume the map Φ ∶ D → Y is continuous and satisfies Mönch’s condition, if D ⊂ Y
and D is a closed convex subset of Y such that 0 ∈ D. Φ satisfies the following property:M is countable andM is a subset of
D,M ⊂ co({0}

⋃

Φ(M))⇒ M̄ is compact. Therefore, Φ has a fixed point in D.

Lemma 2. (Deng,Shu and Mao26) AssumeW is a standard Winer process, then

�
⎛

⎜

⎜

⎝

s

∫
0

X(t)dW (t)
⎞

⎟

⎟

⎠

≤
√

T �(X(t)),

provided that X ⊂ C
(

[0, T ];ℝd×m), where

s

∫
0

X(t)dW (t) =

⎧

⎪

⎨

⎪

⎩

s

∫
0

x(t)dW (t) ∶ for all x ∈ X, s ∈ [0, T ]
⎫

⎪

⎬

⎪

⎭

.
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Lemma 3. (Deng,Shu and Mao26) Assume B,D are subsets of X, moreover, B,D are bounded, and X is a real Banach space,
then they will satisfy the following properties
(1) Define that B is the closure of B, and conv B is the convex hull of B. Then there have �(B) = �(B) = �(convB);
(2) B is precompact when and only when �(B) = 0;
(3) �(B ∪D) ≤ max{�(B), �(D)};
(4) For arbitrary � ∈ ℝ, there exists �(�B) ≤ |�|�(B);
(5) When it comes to B +D = {x + y; x ∈ B, y ∈ D}, then �(B +D) ≤ �(B) + �(D);
(6) Assume

{

un
}∞
1 be a sequence of Bochner integrable functions from J to X with ‖

‖

un(t)‖‖ ≤ m̂(t) for almost all t ∈ J and
every n ≥ 1, where m̂(t) ∈ L

(

J ;R+
)

, then the function  (t) = �
({

un
}∞
n=1

)

∈ L
(

J ;R+
)

and satisfies

�

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

t

∫
0

un(s)ds ∶ n ≥ 1
⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

≤ 2

t

∫
0

 (s)ds;

(7) LetW ⊂ C([0, T ];X) andW is bounded and equicontinuous, then t→ �(W (t)) is continuous on [0, T ], and

�
⎛

⎜

⎜

⎝

t

∫
0

W (s)ds
⎞

⎟

⎟

⎠

≤

t

∫
0

�(W (s))ds, for all t ∈ [0, T ],

where

t

∫
0

W (s)ds =

⎧

⎪

⎨

⎪

⎩

t

∫
0

u(s)ds ∶ u ∈ W

⎫

⎪

⎬

⎪

⎭

;

(8) AssumeW ⊂ C([0, T ]) andW is bounded, then

�(W (t)) ≤ �(W ), for all t ∈ [0, T ],

whereW (t) = {u(t) ∶ u ∈ W ⊂ X}. Furthermore, ifW is equicontinuous on [0, T ], then t→ W (t) is continuous on [0, T ], and

�(W ) = sup{W (t) ∶ t ∈ [0, T ]}.

3 EXISTENCE AND UNIQUENESS

In this section, we shall study the existence and uniqueness of mild solution for system (1). For ∀s ∈ [0, T ], in order to facilitate
our research, we will give the standard form of the system (1) as shown below.

Definition 4. A stochastic process {L(s), s ∈ [0, T ]} is referred to be a mild solution for system (1) if it satisfies the following
conditions
(i)L(0) = L0,
(ii) L(s) ∈ U is t-adapted, and has càdlàg path on [0, T ] a.s.,
(iii) here, when we give any s that belongs to [0, T ], L(s) needs to satisfies the integral equation of the following form

L(s) =L0 +

s

∫
0

f (t, L(t)) dt +

s

∫
0

ℎ (t, L(t)) dW (t)

+ �

s

∫
0

(s − t)�−1� (t, L(t)) dt +
k
∑

i=1
Ii
(

L(si)
)

.
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In this article, in order to make our work smoothly, we make the following hypotheses.

• (H1) The function f ∶ [0, T ] ×ℝd → ℝd satisfies
(i) f (s, ⋅) ∶ ℝd → ℝd is continuous for all s ∈ J , f (⋅, x) ∶ [0, T ]→ ℝd is measurable for all x ∈ ℝd .
(ii) Here, we give a continuous function mf ∶ [0, T ]→ ℝ+ and a continuous nondecreasing function 'f ∶ ℝ+ → [0,∞),
then satisfy

‖f (s, x)‖2 ≤ mf (s)'f
(

‖x‖2
)

.

(iii) A positive function bf ∈ L1(J ,ℝ+) given satisfies the following inequality for any bounded subsets P1 ⊂ ℝd ,

�(f (s, x)) ≤ bf (s) sup
a∈(−∞,0]

�
(

P1(a)
)

.

(iv) lim
r→∞

'f (r)
r
= 1.

