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Abstract
The paper addresses the challenge of achieving practical multi-cluster consensus among agents interacting
through a matrix-weighted graph. The objective is to coordinate the agents to effectively capture or escort
a moving target. Each agent satisfies Euler-Lagrange (EL) dynamics, whose parameters may be unknown,
and is subject to external disturbances. We propose a multi-cluster control framework that ensures all agents
within a cluster converge to a common trajectory, while individual clusters maintain a specific formation
around the moving target. A prescribed performance control scheme is developed to guarantee that relative
state trajectories remain within user-defined performance bounds throughout the task. The closed loop
system under the proposed control scheme is analytically proven to achieve practical multi-cluster consensus
and satisfaction of user-defined performance bounds without requiring knowledge of system parameters.
The proposed framework supports various consensus scenarios, including consensus, bipartite consensus,
and multi-cluster consensus, offering flexibility in adjusting both the number of clusters and the number of
agents in each cluster. We provide numerical simulations to validate the theoretical results.
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1 INTRODUCTION

In recent years, the study of multi-agent systems in robotics has gained significant attention due to their advantages over single-
robot systems (1 and references therein). Early research in multi-agent systems focused on achieving consensus, where agent
states converge to a common value. However, in many robotic applications, multiple robot clusters must function as distinct
teams, collaborating on complex tasks with various sub-tasks. Unlike standard linear consensus, where a lack of connectivity can
lead to multiple clusters, coordinated team operation requires connectivity and information exchange. Furthermore, connectivity
among multiple teams becomes essential when only a subset of agents knows the overall task. In such cases, matrix weights can
naturally facilitate multi-cluster consensus. Researchers have studied bipartite consensus in structurally balanced and unbalanced
matrix-weighted networks2,3. Recent studies have reported distributed control schemes leveraging matrix-weighted interactions
to achieve multi-cluster consensus for systems with single-integrator dynamics4 and double-integrator dynamics5. So also, the
matrix-scaled consensus for multi-cluster consensus in second-order6 has been investigated. However, the matrix-weighted
multi-cluster consensus problem for agents with more complex nonlinear dynamics remains largely unexplored.

Ensuring the system response satisfies defined performance boundaries is essential for practical applications. Prescribed
performance control has emerged to guarantee that errors between communicating agents evolve within predefined bounds.
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Notable contributions in this field include bounding the response time and overshoot values for first-order linear systems7, second-
order linear systems8, controlled evolution of stochastic multiple agents9 and nonlinear agents10 with prescribed performance
constraints, prescribed performance control based on transient response for multi-input multi-output nonlinear systems11,
prescribed transient, steady-state12 and fault tolerant13 performance for uncertain nonlinear system and prescribed performance
control based on distance-based formation control for a system with external disturbance14. Researchers have designed low-
complexity controllers to improve stability and performance for high-order nonlinear multi-agent systems with a directed graph15

and unknown dynamics16,17. A consensus with leader-follower multi-agent systems under prescribed performance conditions
has also been studied18,19. Formation control of agents with Euler-Lagrangian (EL) dynamics under communication, feasibility,
and performance constraints has also been studied20.

Motivated by the above discussion, this paper addresses the challenge of coordinating multiple robot groups to escort or
capture a moving target and form distinct clusters around it. The robot teams act as separate clusters, communicating via a
matrix-weighted graph. The robots are modeled as EL systems, making our model applicable to a broad class of robots. We
assume all agents have access to the target’s trajectory information.

The main contributions of the paper can be highlighted as follows:

1. Matrix-Weighted Control for Cooperative Target Capture. A robust matrix-weighted control scheme is developed for
the cooperative capture of a target using n EL agents with disturbance. Under sufficient conditions of connectivity and
structural balance, the proposed control law u ensures that the agents achieve multi-cluster consensus, forming different
clusters around a mobile target at position xd. This approach is referred to as multi-cluster control.

2. Flexibility of Cluster Formations. The paper demonstrates that adjusting a single parameter within the multi-cluster
control framework can effectively achieve various cluster configurations, allowing flexible team formations.

3. Prescribed Performance Control. A prescribed performance control scheme is introduced to maintain the relative state
trajectories within user-defined performance bounds. The objective is to design a control law u such that, in addition to
achieving multi-cluster control, guarantees that the edge states remain within the bounds defined by the user. This control
law applies to both cyclic and acyclic graphs.

4. Handling Unknown System Parameters. Finally, the prescribed performance control guarantees practical multi-cluster
consensus, even when the system parameters are unknown.

