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Abstract. This paper studies chatter stability of composite cutter bar milling system in rotating
coordinate frame. Based on the structural dynamic equation and regenerative milling force
model of composite cutter bar in rotating coordinate frame, the continuous distributed chatter
analysis model of composite cutter bar milling system is established. The stability of milling
system with a rotary symmetric dynamic cutter bar is predicted by using the semi-discrete time
domain method. Influences including internal damping, external damping, symmetrical and
asymmetric laminates on the stability of milling system are analyzed, and the results obtained in
rotating and fixed coordinate frame are compared. It is shown that the results are consistent for
symmetrical cutter bar either in the rotating coordinate frame or in the fixed coordinate frame. A
new chatter instability zone appears at high rotating speeds due to material internal damping of

the rotating composite cutter bar.
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1 Introduction

Chatter can cause bad surface on the workpiece, which will affect accuracy and quality of the
milling operations. Severely, the lathe will continue to bear dynamic alternating load and the
tools will be damaged. Therefore, accurate prediction of the stability of machine tool system is
an important guarantee for high-quality and high-efficiency machining!!l.

Comparing with traditional materials, advanced fiber reinforced composites have a number
of advantages including high modulus, excellent dampening properties, light weight and
tailorability of mechanical properties. In recent years, they are getting more and more attention
in the development of high speed cutting system tool bar!?7,

Magnitude and direction of milling force vary periodically as the cutter bar rotates, and the
dynamic model is described by delayed partial differential equations with periodic coefficients.
These factors make milling process stability difficult to predict. For this reason, semi analytical
method in frequency domain or numerical method in time domain is usually applied to the

stability analysis of milling system!!!. Tlusty!® replaced the periodic coefficients of delayed
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partial differential equation with average angle of cutter teeth and direction of average cutting
force to simplify the solution process. Minis and Yanushevsky!®! applied control theory and
predicted the stability of the system by using Fourier analysis. Budak and Altintas!'” presented a
multi-frequency solution for milling chatter analysis in frequency domain.

In frequency domain method, direction coefficients of time-varying milling force are
expanded into Fourier series and truncated approximation is obtained. It has been shown that the
zero-order approximation frequency domain method can obtain sufficiently accurate results of
the stability analysis in most practical applications!!l. The time domain method, including
semi-discrete method!'"!?! and full-discrete method!"3), usually replace the infinite dimensional
single valued operator with the finite dimensional approximation of system state transfer matrix.
Stability of the system is determined according to the corresponding eigenvalues. Time domain
method uses discrete time interval and node iteration to search for the stability boundary.
Although it requires more calculation time, it can obtain more accurate prediction results for
time periodic or time invariant systems.

The dynamic equation of milling system with a rotating cutter bar can be expressed in fixed
or rotating coordinates!'¥. Direction coefficients of cutting force change with time in fixed
coordinate frame, while they remain unchanged in rotating coordinate frame. The stiffness and
damping matrix of asymmetric cutter bar are also time-dependent in fixed coordinate frame, then
all of these bring great challenges for stability analysis. In rotating coordinate frame, cutting
force coefficients, stiffness and damping matrix of the cutter bar are time-invariant, so the
stability analysis is relatively simple and the errors caused by approximation can also be
avoided.

At present, stability analysis of rotating cutter bar in most researches are obtained in fixed
coordinate frame!'>-2!1, and only a few are involved in rotating coordinate framel?>?*]. Eynian and
Altintas???! proposed a new prediction method for milling process with asymmetric structural
dynamics in rotating coordinates. The stability of the characteristic equation of the system was
investigated using the Nyquist stability criterion. Comak et al.””! studied the milling process
with asymmetric cutter in rotating coordinates. The stability lobes have significant differences
due to the asymmetric of the structural dynamics of the system. Although these researches have
involved rotating coordinate frame, the dynamic models in these researches are limited to simple
two degree of freedom discrete system.

