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Summary

We are interested in problems of diffraction of an acoustic or electromagnetic wave by
a perfectly conducting planar obstacle coated with thinmultilayers of dielectric mate-
rials. The aim is to obtain boundary condition that replaces the effect of dielectric
thin layers. This condition is constructed from an approximation of the Dirichlet-to-
Neumann operator. In this paper, we analyze the construction and the approximation
of this operator.
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1 INTRODUCTION

The diffraction of acoustic and electromagnetic waves by a perfectly conducting obstacle coated with thin dielectric layers,
emerges in many applications in the industrial world such as electromagnetic compatibility problems in embedded systems,
antennas, satellites, telecommunications, sonar, or also applications involving the detection of objects and radar stealth, see, for
example6,20,3,23,22,10 and the references therein.
In this paper, we are particularly interested in problems of diffraction by perfectly conducting planar obstacles, covered with

homogenous thin dielectric multilayers. These problems are called transmission problems, which consist in solving a system
of partial differential equations in an exterior domain with a radiation condition at infinity and in an interior domain relating
to thin dielectric layers. The governing equations are coupled by connecting conditions set on the common interface between
exterior and interior domains and between thin layers as well. Solving numerically these equations is challenging since it requires
discretizing on the scale of the layers’ thickness. The mesh then contains a very large number of elements, which makes the
calculations long and sometimes imprecise5,6,9,2,16. For this reason, we try to replace our problem by another problem that
does not bring in any more thin layers. The use of so-called Dirichlet-to-Neumann operator, relative to the equations set in
thin layers allows to reduce the solving of our original problem to a problem that is posed only in the exterior domain with an
appropriate boundary condition known as Dirichlet-to-Neumann condition6,8,11,12,19 and abbreviated DtoN condition, which
is also called Steklov-Poincaré condition or impedance condition as well7,4. The whole difficulty rests on the knowledge of this
operator, which is generally non-explicit6,13. Fortunately, it is possible to explicit and approximate it in many cases as in planar
obstacles14,17,1, we are then able to construct the DtoN conditions in this case. We will exploit the fact that the thicknesses of
thin layers tend to zero to derive the approximations of the DtoN operator.
This paper is organized as follows. In the next section we start with presenting briefly the physical problem and the mathe-

matical governing equations. Then we reformulate our problem using DtoN operator, after that, we determine the exact formula
of this operator. The third section is devoted to constructing approximations of the DtoN operator using two approaches: the first
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one consists of writing Taylor expansions iteratively in the thin layers and the second approach is to use asymptotic expansions.
In the last section we apply the results obtained in the third section to a particular problem of scattering of electromagnetic waves.

2 PROBLEM STATEMENT

We consider the case of a perfectly conducting obstacle (made of metal) coated with p parallel thin dielectric layers of thicknesses
ℎj , j = 1, .., p. The dielectric of thickness ℎj is characterized by a relative permittivity "j and a relative permeability �j , j =
1, .., p. The metallic obstacle coated with thin dielectric layers is placed in a dielectric medium (propagation medium). This
medium can be the vacuum and it is characterized by a permittivity "0 and permeability �0. This system is illuminated by an
incident wave characterized by its number k > 0. When this wave encounters the obstacle, it generates a wave diffracted by this
latter.
The metallic obstacle occupies a three-dimensional planar domain Ω; the thin layers are denoted by Ωj with interior boundary
)intΩj , j = 1, .., p.. The domain Ω adding to it the p thin layers is denoted by Ω+ with boundary Γ and unit outward normal
vector n. The exterior domain of Ω+ is designated Ω−. The thickness of the layers from the first till the jtℎ is ℎ̃j = ℎ1 + ...+ ℎj .

We set ℎ̃p = ℎ and ℎj = �jℎ with
p
∑

j=1
�j = 1, by convention ℎ̃0 = ℎ0 = �0 = 0.

We introduce the family Γ (s) of parallel surfaces

Γ (s) = {y; y = x − sn (x) , x ∈ Γ} , s ∈ (−∞, ℎ] .