Organization: The paper is organized as follows. Section 2 provides the overview of the graph’s structure. In section 3, we
discuss the agent model and the control strategy for achieving multi-cluster consensus. Section 4 outlines the framework for the
agents to achieve multi-cluster consensus with prescribed performance. The analytical results are demonstrated in Section 6 by
numerical simulations. Section 7 discusses the conclusion and future scope of the work.

2 PRELIMINARIES

This section discusses the related notations and preliminaries used in the study. We mainly focus on the underlying graph
topology and the performance constraints imposed on the system.

2.1 The Graph

We consider a set of n agents, each of dimension d, interacting over a matrix-weighted graph G = (N , E), where N = {1, . . . , n}
is the set of nodes and E ⊆ N × N is the set of edges interconnecting the nodes. The edges of the graph G are denoted
as e1, . . . , em, where m is the number of edges. The nodes in G are partitioned into p disjoint subsets S1,S2, . . . ,Sp, where
S1∪S2∪. . .∪Sp = N . The weight of an edge from node j to node i is given by the matrix Rij ∈ Rd×d. If i and j belong to different
subsets, Rij is a user-defined matrix; if they belong to the same subset, the matrix weight is the identity matrix Id. In this paper, we
assume the matrix weights to be orthogonal, such that R–1

ij = R⊤
ij . Additionally, the graph G is structurally balanced, which implies

that for every closed cycle C = (i, j) – (j, k) – · · · – (l, m) – (m, i) in the graph, the product of the matrix weights along the cycle
satisfies RijRjk · · ·RlmRmi = Id. Thus, the graph G is formulated as a multi-partite, matrix-weighted, and structurally balanced
graph5. The graph G can be divided into a matrix-weighted tree graph graph Gt and another subgraph Gc such that G = Gt ∪ Gc.

This framework allows us to define the matrix-weighted incidence matrix as in Definition 1.
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Definition 1. 21 (Matrix-weighted Incidence Matrix) A matrix-weighted incidence matrix, B, of a matrix-weighted multi-partite
graph G with n nodes and m edges is a block matrix with n×m blocks, where each block is of dimension d×d. For a bidirectional
graph G, the incidence matrix B can be defined by assigning arbitrary directions as,

(B)ik =


Id if ek = (i, j) ∈ E & i is the head of the edge & i, j ∈ Sq, q ∈ {1, 2, . . . , p},

–Id if ek = (j, i) ∈ E & i is the tail of the edge & i, j ∈ Sq, q ∈ {1, 2, . . . , p},

–Rij if ek = (j, i) ∈ E & i is the tail of the edge & i ∈ Sq and j ∈ Sr, q, r ∈ {1, 2, . . . , p} such that q ̸= r,

(1)

where Rij is the matrix weight of the directed edge from nodes j to i and Id represents the identity matrix of size d.

1

2

3

4

Id

Id

R24

R42

R23

R32

Id

Id

S1

S2

F I G U R E 1 Example of a matrix-weighted graph topology. There are four agents partitioned into two clusters. The agents
{1, 2} ∈ S1, and the agents {3, 4} ∈ S2.

An example of a matrix-weighted multi-partite graph G with n = 4 agents and m = 8 edges is shown in Fig. (1). The agents
{1, 2, 3, 4} are partitioned into two clusters, S1 and S2, where agents {1, 2} ∈ S1 and agents {3, 4} ∈ S2. Each edge in the graph
is associated with a matrix weight Rij ∈ Rd×d. For instance, the edge connecting agent 2 to agent 3 is assigned the matrix weight
R32, as agents 2 and 3 belong to different clusters (S1 and S2, respectively). Conversely, the edge connecting agents 1 and 2 is
assigned the identity matrix Id, indicating that these agents belong to the same cluster S1. All edges in Fig. (1) are assigned
weights in this manner.

Therefore, using equation (1), we can write the incidence matrix B for Fig. (1) as follows,

B =


Id –Id 0 0 0 0 0 0
–Id Id Id –R12 Id –R12 0 0
0 0 –R21 Id 0 0 –Id Id

0 0 0 0 –R21 Id Id –Id

 , (2)

where the matrix Id and Rij are of appropriate dimensions. Using the incidence matrix, we now define the Laplacian matrix L of
the graph G as

L = BB⊤, (3)

and the edge Laplacian matrix Le ∈ Rmd×md as
Le = B⊤B. (4)

It is seen that the Laplacian matrix and edge Laplacian matrix are similar to their equivalents in the standard consensus
framework22.