Based on the rotor dynamic theory of anisotropic structure, this paper presents the
continuous distributed partial differential equation of composite cutter bar milling system in
rotating coordinates. The motion equation is discretized by applying the Galerkin method. The
stability of milling system is solved by the semi-discrete time domain method. The process
stability of the milling system are investigated and compared with the stability prediction results
which obtained in fixed coordinate frame. Moreover, influences of internal damping, external

damping, symmetrical and asymmetric laminates are investigated.

2 Mathematical Model



2.1 Cutting Force Model in Rotating Coordinate Frame

Figure 1 shows the milling process in rotating coordinate frame. Number of the cutter teeth is

N and rotational speed of the cutter bar is Q .

cutter bar

Fig. 1. Diagram of milling process in rotating coordinate frame

Dynamic chip thickness removed by tooth j is expressed in local coordinate frame ()?Zj)

as follows(?3],
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where ¢ denotes the feed per revolution per tooth, ¢; denotes the immersion angle of tooth j,
S=P-jdp-de» $=£2t, ppdenotes the pitch angle( gp =27/ N ), . denotes the angle between the local
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rotating coordinate frame (17}2/) and principal rotating frame (}7, Z ) , and i”?j (t) Uz (t)} and

%?(H)(f— 7), uf(j—l)(t_r)} denote the vibration vectors of tooth j at time ¢ and tooth j-1 at time

t-t , respectively.

Dynamic cutting forces for tooth j can be calculated as follows,

o f o

where K, and K; denote the cutting force coefficients in radial and tangential directions, b is the

depth of cut, and g(¢,) is the unit step function, where

L d<d <b
g("’f):{o, 4, <4, 004, > 4, >

where ¢ and @.r are immersion angles of the cutter as it enters and leaves the cut, respectively.
Ignoring the static chip thickness csing; and substituting Eq.(1) into Eq.(2), then the cutting

force of tooth j can be obtained,
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The cutting force which considered all N teeth on the cutter can be calculated as follows,
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where, T;is the coordinate transformation matrix for tooth j
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2.2 The Chatter Equation of Milling System in Rotating Coordinate Frame

A tapered composite cutter bar with rotational speed (2 is shown in Figure 2, and the varying
cross section radius can be expressed as: (X )=[1-(1-o)- X/I|R, , where [ is the length of cutter

bar, o =Ry/R; Iis the taper ratio of the cutter bar, and Rr and Rr are the external radius at the

fixed and free ends, respectively.

Fig. 2. Schematic diagram of the rotating tapered composite cutter bar

In fixed coordinate frame, the chatter equation of milling system with a rotating composite

cutter bar obtained by Galerkin truncation can be expressed in generalized coordinates asf?!!

MU(t)+CU(t)+ KU(t)= ZF (¢) (8)

where F (t) is the cutting force, M, C and K are the mass, damping and stiffness matrix of the

tapered composite cutter bar respectively, wherel?!],
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where m(X) and 1,,(X) are the mass per unit length and the mass moment of inertia, respectively,
D“(X ) denotes the flexural stiffness of the composite cutter bar, /(X) denotes the area moment
of inertia, ¢; denotes Kelvin-Voigt internal damping coefficient, c¢; denotes viscous external
damping coefficient and yi(X) denote the mode shapes of a uniform, non-rotating, isotropic,
cantilever Euler-Bernoulli beam. The relevant calculation expressions are shown in
reference[21].

The relationship between a rotating coordinate frame and a fixed coordinate frame can be

expressed as follow!?*]
u(t)=R(Y U) (an

where Ul(t)= {ﬁyj (t) [72_ (,)}T denote displacement vector in rotating coordinate frame and

R(¢)" is the transformation matrix, where

r |cosQt —sinQ¢
R() =] (12)
sinQt cos ¢

Velocity and acceleration terms can be obtained from Eq.(11) as follows,
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By substituting Eqs(13) and (14) into Eq.(8), and multiplying each side by R(t) , and
considering Eqs(15) and (16) at the same time, then the chatter equation of milling system can

be represented in rotating coordinate as
MU(t)+CU(t)+ KU (t)=R(:)ZF ()= F () an

where M ,C and K represent mass, damping and stiffness matrix in rotating coordinate frame

as
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The cutting force expressed in rotating coordinate frame as

f(f):z{jﬁo—g(qf)bn‘(?][o 11[T{58}—T{5313}} ()