We notice that Γ (0) = Γ, )intΩj = Γ
(

ℎ̃j
)

and Ωj is the domain limited by Γℎ̃j and Γℎ̃j−1 . We set Γj = Γ
(

ℎ̃j
)

, j = 1, .., p.

Γp

Γp−1

Γj

Γj−1

Γ1

Γ

x

z
(outward normal)

n

ℎ1

ℎj

ℎp

...
..

...
...

ℎ̃j

ℎ̃p−1

ℎ

...
..

...
...

Ω1

Ωj

Ωp

Ω (obstacle)

Ω−

Many scattering problems of acoustic and electromagnetic waves by a perfectly conducting obstacle coated with thin dielectric
layers can be represented in curvilinear coordinates20 by the equations

)
)s
p (s) =pp (s) in 

((

ℎ̃p−1, ℎ̃p
)

;X
)

,

p
(

ℎ̃p
)

=
[

'1, '2
]T , with �1'1 + �2'2 = ',

)
)s
j (s) =jj (s) in 

((

ℎ̃j−1, ℎ̃j
)

;X
)

, j = 1, ...p − 1,

j
(

ℎ̃j
)

= j+1
(

ℎ̃j
)

j = 1, ...p − 1,

)
)s
0 (s) =00 (s) in  ((−∞, 0) ;X) ,

0 (0) = 1 (0) ,

+ condition for s→ −∞.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(1)
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Where j =
[

Uj , Vj
]T is in 1

((

ℎ̃p−1, ℎ̃p
)

;X
)

,j =
[

Aj Gj
Fj Bj

]

are linear differential operators with values in a Hilbert space

X on ℝn, n = 1, 2, 3. The constants �1, �2 and ' are given.

ℎ̃p

=

ℎ

ℎ̃p−1ℎ̃jℎ̃j−1ℎ̃1ℎ̃0 .... ....

=

ℎ1

=

0

−∞

pj1
0

Remark 1. For planar obstacles, the operatorsj are independent of s, however for arbitrary shaped obstacles it does dependent
on s.

In order to ensure that the problem (1) is well-posed in the sense of15, page 83, we assume that j , j = 1, ...p are generators of
strongly continuous semigroups, see21.

2.1 Dirichlet-to-Neumann operator
As we mentioned in the introduction, solving numerically the problem (1) is challenging since it requires discretizing on the
scale of the layers’ thickness. The mesh then contains a very large number of elements, which makes the calculations long and
sometimes imprecise. For this reason, we reformulate our problem (1) and replace it by another problem that does not bring in
any more thin layers. The use of Dirichlet-to-Neumann operator, relative to the equations set in thin layers allows to reduce the
solving of our original problem to a problem that is posed only in the exterior domain Ω− corresponding to s ∈ (−∞, 0).
Our goal, therefore, is to rewrite the problem (1) as a problem in the exterior domain with an appropriate boundary condition
on Γ corresponding to s = 0, which is known as Dirichlet-to-Neumann condition. To express this condition accurately, we
introduce the Dirichlet-to-Neumann operator, abbreviated DtoN, which is also called Steklov-Poincaré operator and is known
as impedance operator as well7,4.
We begin by defining this new operator. For � =

[

�1, �2
]T sufficiently smooth defined on s = 0, we consider + =

(

1, ...,p
)

the solution of the following problem:

)
)s
1 (s) =11 (s) in 

((

0, ℎ̃1
)

;X
)

,

1 (0) =
[

�1, �2
]T ,

)
)s
j (s) =jj (s) in 

((

ℎ̃j−1, ℎ̃j
)

;X
)

, j = 2, ...p,

j
(

ℎ̃j−1
)

= j−1
(

ℎ̃j−1
)

j = 2, ...p,

p
(

ℎ̃p
)

=
[

'1, '2
]T with �1'1 + �2'2 = '.