3 MULTI-CLUSTER CONTROL

This section elaborates on the theory of achieving multi-cluster consensus of multiple agents following Euler-Lagrangian (EL)
dynamics.
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3.1 System Dynamics

Defining the position x = [x⊤1 , . . . , x⊤n ]⊤ ∈ Rnd, velocity v = [v⊤1 , . . . , v⊤n ]⊤ ∈ Rnd, control u = [u⊤
1 , . . . , u⊤

n ]⊤ ∈ Rnd, and the
external disturbance ∆W = [∆w1, . . . ,∆wn]⊤, the dynamics of multi-agent system with n agents can be written as,

ẋ = v,

M(x)v̇ = –C(x, v)v – G(x) + u + ∆W,
(5)

where M(x) = blkdiag(M1(x1), . . . , Mn(xn)), C(x,v) = blkdiag(C1(x1, v1), . . . , Cn(xn, vn)), G(x) = [g1(x1), . . . , gn(xn)]⊤ are the
symmetric positive definite mass matrix, Coriolis force matrix, and gravitation force matrix, respectively. For our study, we
consider n heterogeneous EL agents interacting over a matrix-weighted graph G. We consider the presence of a target in the
system, which provides the reference trajectory to the agents, and the reference dynamics is modeled as

ẋ0
d = v0

d, (6)

where x0
d and v0

d represent the position and velocity of the target, respectively. The derivative of velocity v̇0
d is assumed to be

bounded and continuous over time t. We now define matrix-weighted multi-cluster consensus.

Definition 2. (Matrix-weighted multi-cluster consensus) The multi-agent system is said to reach matrix-weighted cluster
multi-consensus around the target’s position x0

d if the following holds:

• For agents within the same clusters: agents converge to a common value

lim
t→∞

||(xi(t) – x0
d(t)) – (xj(t) – x0

d(t))|| = 0,

• For agents belonging to distinct clusters: agents converge to states determined by inter-cluster connection weights Rij

lim
t→∞

||(xi(t) – x0
d(t)) – Rij(xj(t) – x0

d(t))|| = 0,

• Agent velocities converge to vd,

lim
t→∞

||(vi(t) – v0
d(t))|| = 0.

3.2 Reformulation using Error Variables

For the simplicity of expression, we define position error variable xe = x – xd and velocity error variable ve = v – vd, with
xd = x0

d
⊗

1n and vd = v0
d
⊗

1n, where 1n is a column vector of size n and entries as 1. Using equation (3), we can write

L(x – xd) = Lxe = BB⊤xe = Bx̄, (7)

where x̄ = B⊤xe. Thus, it can be seen that Lxe = 0 when x̄ = 0. Multi-cluster consensus, as specified in Definition 2, is satisfied
when xe converges to the null space of the Laplacian matrix L.

3.3 Control Law for Multi-Cluster Consensus

Let the control u for multi-cluster control be of the form

u = – C
(

– vd + µLxe
)

+ G + Mv̇d – µMLve – kpLxe – Kvψe, (8)

where ψe = ve + µLxe, with µ and kp as positive constants and Kv a symmetric positive definite gain matrix. The stability results
are shown in the below theorem.
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3.4 Theorem on Multi-Cluster Consensus

Theorem 1. Consider a system of n agents, each governed by Euler-Lagrange (EL) dynamics as defined in equation (5) and
tracking a target trajectory xd specified in equation (6). If the agents are interconnected via a multi-partite, matrix-weighted
graph G that is both connected and structurally balanced, then the feedback control law defined in equation (8) ensures that
the agents achieve multi-cluster consensus relative to the target trajectory. Specifically, the agents’ position error xe converges
asymptotically to the subspace {x ∈ Rnd | Lxe = 0}, where:

xi = xj, for agents i and j in the same cluster, (9)

xi = Rijxj, for agents i and j in different clusters. (10)

Proof. Consider the candidate Lyapunov function

V1 =
1
2
ψ⊤

e Mψe +
kp

2
x⊤e Lxe. (11)

We can verify that the Lyapunov function V1 is positive definite. The function V1 = 0 only when xe ∈ ker(L) and v = vd, i.e., the
Lyapunov function is zero only for our desired equilibrium set. Now, calculating the derivative of V1 with respect to time, we get

V̇1 = ψ⊤
e Mψ̇e +

1
2
ψ⊤

e Ṁψe + kpx⊤e Lẋe.

Substituting the equation (8), we get

V̇1 = ψ⊤
e (–Cv – C

(
– vd + µLxe

)
– kpLxe – Kvψe + ∆W) +

1
2
ψ⊤

e Ṁψe + kpx⊤e Lve.