• (H2) The function ℎ ∶ [0, T ] ×ℝd → ℝd×m satisfies
(i) ℎ(s, ⋅) ∶ ℝd → ℝd×m is continuous for all s ∈ J , ℎ(⋅, x) ∶ [0, T ]→ ℝd×m is measurable for all x ∈ ℝd .
(ii) Here, we give a continuous function mℎ ∶ [0, T ]→ ℝ+ and a continuous nondecreasing function 'ℎ ∶ ℝ+ → [0,∞),
then satisfy

‖ℎ(s, x)‖2 ≤ mℎ(s)'ℎ
(

‖x‖2
)

.

(iii) A positive function bℎ ∈ L2(J ,ℝ+) given satisfies the following inequality for any bounded subsets P2 ⊂ ℝd ,

�(ℎ(s, x)) ≤ bℎ(s) sup
a∈(−∞,0]

�
(

P2(a)
)

.

(iv) lim
r→∞

'ℎ(r)
r
= 1.

• (H3) The function � ∶ [0, T ] ×ℝd → ℝd satisfies
(i) �(s, ⋅) ∶ ℝd → ℝd is continuous for all s ∈ J , �(⋅, x) ∶ [0, T ]→ ℝd is measurable for all x ∈ ℝd .
(ii) Here, we give a continuous function m� ∶ [0, T ]→ ℝ+ and a continuous nondecreasing function '� ∶ ℝ+ → [0,∞),
then satisfy

‖�(s, x)‖2 ≤ m�(s)'�
(

‖x‖2
)

.

(iii) A positive function b� ∈ L1(J ,ℝ+) given satisfies the following inequality for any bounded subsets P3 ⊂ ℝd ,

�(�(s, x)) ≤ b�(s) sup
a∈(−∞,0]

�
(

P3(a)
)

.

(iv) lim
r→∞

'� (r)
r
= 1.

• (H4) The continuous functions Ii ∶ ℝd → ℝd , and there exist bi > 0, i = 1, 2, · · · , k given satisfy the following inequality
for any bounded subsets P4 ⊂ U ,

�
(

Ii
(

P4
))

≤ bi sup
a∈(−∞,0]

�
(

P4(a)
)

.

• (H5) 5T ∫ s
0 mf (t)dt + 20 ∫

T
0 mℎ(t)dt + 5

�2

2�−1
T 2�−1 ∫ s

0 m�(t)dt + 5k
k
∑

i=1
m < 1.

Theorem 1. Assume that all of the above Hypotheses (H1) − (H5), (A1) − (A2) are satisfied, then system (1) has at least one
solution on Ur.
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Proof. We define the operator Γ ∶ U → U as following

Γ (L(s)) =L0 +

s

∫
0

f (t, L(t)) dt +

s

∫
0

ℎ (t, L(t)) dW (t)

+ �

s

∫
0

(s − t)�−1� (t, L(t)) dt +
k
∑

i=1
Ii
(

L(si)
)

.

Our aim is to prove the existence of solutions of system (1), which can be equivalently translated into proving that the operator
Γ has a fixed point. In order to prove this theorem, we will proceed in the following steps:
Step 1. In this part, we want to prove that there is a positive number r such that Γ(Ur) ⊂ Ur. In order to prove it, we assume

Γ(Ur) ⊄ Ur. For the positive number r discussed, we can find a corresponding function Lr satisfies Lr ∈ Ur, but Γ(Ur) ∉ Ur.
In other words, for some s = s(r) ∈ [0, T ],E ‖

‖

‖

(

ΓLr
)

(s)‖‖
‖

2
> r. As a matter of fact, we have

r < E ‖

‖

‖

(

ΓLr
)

(s)‖‖
‖

2
≤5E ‖

‖

L0‖‖
2 + 5E

‖

‖

‖

‖

‖

‖

‖

s

∫
0

f
(

t, Lr(t)
)

dt

‖

‖

‖

‖

‖

‖

‖

2

+ 5E
‖

‖

‖

‖

‖

‖

‖

s

∫
0

ℎ
(

t, Lr(t)
)

dW (t)
‖

‖

‖

‖

‖

‖

‖

2

+ 5E
‖

‖

‖

‖

‖

‖

‖

�

s

∫
0

(s − t)�−1�
(

t, Lr(t)
)

dt

‖

‖

‖

‖

‖

‖

‖

2

+ 5E
‖

‖

‖

‖

‖

‖

k
∑

i=1
Ii
(

Lr(si)
)

‖

‖

‖

‖

‖

‖

2

∶=I1 + I2 + I3 + I4 + I5.

It’s easy to get

I1 = 5L20. (2)

According to the Hölder inequality, (H1) and lemma 1, we can get

I2 ≤ 5TE

s

∫
0

‖

‖

‖

f
(

t, Lr(t)
)

‖

‖

‖

2
dt

≤ 5T

s

∫
0

mf (t)'f
(

‖Lr(t)‖2
)

dt

≤ 5T

s

∫
0

mf (t)'f (r) dt.

(3)

By the Burkholder-Davis-Gundy inequality, (H2) and lemma 1, we have

I3 ≤ 20E

T

∫
0

‖

‖

‖

ℎ
(

t, Lr(t)
)

‖

‖

‖

2
dt

≤ 20E

T

∫
0

mℎ(t)'ℎ
(

‖Lr(t)‖2
)

dt

≤ 20

T

∫
0

mℎ(t)'ℎ (r) dt.