2.3 The Semi-discrete Time Domain Method

According to cauchy transformation, Eq(17) can be expressed as the following first-order

differential equation!'"]

q(r)=Aq(t)+ Bq(t—7) (20)

where
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Assuming the delay period 7 = nAf¢ and At is the discrete time interval. The state values

q(ti - Z') can be calculated by averaging the values at two consecutive sampling intervals as

q(t[ —T+At)+q(l‘i _T) _ i 94,

t.—7)= (22>
q(t, - 7) > 5
Then Eq(20) can be expressed as
. 1
q,=Aq;+ 5 B, (qi—rH—l 9, ) (23)

The differential equation ¢, (t) has homogenous qu.(t) and particular qu.(t) solutions

as
q,(6)= 4, (6)+ q,,(2) (24)
where ¢,,(t) is obtained as
0 ()= A4,,(1) > 4,,(1) = "€, (25
where C, depends on the initial conditions.

qp (t) is calculated by

0n(0) =" ul) =2 A "B (g4, 2

Then, the complete solution of the differential equation is
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When the state of system is at # =,

q,=C, _%A;IBI‘(%;H] +q1>n) (28)

Co can be obtained from Eq(28)

| I
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The next state at ¢ =¢,,, is as follow
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The solution requires the previous value ¢, and values a delay before ¢, ., and ¢, .

The series of equations are expressed at discrete time intervals

% =Dz, 3D
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Since the milling process is periodic at tooth passing interval, stability of the milling system

can be solved by Eq(31) at m number of intervals within the tooth period

=Tz,=D,---D,Dz, (33)

zi+m

According to Floquet theory, if the eigenvalues of matrix 7 are less than 1, the system is
stable, otherwise the system is unstable. Figure 3 shows the calculation steps of stability lobe

diagram by using the semi-discrete time domain method in rotating coordinate frame.
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Fig. 3. Calculation steps of stability lobe diagram
3 Numerical Results and Discussion
3.1 Validation
3.1.1 Example 1

Example 1 is to validate the correctness of the semi-discrete time domain solution method
used in the model. The milling system model described in rotating coordinate frame is shown in

Section 2.2, and the modal parameters of the cutter bar and process parameters are from Ref[23]
o.=281Hz , o, =2879Hz ., my; =0.0641kg , m; =0.0602kg ,

¢; =2.094%, ¢; =1.779%, K, =732MPa, K, =56MPa,N=4, ¢ =07, ¢, =180°

Figure 4 shows the chatter stability lobes of milling system in rotating coordinate frame. The
present model takes into account the internal damping of the cutter bar, but not that of Ref[23].
Consequently, it can be seen that the position of the lobe diagram calculated by the present
model is above the lobe diagram in literature [23]. This shows that the stability of the milling
system can be significantly improved if the effect of internal damping is taken into account. If

the influence of internal damping is ignored, stability lobes of the present model will be



coincided with the lobes obtained in [23]. The details about expression and solving process of

internal damping are shown in literature [21].
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Fig. 4. Chatter stability diagrams in rotating coordinate frame
3.1.2 Example 2

Example 2 is a convergence study of the stability lobes. The geometric parameters of the

tapered composite cutter bar are: R7=0.06m, Rz=0.04m, length / is obtained by the given aspect
ratios. Stacking sequence of the composite cutter bar is [i 9]3 . Table 1 gives the material

properties of the composite. The process parameters used in the simulation are from Ref[24]:
K,=1500MPa, K, =450MPa, N=8, ¢,=0", 4, =90".

Table 1. Mechanical properties of carbon/epoxy composite material(?*!

pkg/m®)  E;1(GPa) Ex»n(GPa) Gio(GPa) Gx»(GPa) o2 7i1(%)  n2%)  74(%)  n6(%)

1446.2 172.7 7.2 3.76 3.76 0.3 0.45 4.22 7.05 7.05

Results of the convergence study are shown in Table 2 and Figure 5. It can be seen that the
convergence result is good with respect to S, and S= 3 is found to be sufficient for convergence.
So, all the numerical results of this section are calculated by three mode shape functions.