The terms –Cv – C(–vd + µLxe) can be written as –Cψe, hence,

V̇1 = –ψ⊤
e Cψe – kpψ

⊤
e Lxe – ψ⊤

e Kvψe + ψ⊤
e ∆W +

1
2
ψ⊤

e Ṁψe + kpx⊤e Lve.

We know that for EL systems, Ṁ – 2C is skew-symmetric23. Therefore, on applying this property, –ψ⊤
e Cψe + 1

2ψ
⊤
e Ṁψe vanishes,

and further simplifying, we obtain

V̇1 = –ψ⊤
e Kvψe – kpµx⊤e LLxe + ψ⊤

e ∆W < 0.

This proves the asymptotic stability of the system relative to the equilibrium set. Thus, we can infer that xe converges to the
null space of the multi-partite Laplacian matrix L, and the velocity of the agents vi goes to vd.

Theorem 1 establishes that the agent states relative to the target achieve multi-cluster consensus; however, it does not guarantee
adherence to the specified performance constraints. The following section addresses the prescribed performance requirements.

4 PRESCRIBED PERFORMANCE CONTROL

4.1 Performance Constraints

In real-world applications, system performance is a crucial factor in determining overall effectiveness. Specifically, system states
must be constrained to ensure the relative position of agents remains within the user-prescribed performance bounds. For an
edge ek = (j, i) ∈ E , the evolution of the relative position of agents i and j can be written as

x̄k = (xi – x0
d) – Rij(xj – x0

d). (12)
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Similarly, all x̄ can be collectively expressed as a single column vector, x̄ = [x̄⊤1 , . . . , x̄⊤m ]⊤ ∈ Rmd. Let the performance constraint
for each element of x̄ is gives as:

–ρkl(t) < x̄kl(t) < ρkl(t), ∀ t ≥ 0, (13)

with l ∈ {1, 2, . . . , d} and the performance limit ρkl(t) as,

ρkl(t) = (ρkl0 – ρkl∞)e–ϵklt + ρkl∞, (14)

where ρkl0, ρkl∞ and ϵkl are positive constants such that ρkl0 ≥ ρkl∞ > 0, and l ∈ {1, . . . , d}. The next subsection shows the
formulation of the prescribed performance problem in terms of modulated error variables and their transformations.

4.2 Reformulation in terms of Modulated Error Variables

To ensure that the system meets the performance specifications, we construct a modulated error function,

x̂kl =
x̄kl

ρkl
. (15)

The modulated error is a normalization of the relative position of the agents, x̄kl, with respect to the prescribed performance
function, ρkl. It can be seen that, normalized error x̂kl belongs to set,

Dkl :=
{

x̂kl(t) : x̂kl(t) ∈ (–1, 1)
}

. (16)

which is equivalent to equation (13). The modulated error is transformed using the transformation function Tkl(x̂kl) as given
below:

ξkl = Tkl(x̂kl) = ln
(

1 + x̂kl

1 – x̂kl

)
. (17)

The performance specifications are met when ξkl values remain bounded for all the edges. The transformed error dynamics
can be obtained by differentiating ξkl with respect to time t as,

ξ̇kl = ϕkl(x̂kl, t)( ˙̄xkl + αkl(t)x̄kl), (18)

where
ϕkl(x̂kl, t) =

2
(1 – x̂2

kl)
1
ρkl

> 0, αkl(t) = –
ρ̇kl

ρkl
> 0. (19)

Defining ξ = [ξ⊤1 , . . . , ξ⊤m ]⊤ with ξk = [ξk1, . . . , ξkd], α = blkdiag(α1, . . . ,αm) with αk = diag(αk1, . . . ,αkd) and Φ =
blkdiag(ϕ1(x̂1, t), . . . ,ϕm(x̂m, t)) with ϕk(x̂k, t) = diag(ϕk1(x̂k1, t), . . . ,ϕkd(x̂kd, t)), equation (18) can be rewritten in the matrix
form as

ξ̇ = Φ( ˙̄x + αx̄). (20)

From equation (17), it can be verified that the condition in equation (13) is achievable by constraining the transformation error ξ.
The control ensures that the agents achieve the specified performance in terms of the evolution of their relative positions, as
prescribed by the variable ρ.

4.3 Prescribed Performance Control with Known Dynamics

We propose a control strategy to solve the problem (3) as discussed in Section 1. First, we consider the system parameters M and
C to be known to the controller. Accordingly, the control u is proposed as,

u = – C
(

– vd + µLxe
)

+ G + Mv̇d – µMLve – kpLxe – Kvψe – BΦξ. (21)
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The following theorem demonstrates the stability of the closed-loop system.