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(2)

Definition 1. We define the DtoN operator by the mapping

S ∶ �1 ←→ S�1 = �2. (3)

The problem for s ∈ (−∞, 0), becomes then

)
)s
0 (s) =00 (s) in  ((−∞, 0) ;X) ,

(

0 (0)
)

2 = S
(

0 (0)
)

1 ,

+ condition for s→ −∞.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4)

The inverse operator S−1 ∶ �2 ←→ S−1�2 = �1 is called Neumann-to-Dirichlet operator18.

Remark 2. If we are interested in the values inside the thin layers, we define in a similar manner, the DtoN operator S posed in
the exterior domain.
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2.2 Determination of the exact Dirichlet-to-Neumann operator
Note that the calculation of the DtoN operator returns to express p

(

ℎ̃p
)

=
[

'1, '2
]T in terms of 0 (0) =

[

�1, �2
]T.

Theorem 1. The exact Dirichlet-to-Neumann operator is given by

S ∶ �1 ←→ S�1 =
(

�1Q1 + �2Q2
)−1 (' −

(

�1P1 + �2P2
)

�1
)

. (5)

where
[

P1 P2
Q1 Q2

]

= exp
(

ℎpp
)

... exp
(

ℎjj
)

... exp
(

ℎ11
)

.

Proof. Existence and uniqueness of the DtoN operator S comes from solving successively Cauchy problems.
The unique solution of the Cauchy problem

)
)s
j (s) =jj (s) in 

((

ℎ̃j−1, ℎ̃j
)

;X
)

,

j
(

ℎ̃j−1
)

= j−1
(

ℎ̃j−1
)

,

}

(6)

is given by
j (s) = exp

((

s − ℎ̃j−1
)

j
)

j
(

ℎ̃j−1
)

, s ∈
(

ℎ̃j−1, ℎ̃j
)

therefore for s = ℎ̃j and replacing j
(

ℎ̃j−1
)

by j−1
(

ℎ̃j−1
)

yields

j
(

ℎ̃j
)

= exp
((

ℎ̃j − ℎ̃j−1
)

j
)

j−1
(

ℎ̃j−1
)

= exp
(

ℎjj
)

j−1
(

ℎ̃j−1
)

.

By induction it follows that
[

'1, '2
]T = p

(

ℎ̃p
)

= ̃p
[

�1, �2
]T , (7)

where
̃p ≡

[

P1 Q1
P2 Q2

]

= exp
(

ℎpp
)

... exp
(

ℎjj
)

... exp
(

ℎ11
)

. (8)

The equation (7) is equivalent to
P1�1 +Q1�2 = '1,

P2�1 +Q2�2 = '2.

}

Since �1'1 + �2'2 = ' then we get
(

�1P1 + �2P2
)

�1 +
(

�1Q1 + �2Q2
)

�2 = '.

Consequently
S ∶ �1 ←→ S�1 = �2 =

(

�1Q1 + �2Q2
)−1 (' −

(

�1P1 + �2P2
)

�1
)

.

In most cases either �1 or �2 is equal to zero.
In the case where �2 = 0 the DtoN operator S1 is

S1 ∶ �1 ←→ S1�1 = Q−1
1
(

'1 − P1�1
)

. (9)

Similarly if �1 = 0 the DtoN operator S2 is

S2 ∶ �1 ←→ S2�1 = Q−1
2
(

'2 − P2�1
)

. (10)

Unfortunately, the formula of the exact DtoN operator is not practical for computation and it will be useful and interesting to
approximate it. Our goal in this paper is to approximate this operator by an operator that is a rational fraction with respect to the
thickness of thin layers.

3 APPROXIMATION OF DIRICHLET-TO-NEUMANN OPERATOR

We present two different approaches to approximate the DtoN operator. A first approach consists in using a Taylor expansions.
A second approach concerns the asymptotic analysis of the problem with respect to the thickness of thin layers.
In order to simplify the formulas of the approximate DtoN operator, we introduce the multi-index notation.
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3.1 Multi-index notation
An p-dimensional multi-index is an p-tuple � =

(

�1, �2, ..., �p
)

of non-negative integers, which is in the set p-dimensional natural
numbers, denoted ℕp0.
For multi-indices � and � in ℕp0 we define:
Componentwise sum and difference as � ± � =

(

�1 ± �1, �2 ± �2, ..., �p ± �p
)

.
Sum of components or absolute value as |�| = �1 + �2 + ... + �p.
Factorial as �! = �1!�2!...�p!.
A vector V =

(

V1, V2, ..., Vp
)

to the power of multi-index � as V� = V �1
1 V

�2
2 ...V

�p
p .