(4)
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Owing to the Hölder inequality, (H3) and lemma 1, we can get

I4 ≤ 5
�2

2� − 1
s2�−1E

s

∫
0

‖

‖

‖

�
(

t, Lr(t)
)

‖

‖

‖

2
dt

≤ 5 �2

2� − 1
s2�−1E

s

∫
0

m�(t)'�
(

‖Lr(t)‖2
)

dt

≤ 5 �2

2� − 1
T 2�−1

s

∫
0

m�(t)'� (r) dt.

(5)

By (A2), we can obtain

I5 ≤ 5k
k
∑

i=1

‖

‖

Ii(Lr(si)‖‖
2

≤ 5k
k
∑

i=1
mr.

(6)

To sum up, from (2) - (6), we have

r <E ‖

‖

‖

(

ΓLr
)

(s)‖‖
‖

2

≤5L20 + 5T

s

∫
0

mf (t)'f (r) dt + 20

T

∫
0

mℎ(t)'ℎ (r) dt

+ 5 �2

2� − 1
T 2�−1

s

∫
0

m�(t)'� (r) dt + 5k
k
∑

i=1
mr.

(7)

Combining (iv) of (H1), (iv) of (H2), (iv) of (H3), letting r→∞ and dividing both sides of (7) by r, we have

5T

s

∫
0

mf (t)dt + 20

T

∫
0

mℎ(t)dt + 5
�2

2� − 1
T 2�−1

s

∫
0

m�(t)dt + 5k
k
∑

i=1
m ≥ 1.

The results obtained are contradicts with (H5). Thus, there are some positive numbers r that satisfies Γ(Ur) ⊂ Ur.
Step 2.We need to prove the operator Γ is continuous in Ur. Give a sequence {Ln(s)}

∞
n=1 in Ur, and when n→ +∞, Ln → L

in Ur. For a positive number r, any n ∈ N+ and all s ∈ J such that ‖Ln(s)‖2 < r. That implies Ln ∈ Ur and L ∈ Ur. By
(H1) − (H3) and (A1) − (A2), we can get
(i) lim

n→∞
f (s, Ln(s)) = f (s, L(s)) ;

(ii) lim
n→∞

ℎ (s, Ln(s)) = ℎ (s, L(s)) ;
(iii) lim

n→∞
� (s, Ln(s)) = � (s, L(s)) ;

(iv) lim
n→∞

E ‖

‖

‖

Ii
(

Ln(si)
)

− Ii
(

L(si)
)

‖

‖

‖

2
= 0, i = 1, 2,… , k.
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For any s ∈ J , from the dominated convergence theorem, the following inequality can be derived

E ‖ΓLn(s) − ΓL(s)‖2

≤4E
‖

‖

‖

‖

‖

‖

‖

s

∫
0

[f (t, Ln(t)) − f (t, L(t))]dt
‖

‖

‖

‖

‖

‖

‖

2

+ 4E
‖

‖

‖

‖

‖

‖

‖

s

∫
0

[ℎ(t, Ln(t)) − ℎ(t, L(t))]dW (t)
‖

‖

‖

‖

‖

‖

‖

2

+ 4�2E
‖

‖

‖

‖

‖

‖

‖

s

∫
0

(s − t)�−1[�(t, Ln(t)) − �(t, L(t))]dt
‖

‖

‖

‖

‖

‖

‖

2

+ 4k
k
∑

i=1
E ‖

‖

[Ii(Ln(si)) − Ii(L(si))]‖‖
2 .

When n→∞, we can get
E ‖ΓLn(s) − ΓL(s)‖2 → 0.

That means Γ is a continuous operator in Ur.
Step 3. We want to verify the operator Γ(Ur) is equicontinuous on J . Firstly, according to the definition of Γ, it can be seen

that {ΓL ∶ L ∈ Ur} is equicontinuous at s = 0. Secondly, for s1, s2 ∈ J , 0 < s1 < s2 ⩽ T and L ∈ Ur, under the above
assumptions, we can get

E ‖

‖

ΓL(s2) − ΓL(s1)‖‖
2

≤4E
‖

‖

‖

‖

‖

‖

‖

s2

∫
0

f (t, L(t))dt −

s1

∫
0

f (t, L(t))dt
‖

‖

‖

‖

‖

‖

‖

2

+ 4E
‖

‖

‖

‖

‖

‖

‖

s2

∫
0

ℎ(t, L(t))dW (t) −

s1

∫
0

ℎ(t, L(t))dW (t)
‖

‖

‖

‖

‖

‖

‖

2

+ 4E
‖

‖

‖

‖

‖

‖

‖

�

s2

∫
0

(s2 − t)�−1�(t, L(t))dt − �

s1

∫
0

(s1 − t)�−1�(t, L(t))dt
‖

‖

‖

‖

‖

‖

‖

2

+ 4E
‖

‖

‖

‖

‖

‖

k
∑

i=1
Ii(L(s2)) −

k
∑

i=1
Ii(L(s1))