Theorem 2. Given a system consisting of n agents, each following EL dynamics described in equation (5) organized into
p clusters, interacting over a matrix-weighted and structurally balanced graph G. Assuming that the initial conditions fall
within the specified range of (–ρ0, ρ0), the prescribed performance control scheme u proposed in equation (21) guarantees
matrix-weighted multi-cluster consensus of the agent states as defined in Definition 2 and the relative agent states adhere to the
user-defined performance criteria given by equation (13) for all times t ≥ 0 if the following condition holds:

–µλmin(Lt
e) + ϵmax < 0, (22)

where Lt
e corresponds to the edge Laplacian of the underlying tree matrix-weighted graph Gt and λmin() indicates the lowest

eigenvalue, and ϵmax = max
l∈{1,...,d},j∈{1,...,m}

ϵjl is the maximum rate of decay for the prescribed performance functions.

Proof. Consider the candidate Lyapunov function

V2 =
1
2
ψ⊤

e Mψe +
kp

2
x⊤e Lxe +

1
2
ξ⊤ξ. (23)

Differentiating with respect to time, we get

V̇2 = ψ⊤
e Mψ̇e +

1
2
ψ⊤

e Ṁψe + kpx⊤e Lẋe + ξ⊤ξ̇. (24)

Substituting for ψ̇e = (v̇e +µLve), ẋe = ve and ξ̇ = Φ( ˙̄x+αx̄), where Mv̇e = –Cv–G+u+∆W –Mv̇d with u in equation (21), we get

V̇2 = ψ⊤
e

(
– Cv – G + u + ∆W – Mv̇d + µMLve

)
+

1
2
ψ⊤

e Ṁψe + kpx⊤e Lve + ξ⊤Φ( ˙̄x + αx̄)

= ψ⊤
e

(
– Cv – C

(
– vd + µLxe

)
– kpLxe – BΦξ – Kvψe + ∆W

)
+

1
2
ψ⊤

e Ṁψe + kpx⊤e Lve + ξ⊤Φ( ˙̄x + αx̄).

Rewriting –Cv – C
(

– vd + µLxe
)

as –Cψe and applying the property that Ṁ(x) – 2C(x, v) is skew-symmetric23, we get

V̇2 = ψ⊤
e

(
– kpLxe – Kvψe – BΦξ + ∆W

)
+ kpx⊤e Lve + ξ⊤Φ( ˙̄x + αx̄)

= –ψ⊤
e Kvψe – kpv⊤e Lxe – kpµx⊤e LLxe + ψ⊤

e ∆W – v⊤e BΦξ – µx⊤e LBΦξ + kpx⊤e Lve + ξ⊤Φ ˙̄x + ξ⊤Φαx̄.

Substituting ˙̄x = B⊤ve and further simplifying, we get

V̇2 = – ψ⊤
e Kvψe – kpµx⊤e LLxe + ψ⊤

e ∆W – µx⊤e LBΦξ + ξ⊤Φαx̄.

The term µx⊤e LBΦξ can be rearranged as µx̄⊤LeΦξ. Therefore, V̇2 can be written as,

V̇2 = – ψ⊤
e Kvψe – µkpx⊤e LLxe + ψ⊤

e ∆W + x̄⊤(–µLe + αI)Φξ. (25)

From equation (19), it can be seen that Φ is a diagonal matrix with positive elements. We consider two cases.
Case 1: The graph G is a tree. In this case, Le = Lt

e is positive definite. Therefore, we can replace Le with its smallest
eigenvalue and α with ϵmax, the maximum decay rate of the prescribed performance functions.

V̇2 ≤ – ψ⊤
e Kvψe – µkpx⊤e LLxe + ψ⊤

e ∆W + x̄⊤(–µλmin(Lt
e) + ϵmaxI)Φξ. (26)

Since µ satisfies equation (22), we have V̇2 < 0.
Case 2: The graph G is not a tree and is connected. Then, the graph G can be partitioned into a union of matrix-weighted

tree subgraph Gt and another subgraph Gc that consists of all remaining edges, i.e., G = Gt ∪ Gc. Without loss of generality, let
the edges be ordered in such a way that the incidence matrix of the general graph is given by B = [Bt Bc], where Bt, Bc are the
incidence matrices of the underlying tree subgraph Gt and the subgraph Gc respectively. Due to structural balance, the edges
corresponding to subgraph Gc denoted by x̄c can be written as a linear combination of edges of Gt denoted by x̄t, i.e., x̄c = T⊤x̄t,
where T is a constant matrix.
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As a result, we have