3.2 Approximation of the DtoN operator by Taylor expansions
Recall that the calculation of the DtoN operator returns to express p

(

ℎ̃p
)

in terms of 0 (0).
We start from the condition of electrical conductor at s = ℎ̃p which is p

(

ℎ̃p
)

=
[

'1, '2
]T and we write a Taylor expansion at

the points s = ℎ̃j−1, j = p, ..., 1. Using the fact thatj (s) satisfies the equation
)
)s
j (s) =jj (s) in

(

ℎ̃j−1, ℎ̃j
)

and taking into
account of the transmission conditionsj

(

ℎ̃j−1
)

= j−1
(

ℎ̃j−1
)

, we obtain a formula that connectsp
(

ℎ̃p
)

and0 (0). Then we
can easily derive an approximation of the DtoN operator; the order of Taylor expansion will give the order of the approximation.

Theorem 2. An approximation of order n for DtoN operator (5) is given by

S ∶ �1 ←→ S�1 =
(

�1Q1,n + �2Q2,n
)−1 (' −

(

�1P1,n + �2P2,n
)

�1
)

, (11)

where

P1,n =
n
∑

l=0
Alℎ

l, Q1,n =
n
∑

l=0
Glℎ

l, P2,n =
n
∑

l=0
Flℎl, Q2,n =

n
∑

l=0
Blℎl, (12)

with
Nl ≡

[

Al Gl
Fl Bl

]

=
∑

|�|=l

M�

�!
, M =

(

�pp, ..., �11
)

.

Proof. By Taylor expansions

j
(

ℎ̃j
)

=
n
∑

l=0
 (l)
j
(

ℎ̃j−1
)

(

ℎj
)l

l!
, (13)

where (l)
j is the derivative of order l ofj with respect to swith the convention

(0)
j ≡ j . For simplicity in writing we omitted

the term o
((

ℎj
)n).

Since the matrix operatorj is independent of s, we can easily see that

 (l)
j (s) =

(

j
)l j (s) . (14)

Replacing  (l)
j
(

ℎ̃j−1
)

by its value of (14) in (13), then substituting j−1
(

ℎ̃j−1
)

for j
(

ℎ̃j−1
)

, we obtain

j
(

ℎ̃j
)

=Mj,nj−1
(

ℎ̃j−1
)

, (15)

where

Mj,n =
n
∑

l=0

(

j
)l
(

ℎj
)l

l!
=

n
∑

l=0

(

�jj
)l ℎl

l!
, (16)

with
(

j
)0 is the 2 × 2 identity matrix. By induction we obtain

p
(

ℎ̃p
)

= M̃p,n0 (0) , (17)

with
M̃p,n =Mp,nMp−1,n...M2,nM1,n. (18)

According to the formula of exact DtoN operator (5), its approximation of order n can be expressed as

S ∶ �1 ←→ S�1 =
(

�1Q1,n + �2Q2,n
)−1 (' −

(

�1P1,n + �2P2,n
)

�1
)

, (19)

where
[

P1,n Q1,n
P2,n Q2,n

]

= M̃p,n. (20)
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To get approximation of any order with respect to ℎ, we need to express M̃p,n as a polynomial ordered by increasing powers of ℎ.
The matrix M̃p,n can be written as

M̃p,n =Mp,n...M2,nM1,n =
⎛

⎜

⎜

⎝

n
∑

lp=0

(

�pp
)lp ℎlp

lp!

⎞

⎟

⎟

⎠

....

( n
∑

l1=0

(

�11
)l1 ℎl1

l1!