‖

‖

‖

‖

‖

‖

2

≤4E
‖

‖

‖

‖

‖

‖

‖

s2

∫
0

f (t, L(t))dt −

s1

∫
0

f (t, L(t))dt
‖

‖

‖

‖

‖

‖

‖

2

+ 4E
‖

‖

‖

‖

‖

‖

‖

s2

∫
0

ℎ(t, L(t))dW (t) −

s1

∫
0

ℎ(t, L(t))dW (t)
‖

‖

‖

‖

‖

‖

‖

2

+ 8�2E
‖

‖

‖

‖

‖

‖

‖

s1

∫
0

[(s2 − t)�−1 − (s1 − t)�−1]�(t, L(t))dt
‖

‖

‖

‖

‖

‖

‖

2

+ 8�2E
‖

‖

‖

‖

‖

‖

‖

s2

∫
s1

(s2 − t)�−1�(t, L(t))dt
‖

‖

‖

‖

‖

‖

‖

2

+ 4E
‖

‖

‖

‖

‖

‖

k
∑

i=1
Ii(L(s2)) −

k
∑

i=1
Ii(L(s1))

‖

‖

‖

‖

‖

‖

2

.
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When s2 → s1, the right side of the equation goes to zero. It means E ‖

‖

ΓL(s2) − ΓL(s1)‖‖
2

→ 0 as s2 → s1. Thus,
{

ΓL ∶ L ∈ Ur
}

is equicontinuous on J .
Step 4. We show that Mönch condition is true. Suppose G ⊂ Ur be countable and G ⊂ co({0} ∪ Γ(G)). Then we verify that

�(G) = 0. As usual, we assume that G = {Ln}∞n=1. G ⊂ co({0} ∪ Γ(G)) is equicontinuous on J due to Γ(G) is equicontinuous
on J .
In order to verify Mönch condition, we first give the following

ΓL(s) =

s

∫
0

f (t, L(t))dt +

s

∫
0

ℎ(t, L(t))dW (t)

+ �

s

∫
0

(s − t)�−1�(t, L(t))dt +
k
∑

i=1
Ii
(

L(si)
)

=
⎡

⎢

⎢

⎣

s

∫
0

f (t, L(t))dt + �

s

∫
0

(s − t)�−1�(t, L(t))dt
⎤

⎥

⎥

⎦

+

s

∫
0

ℎ(t, L(t))dW (t) +
k
∑

i=1
Ii
(

L(si)
)

=Γ1 + Γ2 + Γ3.

From (iii) of (H2), (iii) of (H4) and lemma 3, we can obtain

�
(

{Γ1Ln(s)}∞n=1
)

=�
⎛

⎜

⎜

⎝

s

∫
0

f (t, Ln(t)) dt + �

s

∫
0

(s − t)�−1� (t, Ln(t)) dt
⎞

⎟

⎟

⎠

≤

s

∫
0

bf (t) sup
a∈(−∞,0]

�
(

{Ln(a)}∞n=1
)

dt

+ 2�

s

∫
0

(s − t)�−1b�(t) sup
a∈(−∞,0]

�
(

{Ln(a)}∞n=1
)

dt

≤T ‖

‖

‖

bf
‖

‖

‖L1(J ,ℝ+)
sup
0≤s≤T

�
(

{Ln(s)}∞n=1
)

+ 2T � ‖
‖

b�‖‖L1(J ,ℝ+) sup
0≤s≤T

�
(

{Ln(s)}∞n=1
)

.

(8)

That comes from the lemma 2 and (iii) of (H2), we have

�
(

{Γ2Ln(s)}∞n=1
)

=�

s

∫
0

ℎ (t, Ln(t)) dW (t)

≤
√

T �ℎ (s, Ln(s))

≤
√

T bℎ(s) sup
a∈(−∞,0]

�
(

{Ln(a)}∞n=1
)

≤
√

T ‖

‖

bℎ‖‖L2(J ,ℝ+) sup
0≤s≤T

�
(

{Ln(s)}∞n=1
)

.

(9)
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By (ii) of (H4), we can obtain

�
(

{Γ3Ln(s)}∞n=1
)

=�
k
∑

i=1
Ii
(

Ln(si)
)

≤
k
∑

i=1
bi sup
a∈(−∞,0]

�
(

{Ln(a)}∞n=1
)

≤
k
∑

i=1
bi sup
0≤s≤T

�
(

{Ln(s)}∞n=1
)

.

(10)

Therefore, it follows from (8) - (10) that

�
(

{ΓLn(s)}∞n=1
)

≤[T ‖

‖

‖

bf
‖

‖

‖L1(J ,ℝ+)
+ 2T � ‖

‖

b�‖‖L1(J ,ℝ+) +
√

T ‖

‖

bℎ‖‖L2(J ,ℝ+) +
k
∑

i=1
bi] ⋅ �

(

{Ln(s)}∞n=1
)

=Q�
(

{Ln(s)}∞n=1
)

,

where Q = T ‖

‖

‖

bf
‖

‖

‖L1(J ,ℝ+)
+ 2T � ‖

‖

b�‖‖L1(J ,ℝ+) +
√

T ‖

‖

bℎ‖‖L2(J ,ℝ+) +
k
∑

i=1
bi < 1.