B =
[
Bt BtT

]
. (27)

Substituting equation (27) and calculating the edge laplacian Le from the B matrix in the term x̄⊤(–µLe + αI)Φξ, we get

x̄⊤(–µLe + αI)Φξ =
[

x̄t

x̄c

]⊤ (
–µ

[ Lt
e Lt

eT
T⊤Lt

e T⊤Lt
eT

]
+ αI

)
Φ

[
ξt

ξc

]
= – µx̄⊤t Lt

eΦtξt – µx̄⊤t Lt
eTΦcξc – µx̄⊤c T⊤Lt

eΦtξt – µx̄⊤c T⊤Lt
eTΦcξc + x̄⊤t αΦtξt + x̄⊤c αΦcξc,

where x̄c = T⊤x̄t. Now, the term –µx̄⊤c T⊤Lt
eΦtξt can be rewritten as

–µx̄⊤c T⊤Lt
eΦtξt = – µx̄⊤t TT⊤Lt

eΦtξt ≤ –µλmin(TT⊤Lt
e)x̄⊤t Φtξt ≤ 0.

Similarly,

–µx̄⊤t Lt
eTΦcξc ≤ –µx̄⊤c Lt

eΦcξc ≤ –µλmin(Lt
e)x̄⊤c Φcξc ≤ 0.

After replacing these terms in V̇2, we get

V̇2 ≤ – ψ⊤
e Kvψe – µkpx⊤e LLxe + x̄⊤t

(
ϵmax – µλmin(Lt

e)
)
Φtξt + x̄⊤c

(
ϵmax – µλmin(Lt

e)
)
Φcξc. (28)

We observe that the first and second terms on the right-hand side of inequality (28) are negative definite. From Eq.(15) and
Eq. (17), it follows that ξ is a function of x̄. When inequality (22) holds, the function V̇2 is negative definite. This proves that
the agents achieve multi-cluster consensus while satisfying the performance constraints. Thus, we can ensure the asymptotic
convergence of the system by appropriately choosing ϵ and µ.

Implementing equation (21) requires precise knowledge of system parameters. Prescribed performance control, however,
ensures that system errors converge within a user-defined limit without needing exact parameter knowledge. The following
subsection provides further details on this.

5 PRACTICAL MULTI-CLUSTER CONSENSUS CONTROL

In this section, we propose an approach to deal with multi-cluster consensus in multi-agent systems with unknown dynamics. To
deal with this, we first define the notion of practical multi-cluster consensus.

Definition 3. (Practical multi-cluster consensus) The multi-agent system achieves practical multi-cluster consensus around the
vicinity of the target position x0

d if the following holds:

• For agents in the same clusters: agents converge to a neighborhood of the desired convergence point

lim
t→∞

||(xi – x0
d) – (xj – x0

d)|| ≤ σ,

• For agents belonging to distinct clusters: agents converge to states determined by inter-cluster connection weights Rij

lim
t→∞

||(xi – x0
d) – Rij(xj – x0

d)|| ≤ σ,

where σ slightly greater than 0 is the convergence bound, i.e., the maximum error within which the agents converge to the
neighborhood of the desired convergence point.

We propose a control strategy that provides the desired system performance, even when the system exhibits unknown dynamics.
The control can be defined as

u = G – kpLxe – Kvψe – BΦξ (29)
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Theorem 3. Consider the graph G, which is matrix-weighted, multi-partitioned, and structurally balanced, having the agents
with EL dynamics with unknown parameters as described in equation (5) tracking the target. If the initial conditions of the
agents are within the specified range of (–ρ0, ρ0), and uncertainties and disturbance are satisfied,

∥∆W∥ + ∥Γ∥max ≤ λmin(Kv) ∥ψe∥ , (30)

these terms are explained in the proof. Then, the control u in equation (29) ensures tracking of the target, guaranteeing practical
prescribed performance conditions as defined in Definition 3.