Table 2. The effect of numbers of mode shape function on bjin,c-i(non-rotating cutter bar, (=0.01, 6=45°,
0=0.75, 1/d=10)

S 1 2 3 4

biimcri(mm)  0.0166 0.015 0.015 0.015
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Fig. 5. Convergences of the stability lobes of the rotating tapered composite cutter bar milling

system(¢=0.01, 6=45°, 6=0.75, l/d=10)

3.1.3 Example 3

Example 3 is the comparison of stability lobes obtained by semi-discrete time domain
solution and zero-order approximation frequency domain solution.The involved parameters in
simulation are from section 3.1.2. The stacking sequence of the composite cutter bar is [90°]s.

It is seen from figure 6 that the stability lobes solved by the semi-discrete time domain
solution are in good agreement with those by the zero-order approximation frequency domain

solution.
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Fig. 6. Zero-order approximation frequency domain method and semi-discrete time domain solution

method(¢=0.01, 6=0.75, [/d=15)
3.2 Stability Analysis in Rotating and Fixed Coordinate Frame

In this section, the semi-discrete time domain solution method is used to predict the stability
of milling system in rotating and fixed coordinate frame. In the following examples, cutting
parameters are still from [23].

Figure 7 gives the stability lobes of the milling system which considering the effect of
internal and external damping. Figure 7(a), Figure 7(b) and Figure 7(c) show the three cases of
without external damping, with internal and external damping and without internal damping. It
can be seen that both rotating and fixed coordinate frame give the same results, which indicates
that the stability of milling system with an axisymmetric cutter bar are consistent in these two
coordinate frames. In addition, it can be seen that no matter whether there is external damping or
not, as long as the internal damping is considered, a new unstable region will appear at high

rotational speeds.
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Fig. 7. Stability lobes of the milling system which considering the effect of internal and external damping

(6=0.75, 6=90°, I/d=10)

Figure 8 shows the effect of symmetric laminate [0°]s on the stability of milling system. It
can be seen that the lobes obtained in the rotating and fixed coordinate system are coincident no

matter at the low rotating speed or at the high rotating speed.
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Fig. 8. The effect of symmetric laminate [0°]s on the stability of milling system ({=0.01, 6=0.75, l/d=10)

Figure 9 shows the effect of asymmetric laminate [90°/45°/-45°/90°/0°%] on the stability of
milling system. It can be seen that the lobes obtained in the rotating and fixed coordinate system

are coincident no matter at the low rotating speed or at the high rotating speed.
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Fig. 9. The effect of asymmetric laminate [90°/45°/-45°/90°/0°] on the stability of milling system ({=0.01,
0=0.75, I/d=10)

Based on a simple discrete model of 2-DOF cutter bar milling system, literatures [22] and
[23] studied the chatter stability of milling system in rotating and fixed frame. The results
showed that both rotating and fixed frame give the same results for dynamically symmetric tools

(The lumped mass, stiffness and damping parameters are equal in the 2-DOF directions,



respectively). This paper studies the chatter stability of composite cutter bar milling system. The
chatter equations are established on a more complex continuous distribution model. It is found
that, unlike asymmetrical cutter bar, stability analysis of the milling system with axisymmetric
cutter bar remains unchanged no matter how the reference coordinate frame changed. Therefore,

compared with literatures [22] and [23], researches in this paper are more general.
4 Conclusions

The chatter stability of milling process in rotating frame is studied in this paper. Cutting
force model and structural dynamic equations of composite cutter bar are expressed in rotating
coordinate. The chatter equation of tapered composite cutter bar milling system are established
in rotating coordinate and discretized by applying Galerkin method. The influences of some
factors including internal and external damping, symmetric laminate, and asymmetric laminate
on the chatter stability are examined by using the semi-discrete time solution in rotating
coordinate frame. Results show that the lobes obtained in the rotating and fixed coordinate
system are coincident for dynamically symmetric tools. It is also found that a new chatter
instability appears in high-speed regions with the consideration of rotation and internal damping
of the composite cutter bar.
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