Thus, through Mönch condition, we can obtain

�(G) ≤ �(co({0} ∪ Γ(G))) = �(Γ(G)) ≤ Q�(G),

which implies �(G) = 0, and it follows that G is a relatively compact set. According to definition 3, we can draw a conclusion
that Γ has a fixed point in G. The proof of this theorem is completed.

Theorem 2. Assume that (A1) − (A2) are fulfilled, if [4TΛ + 16Λ + 4
�2

2�−1
T 2�−1 + 4k

k
∑

i=1
m] < 1, then system (1) has a unique

solution on Ur.

Proof. L(s) is a solution of system (1), if

L(s) =L(0) +

s

∫
0

f (t, L(t)) dt +

s

∫
0

ℎ (t, L(t)) dW (t)

+ �

s

∫
0

(s − t)�−1� (t, L(t)) dt +
k
∑

i=1
Ii
(

L(si)
)

.

IfL(s) is a fixed point of Γ, then it follows thatL(s) is a solution of the system (1). LetL1(s), L2(s) ∈ U andL1(0) = L2(0) = L0.
For ∀s ∈ J , we can obtain the following
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E ‖

‖

ΓL1(s) − ΓL2(s)‖‖
2 ≤4E

‖

‖

‖

‖

‖

‖

‖

s

∫
0

[f (t, L1(t)) − f (t, L2(t))]dt
‖

‖

‖

‖

‖

‖

‖

2

+ 4E
‖

‖

‖

‖

‖

‖

‖

s

∫
0

[ℎ(t, L1(t)) − ℎ(t, L2(t))]dW (t)
‖

‖

‖

‖

‖

‖

‖

2

+ 4E
‖

‖

‖

‖

‖

‖

‖

�

s

∫
0

(s − t)�−1[�(t, L1(t)) − �(t, L2(t))]dt
‖

‖

‖

‖

‖

‖

‖

2

+ 4E
‖

‖

‖

‖

‖

‖

k
∑

i=1
Ii
(

L1(si)
)

−
k
∑

i=1
Ii
(

L2(si)
)

‖

‖

‖

‖

‖

‖

2

≤4TE

s

∫
0

‖

‖

f (t, L1(t)) − f (t, L2(t))‖‖
2 dt

+ 16E

T

∫
0

‖

‖

ℎ(t, L1(t)) − ℎ(t, L2(t))‖‖
2 dt

+ 4 �2

2� − 1
s2�−1E

s

∫
0

‖

‖

�(t, L1(t)) − �(t, L2(t))‖‖
2 dt

+ 4kE
k
∑

i=1

‖

‖

Ii(L1(si)) − Ii(L2(si))‖‖
2

≤4TΛ ‖

‖

L1(s) − L2(s)‖‖
2 + 16Λ ‖

‖

L1(s) − L2(s)‖‖
2

+ 4 �2

2� − 1
T 2�−1Λ ‖

‖

L1(s) − L2(s)‖‖
2 + 4k

k
∑

i=1
m ‖

‖

L1(s) − L2(s)‖‖
2

=(4TΛ + 16Λ + 4 �2

2� − 1
T 2�−1Λ + 4k

k
∑

i=1
m) ‖

‖

L1(s) − L2(s)‖‖
2 .

Due to [4TΛ+16Λ+ 4 �2

2�−1
T 2�−1 +4k

k
∑

i=1
m] < 1 and Banach contraction principle, we can obtain that system (1) has a unique

solution. As a consequence, the proof of this theorem is completed.

4 AVERAGING PRINCIPLE

For this section, in order to establish an averaging principle for the SFDEs with impulses, we first give the following averaging
conditions. For ∀s ∈ [0, T ], the standard form for system (1) can be expressed as follows

L"(s) =L0 + "

s

∫
0

f
(

t, L"(t)
)

dt +
√

"

s

∫
0

ℎ
(

t, L"(t)
)

dW (t)

+ �"�
s

∫
0

(s − t)�−1�
(

t, L"(t)
)

dt + "
k
∑

i=1
Ii
(

L"(si)
)

,

(11)

where "0 is a fixed point with " ∈ (0, "0] is a sufficiently small and positive parameter.
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The next step is to verify the original solution L"(s) converges to the solution L∗"(s) of the average system when " approaches
zero, and L∗"(s) is defined as follows

L∗"(s) =L0 + "

s

∫
0

f
(

L∗"(t)
)

dt +
√

"

s

∫
0

ℎ
(

L∗"(t)
)

dW (t)

+ �"�
s

∫
0

(s − t)�−1�
(

L∗"(t)
)

dt + "

s

∫
0

Ii
(

L∗"(t)
)

dt,

(12)

where f, � ∶ ℝd → ℝd , ℎ ∶ ℝd → ℝd×m and Ii ∶ ℝd → ℝd are measurable functions satisfying the following hypotheses:

• (H6) For ∀x ∈ U , T1 ∈ [0, T ], the corresponding positive bounded functions 
1, 
2, 
3 such that
(i)

1
T1

T1

∫
0

‖

‖

‖

f (s, x) − f (x)‖‖
‖

ds ≤ 
1(T1)(‖x‖),

(ii)

1
T1

T1

∫
0

‖

‖

‖

ℎ(s, x) − ℎ(x)‖‖
‖

2
ds ≤ 
2(T1)(‖x‖

2),

(iii)

1
T1

T1

∫
0

‖

‖

�(s, x) − �(x)‖
‖

2 ds ≤ 
3(T1)(‖x‖
2),

(iv)

I(x) ≤ 1
T1

k
∑

i=1
Ii(x),

where limT1→∞ 
i(T1) = 0, and i = 1, 2, 3.