Proof. Considering the same candidate Lyapunov function as in equation (23),

V3 =
1
2
ψ⊤

e Mψe +
kp

2
x⊤e Lxe +

1
2
ξ⊤ξ. (31)

Differentiating with respect to time,

V̇3 = ψ⊤
e Mψ̇e +

1
2
ψ⊤

e Ṁψe + kpx⊤e Lẋe + ξ⊤ξ̇. (32)

Substituting for ψ̇e = (v̇e + µLve), ẋe = ve and ξ̇ = Φ( ˙̄x + αx̄), we get,

V̇3 = ψ⊤
e M(v̇e + µLve) +

1
2
ψ⊤

e Ṁψe + kpx⊤e Lve + ξ⊤Φ( ˙̄x + αx̄). (33)

Having Mv̇e = –Cv – G + u + ∆W – Mv̇d with u = G – kpLxe – Kvψe – BΦξ as in equation (29), we get,

V̇3 = ψ⊤
e (–Cv – G + G – kpLxe – Kvψe – BΦξ + ∆W – Mv̇d + µMLve) +

1
2
ψ⊤

e Ṁψe + kpx⊤e Lve + ξ⊤Φ( ˙̄x + αx̄). (34)

Further rearranging and solving, we get,

V̇3 = – ψ⊤
e Cv – ψ⊤

e Kvψe + ψ⊤
e ∆W – kpx̄⊤Lex̄ – ψ⊤

e Mv̇d + µψ⊤
e MLve +

1
2
ψ⊤

e Ṁψe + x̄⊤(–µLe + αI)Φξ

= – ψ⊤
e Kvψe – kpx̄⊤Lex̄ – ψ⊤

e Cv – ψ⊤
e Mv̇d + ψ⊤

e ∆W + µψ⊤
e MLve +

1
2
ψ⊤

e Ṁψe + x̄⊤(–µLe + αI)Φξ

≤ – ψ⊤
e Kvψe – kpx̄⊤Lex̄ + ∥ψe∥max ∥Γ∥max + ∥ψe∥max ∥∆W∥ + x̄⊤(–µLe + αI)Φξ, (35)

where Γ = Cv + Mv̇d – µMLve – Ṁψe. Satisfying the inequality in equation (22) results in the last term on the right-hand side of
inequality (35) being strictly negative definite. If the disturbance ∆W and uncertain parameters are bounded as,

∥∆W∥ + ∥Γ∥max ≤ λmin(Kv) ∥ψe∥ . (36)

Then, V̇3 ≤ 0 proves the system dynamics stable and guarantees adherence to performance conditions.
Note that such a bound is very conservative. Additionally, various terms in the Γ, such as M and C, are bounded for any EL

system. Control gains Kv, kp, and µ can be appropriately chosen to ensure the agents can track the desired target satisfying the
prescribed performance criteria, even when the system parameters are unknown.

6 SIMULATION RESULTS

In this section, we use numerical simulations to validate the theoretical results. Consider the matrix-weighted graph G, which
operates on a 2-D plane of n = 12 EL agents and m = 13 edges. The illustration of the structure is shown in Fig. (2). The network
comprises a set of heterogeneous EL agents with dynamics as discussed in equation (5) with the disturbance as a varying additive
disturbance. The parameter Mi of agents {1, 2, 3, 4} are given by Mi = 0.7I2×2, agents {5, 6, 7, 8} by Mi = 0.6I2×2 and agents
{9, 10, 11, 12} by Mi = 0.8I2×2 and the parameters Ci and gi, i ∈ {1, . . . , 12} of all EL agents are chosen as Ci = [0 0.5; –0.5 0],
gi = [9.8, 9.8]⊤. The matrix R(θ) represents the interaction between the clusters. For the simulations, we choose this orthogonal
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R
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F I G U R E 2 The matrix-weighted graph G with n = 12 nodes and m = 13 edges, used for numerical simulations. The nodes
belong to p = 5 clusters, viz, {1, 2, 3} ∈ S1, {4, 5} ∈ S2, {6, 7} ∈ S3, {8, 9, 10} ∈ S4 and {11, 12} ∈ S5.

matrix weight as the 2 × 2 rotational matrix given by

R(θ) =
[

cos θ – sin θ
sin θ cos θ

]
, (37)

where θ can be chosen for the desired formation. We start the numerical simulations from random initial conditions in the range
of xi ∈ [–10, 10]2 for both position and velocity. Throughout the figures, the dashed lines show the target trajectory, and the
colored lines represent the agent trajectories. The target follows a circular trajectory given by

xd =
[
10 cos (0.5t) – 10 10 sin (0.5t)

]⊤
. (38)

The initial values of x̄ are selected such that –ρ(0) < x̄(0) < ρ(0), as specified by equation (14). In this simulation, we choose
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ρ = 13.5e−0.7t + 0.1

F I G U R E 3 Simulation of 12 agents interacting over the graph G achieving multi-cluster consensus of p = 5 clusters. (a) 2D
plot of the agents following the target; (b) 2D plot when the system has an external disturbance; (c) Time series plot of x̄ when
the decay rate is ϵ = 0.7.