• (H7) For every Ii, there exists a positive constant m such that for ∀x ∈ U
‖

‖

Ii(x)‖‖
2 ≤ m.

Theorem 3. Suppose that (A1), (H6) and (H7) are true. For an arbitrarily small number �1 > 0, we can find the corresponding
P > 0, "1 ∈

(

0, "0
]

and � ∈ (0, 1) satisfying for all " ∈
(

0, "1
]

E

(

sup
s∈[0,P "−�]

‖

‖

L"(s) − L∗"(s)‖‖
2

)

≤ �1.

Proof. For ∀u ∈ [0, T ], it follows from (11)-(12) and owing to the Jensen’s inequality, it follows that

E
(

sup
0≤s≤u

‖

‖

L"(s) − L∗"(s)‖‖
2
)

≤4"2 ⋅ E
⎛

⎜

⎜

⎜

⎝

sup
0≤s≤u

‖

‖

‖

‖

‖

‖

‖

s

∫
0

[f
(

t, L"(t)
)

− f
(

L∗"(t)
)

]dt
‖

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎟

⎠

+ 4" ⋅ E
⎛

⎜

⎜

⎜

⎝

sup
0≤s≤u

‖

‖

‖

‖

‖

‖

‖

s

∫
0

[ℎ
(

t, L"(t)
)

− ℎ
(

L∗"(t)
)

]dW (t)
‖

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎟

⎠

+ 4�2"2� ⋅ E
⎛

⎜

⎜

⎜

⎝

sup
0≤s≤u

‖

‖

‖

‖

‖

‖

‖

s

∫
0

(s − t)�−1[�
(

t, L"(t)
)

− �
(

L∗"(t)
)

]dt
‖

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎟

⎠
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+ 4"2 ⋅ E
⎛

⎜

⎜

⎜

⎝

sup
0≤s≤u

‖

‖

‖

‖

‖

‖

‖

k
∑

i=1
Ii
(

L"(si)
)

−

s

∫
0

Ii
(

L∗"(t)
)

dt

‖

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎟

⎠

∶=J1 + J2 + J3 + J4.

Specifically, in order to get the desired results by the Jensen’s inequality again, we can get

J1 ≤8"2 ⋅ E
⎛

⎜

⎜

⎜

⎝

sup
0≤s≤u

‖

‖

‖

‖

‖

‖

‖

s

∫
0

[f
(

t, L"(t)
)

− f
(

t, L∗"(t)
)

]dt
‖

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎟

⎠

+ 8"2 ⋅ E
⎛

⎜

⎜

⎜

⎝

sup
0≤s≤u

‖

‖

‖

‖

‖

‖

‖

s

∫
0

[f
(

t, L∗"(t)
)

− f
(

L∗"(t)
)

]dt
‖

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎟

⎠

∶=J11 + J12.

By the Hölder inequality and (A1), we can get

J11 ≤8"2u ⋅ E
⎛

⎜

⎜

⎝

sup
0≤s≤u

s

∫
0

[�(t) ‖
‖

L"(t) − L∗"(t)‖‖
2]dt

⎞

⎟

⎟

⎠

≤8"2Λu ⋅

u

∫
0

E( sup
0≤t1≤t

‖

‖

L"(t1) − L∗"(t1)‖‖
2)dt.

(13)

According to Hypothesis (H6), it is easy to get

J12 ≤8"2u2
21 (u) ⋅ E
(

sup
0≤s≤u

‖

‖

L∗"(s)‖‖
2
)

∶=Θ12"2u2,
(14)

where Θ12 = 8
21 (u) ⋅ E
(

sup
0≤s≤u

‖

‖

L∗"(s)‖‖
2
)

.

In dealing with the second part, with the aid of the Burkholder-Davis-Gundy inequality and Jensen’s inequality, we can obtain

J2 ≤16" ⋅ E

u

∫
0

‖

‖

‖

ℎ
(

t, L"(t)
)

− ℎ
(

L∗"(t)
)

‖

‖

‖

2
dt

≤32" ⋅ E

u

∫
0

‖

‖

‖

ℎ
(

t, L"(t)
)

− ℎ
(

t, L∗"(t)
)

‖

‖

‖

2
dt

+ 32" ⋅ E

u

∫
0

‖

‖

‖

ℎ
(

t, L∗"(t)
)

− ℎ
(

L∗"(t)
)

‖

‖

‖

2
dt

∶=J21 + J22.

By (A1), we can obtain

J21 ≤32" ⋅ E

u

∫
0

[�(t) ‖
‖

L"(t) − L∗"(t)‖‖
2]dt

≤32"Λ ⋅

u

∫
0

E

(

sup
0≤t1≤t

‖

‖

L"(t1) − L∗"(t1)‖‖
2

)

dt.

(15)
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According to (H6), we can get

J22 ≤32"u
2(u) ⋅ E
(

sup
0≤s≤u

‖

‖

L∗"(s)‖‖
2
)

∶=Θ22"u,
(16)

where Θ22 = 32
2(u) ⋅ E
(

sup
0≤s≤u

‖

‖

L∗"(s)‖‖
2
)

.

As for the third term, we have the following

J3 ≤8�2"2� ⋅ E
⎛

⎜

⎜

⎜

⎝

sup
0≤s≤u

‖

‖

‖

‖

‖

‖

‖

s

∫
0

(s − t)�−1[�
(

t, L"(t)
)

− �
(

t, L∗"(t)
)

]dt
‖

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎟

⎠

+ 8�2"2� ⋅ E
⎛

⎜

⎜

⎜

⎝

sup
0≤s≤u

‖

‖

‖

‖

‖

‖

‖

s

∫
0

(s − t)�−1[�
(

t, L∗"(t)
)

− �
(

L∗"(t)
)

]dt
‖

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎟

⎠

∶=J31 + J32.

The Hölder inequality and (A1) can export

J31 ≤8
�2

2� − 1
"2�u2�−1 ⋅ E( sup

0≤s≤u

s

∫
0

‖

‖

‖

�
(

t, L"(t)
)

− �
(

t, L∗"(t)
)

‖

‖

‖

2
dt

≤8 �2

2� − 1
"2�u2�−1 ⋅ E( sup

0≤s≤u

s

∫
0

�(t) ‖
‖

L"(t) − L∗"(t)‖‖
2 dt)

≤8 �2

2� − 1
"2�Λu2�−1 ⋅

u

∫
0

E( sup
0≤t1≤t

‖

‖

L"(t1) − L∗"(t1)‖‖
2)dt.

(17)

By (H6), we can obtain

J32 ≤8
�2

2� − 1
"2�u2�
3(u) ⋅ E

(

sup
0≤t≤u

‖

‖

L∗"(t)‖‖
2
)

∶=Θ32"2�u2� ,
(18)

where Θ32 = 8
�2

2�−1

3(u) ⋅ E

(

sup
0≤t≤u

‖

‖

L∗"(t)‖‖
2
)

.

With the aid of (H6) and (H7), we can obtain

J4 ≤8"2 ⋅ E( sup
0≤s≤u

‖

‖

‖

‖

‖

‖

k
∑

i=1
Ii(L"(si))

‖

‖

‖

‖

‖

‖

2

)

+ 8"2 ⋅ E( sup
0≤s≤u

‖

‖

‖

‖

‖

‖

‖

s

∫
0

Ii(L∗"(t))dt
‖

‖

‖

‖

‖

‖

‖

2

)

≤8"2k ⋅ E( sup
0≤s≤u

k
∑

i=1

‖

‖

Ii(L"(si))‖‖
2)

+ 8"2 k
T 21
u ⋅ E( sup

0≤s≤u

s

∫
0

k
∑

i=1

‖

‖

Ii(L∗"(t)‖‖
2 dt)

≤(8k2m + 8k2u2m 1
T 21
)"2

∶=Θ4"2,

(19)
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where Θ4 = 8k2m + 8k2u2m
1
T 21
.

It follows from (13)–(19) that

E
(

sup
0≤s≤u

‖

‖

L"(s) − L∗"(s)‖‖
2
)

≤8"2Λu ⋅

u

∫
0

E( sup
0≤t1≤t

‖

‖

L"(t1) − L∗"(t1)‖‖
2)dt + Θ12"2u2

+ 32"Λ ⋅

u

∫
0

E

(

sup
0≤t1≤t

‖

‖

L"(t1) − L∗"(t1)‖‖
2

)

dt + Θ22"u

+ 8 �2

2� − 1
"2�Λu2�−1 ⋅

u

∫
0

E( sup
0≤t1≤t

‖

‖

L"(t1) − L∗"(t1)‖‖
2)dt + Θ32"2�u2� + Θ4"2

≤Θ12"2u2 + Θ22"u + Θ32"2�u2� + Θ4"2 + (8"2Λu + 32"Λ + 8
�2

2� − 1
"2�Λu2�−1)

⋅

u

∫
0

E

(

sup
0≤t1≤t

‖

‖

L"(t1) − L∗"(t1)‖‖
2

)

dt.