ρ0 – ρ∞ = 13.5, ρ∞ = 0.1 and ϵ = 0.7 for all agents.
We choose θ = 2π/5 in equation (37), such that the resultant formation is a pentagon. Fig. (3) (a) shows the trajectories of the

12 EL agents, starting from random positions. Here, it is assumed that the system is disturbance-free. On applying the control u
in equation (8), the agents converge to a multi-cluster consensus state of five clusters, each positioned at a vertex of the pentagon.
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F I G U R E 4 Simulation of 12 agents achieving multi-cluster consensus of p = 5 clusters adhering to prescribed performance.
(a) 2D plot of agents following the target trajectory for a disturbance-free system; (b) 2D plot of the agents when the system has
an external disturbance; (c) Time series plot of x̄ when decay rate is ϵ = 0.7.

Now, on adding a disturbance to the system, the agents still achieve multi-cluster consensus, forming five clusters as seen in Fig.
(3) (b). Fig. (3) (c) shows a time series plot of the relative positions of agents, x̄. We see that x̄ states are not confined within the
user-defined limit ρ, emphasizing the need for a prescribed performance control law.

On applying the prescribed performance control law in equation (21) to the above-discussed system under a disturbance-free
system, we see that the agents converge to form the pentagon as seen in Fig. (4) (a). Despite adding an external disturbance, the
agents still achieve multi-cluster consensus, as shown in Fig. (4) (b) while adhering to the prescribed limit ρ as demonstrated in
Fig. (4) (c). Based on Fig. (4) (c), we can validate that x̄, the error in tracking the target, is within the limit ρ prescribed by the user.
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F I G U R E 5 Simulation of 12 agents transitioning from p = 5 clusters to p = 3, while tracking the moving target. (a) The 2D
plot of the agents which initially approach a pentagon-shaped five-cluster formation, transitioning later into three clusters when
θ is changed; (b) Time series plot of x̄ with two different ρ functions

Now, we illustrate that the number of clusters can be adjusted by changing θ. We use the same graph from Fig. (2). The initial
conditions and parameters remain the same as mentioned above. Initially, we set θ = 2π/5 and then switch to θ = 2π/3 at t = 5
seconds. The 2D plot from this simulation is shown in Fig. (5)(a). Agents start from random positions, and on applying the control
in equation (21), agents approach a state of multi-cluster consensus with five clusters forming a pentagon around the target. At
t = 5, when θ is changed to 2π/3, the agents adjust positions, transitioning from five clusters to three, effectively tracking the
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moving target while maintaining the multi-cluster formation. Fig. (5) (b) shows the time series of x̄ as the agents dynamically
adjust cluster formations while tracking the target. Initially, edges are bounded by the constraints ρ = 13.5e–0.25t + 0.1, switching
around t = 5 seconds to ρ = 8e–0.8(t–5) + 0.1.

We also validate the feasibility of the control in equation (29). As shown in Fig. (6), our multi-cluster consensus scheme
remains effective, even when the system dynamics are unknown to the controller. Therefore, we have demonstrated that our
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ρ = 8e−0.8(t−5) + 0.1

F I G U R E 6 Simulation of 12 agents under an external disturbance transitioning from p = 5 clusters to p = 3, while tracking
the moving target. (a) The 2D plot of the agents which initially approach a pentagon-shaped five-cluster formation, transitioning
later into three clusters when θ is changed; (b) Time series plot of x̄ with two different ρ functions

scheme is capable of handling both external disturbances and uncertainties while also allowing for adjustments in the number of
clusters by tuning the parameter θ. In all such cases, the performance consistently remains within the prescribed limits.

7 CONCLUSION

This paper presented a matrix-weighted control scheme for achieving multi-cluster consensus among agents with nonlinear Euler-
Lagrangian dynamics while encircling a moving target. The prescribed performance control scheme ensures that the relative
state trajectories remain within user-defined performance bounds, even in the presence of external disturbances. Additionally,
the control was modified to handle scenarios where the system parameters are unknown while still maintaining the prescribed
performance. Our approach demonstrated flexibility in adjusting the number of clusters and accommodating various graph
topologies, including tree graphs and graphs with cycles. In this paper, we have considered a scenario where all agents have
complete trajectory information of the target. Additionally, the input is currently presumed to be unbounded. Future research
will focus on systems with bounded inputs and situations where only a subset of agents has access to the target’s trajectory
information.
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