By means of the Grönwall-Bellman inequality, we have

E
(

sup
0≤s≤u

‖

‖

L"(s) − L∗"(s)‖‖
2
)

≤ (Θ12"2u2 + Θ22"u + Θ32"2�u2� + Θ4"2)

⋅ exp(

u

∫
0

8"2Λu + 32"Λ + 8 �2

2� − 1
"2�Λu2�−1dt)

= (Θ12"2u2 + Θ22"u + Θ32"2�u2� + Θ4"2)

⋅ exp[(8"2Λu + 32"Λ + 8 �2

2� − 1
"2�Λu2�−1)u],

which implies there exist a constant P > 0 and � ∈ (0, 1), for ∀s ∈ [0, P "−�] ⊆ J satisfying

E
(

sup
0≤s≤P"−�

‖

‖

L"(s) − L∗"(s)‖‖
2
)

≤�"1−� ,

where � = [Θ12P 2"1−� +Θ22P +Θ32P 2�"2�+�−2��−1 +Θ4"2] ⋅ exp[8ΛP 2"2−2� +32ΛP"1−� +8
�2

2�−1
ΛP 2�"2�−2��] is a constant.

Hence, for arbitrarily given �1 > 0, there exists "1 ∈ (0, "0], for each " ∈ (0, "1] and s ∈ [0, P "−�], we have

E
(

sup
s∈[0,P "−� ]

‖

‖

L"(s) − L∗"(s)‖‖
2
)

≤�1.

Corollary 1. Suppose that Assumptions (A1) − (A2) and (H6) − (H7) set up. Then for an arbitrarily number �2 > 0 such that
for P > 0, � ∈ (0, 1) and "1 ∈ (0, "0) satisfying for all " ∈ (0, "1],

lim
"→0

ℙ( sup
s∈[0,p"−� ]

‖

‖

L"(s) − L∗"(s)‖‖ > �2) = 0.

Proof. By Theorem 3 and utilizing the Chebyshev-Markov inequality, for any number �2 > 0, we can obtain

ℙ
(

sup
s∈[0,P "−� ]

‖

‖

L"(s) − L∗"(s)‖‖ > �2

)

≤ 1
�22

E
(

sup
s∈[0,P "−� ]

‖

‖

L"(s) − L∗"(s)‖‖
2
)

≤ �"1−�

�22
≤ 0 as "→ 0,

where � = [Θ12P 2"1−�+Θ22P +Θ32P 2�"2�+�−2��−1+Θ4"2]⋅exp[8ΛP 2"2−2�+32ΛP"1−�+8
�2

2�−1
ΛP 2�"2�−2��]. This completes

the proof.
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5 EXAMPLE

In this section, we aim to give an example to illustrate the results of the averaging principle. Consider the following SFDEs with
impulses

⎧

⎪

⎨

⎪

⎩

dL"(s) = "sin2(s)L"(s)ds +
√

"cos2(s)L"(s)dW (s) + 1
2
"0.6sin(L"(s))(ds)0.6, s ∈ J ,

ΔL"(s) = "i2L"(s−i ), s = si, i = 1, 2, ⋅ ⋅ ⋅, k,
L(0) = L0,

(20)

where � = 0.6. The coefficients f (s, L"(s)) = sin2(s)L"(s), ℎ(s, L"(s)) = cos2(s)L"(s), �(s, L"(s)) =
1
2
sin(L"(s)) and Ii(s) =

i2L"(s) satisfy the conditions (A1) and (H7). Let T1 = 1. And we define

f (L"(s)) =
1
T1

T1

∫
0

f (s, L")ds =

1

∫
0

sin2(t)L"dt =
2 − sin2

4
L",

ℎ(L"(s)) =
1
T1

T1

∫
0

ℎ(s, L")ds =

1

∫
0

cos2(t)L"dt =
2 + sin2

4
L",

�(L"(s)) =
1
T1

T1

∫
0

�(s, L")ds =

1

∫
0

1
2
sin(L")dt =

1
2
sinL",

I(L"(s)) =
1
T1

k
∑

i=1
Ii(s) =

k
∑

i=1
i2L" =

k(k + 1)(2k + 1)
6

L".

According to the above discussions, (H6) is established. Then, we simplify SFDEs with impulses can be defined as

L∗"(s) =L0 + "

s

∫
0

2 − sin2
4

L"(t)dt +
√

"

s

∫
0

2 + sin2
4

L"(t)dW (t)

+ 0.6"0.6
s

∫
0

(s − t)−0.4 1
2
sin(L"(t))dt + "

s

∫
0

k(k + 1)(2k + 1)
6

L"(t)dt.

Through verification, we can get that the conditions of Theorem 3 and Corollary 1 are satisfied. Hence, as " → 0, the average
solution L∗"(s) is equivalent to the original solution L"(s) in the sense of mean square and in probability.

6 CONCLUSIONS

In this paper, the existence, uniqueness and averaging principle of solutions for SFDEs with impulses are studied. Using Mönch
fixed point theorem, the existence theorem is derived. In the next step, the uniqueness theorem can be gotten by using Banach
contraction principle. In order to obtain the averaging principle of SFDEs with impulses, we give the averaging conditions, and
use various inequality scaling techniques, such as Jensen’s inequality, Hölder inequality, Burkholder-Davis-Gundy inequality
and Grönwall-Bellman inequality to derive the desired results. Finally, an example is given to illustrate the validity of theoretical
results.
After finishing the work of this paper, we will be devoted to studying the averaging principle of fuzzy fractional stochastic

differential equations. In addition, how to deal with random terms in fuzzy sense is a difficult but interesting subject, which will
be discussed carefully in our following work.
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