)

, (21)

which can be rearranged to the conventional form

M̃p,n =
n
∑

l=0
Nlℎ

l, (22)

where

Nl ≡
[

Al Gl
Fl Bl

]

=
∑

l1+l2+...+lp=l

((

�pp
)lp

lp!
...

(

�22
)l2

l2!

(

�11
)l1

l1!

)

, (23)

or alternatively it can be written as

Nl =
∑

0≤l1≤l2≤...≤lp−1≤l

((

�pp
)l−lp−1

(

l − lp−1
)

!
...

(

�22
)l2−l1

(

l2 − l1
)

!

(

�11
)l1

l1!

)

.

With the multi-indices notations introduced above, the termNl can simply be written as

Nl =
∑

|�|=l

M�

�!
, (24)

where M =
(

�pp, ..., �11
)

. The calculation of Nl, l = 1, ...n determines the approximation of order n of DtoN operator,
which is given by the formula (19) with

P1,n =
n
∑

l=0
Alℎ

l, Q1,n =
n
∑

l=0
Glℎ

l, P2,n =
n
∑

l=0
Flℎl, Q2,n =

n
∑

l=0
Blℎl.

3.2.1 Approximation of order 0
We begin the calculations with something that is more simple, i.e. an approximation of order 0. In this case the corresponding
matrixN0 is a 2 × 2 identity matrix. The approximation of order 0 is therefore given by

S�1 =
1
�2

(

' − �1�1
)

if �2 ≠ 0 and S−1�2 = '1 if �2 = 0.

The associated DtoN conditions are
(

0 (0)
)

2 =
1
�2

(

' − �1
(

0 (0)
)

1

)

if �2 ≠ 0 and
(

0 (0)
)

1 = '1 if �2 = 0.

These conditions are in fact quite reasonable, they simply consist of completely removing the thin layers. However, they are
uninteresting because they do not take into account the effect of thin layers. They are not satisfactory only when the thicknesses
of the layers become almost zero. We should therefore go further in our Taylor expansion to lead to conditions of higher order
that are more useful. These conditions of order 0 must be recovered in all higher order approximations by letting the thickness
ℎ tend to zero.

3.2.2 Approximation of order 1
Let us now examine the approximation of order 1. The matrixN1 is given by

N1 ≡
[

A1 G1
F1 B1

]

=
p
∑

j=1
�jj =

p
∑

j=1
�j

[

Aj Gj
Fj Bj

]

.

Therefore, the approximate DtoN operator of order 1 is

S�1 =
' −

(

�1 +
(

�1A1 + �2F1
)

ℎ
)

�1
�2 +

(

�1G1 + �2B1
)

ℎ
,
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where

A1 =
p
∑

j=1
�jAj , G1 =

p
∑

j=1
�jGj , F1 =

p
∑

j=1
�jFj , B1 =

p
∑

j=1
�jBj .

3.2.3 Approximation of order 2
The matrixN2 can be written as

N2 =
p
∑

i,j,i>j
�i�jij +

1
2

p
∑

j=1
�2j

2
j ≡

[

A2 G2
F2 B2

]

, (25)

and thus the approximation of DtoN operator in this case is

S�1 =
' −

(

�1 +
(

�1A1 + �2F1
)

ℎ +
(

�1A2 + �2F2
)

ℎ2
)

�1
�2 +

(

�1G1 + �2B1
)

ℎ +
(

�1G2 + �2B2
)

ℎ2
(26)

with

A2 =
p
∑

i,j,i>j
�i�j

(

AiAj + GiFj
)

+ 1
2

p
∑

j=1
�2j

(

A2j + GjFj
)

, (27)

G2 =
p
∑

i,j,i>j
�i�j

(

AiGj + GiBj
)

+ 1
2

p
∑

j=1
�2j

(

AjGj + GjBj
)

, (28)

F2 =
p
∑

i,j,i>j
�i�j

(

FiAj + BiFj
)

+ 1
2

p
∑

j=1
�2j

(

FjAj + BjFj
)

, (29)

B2 =
p
∑

i,j,i>j
�i�j

(

FiGj + BiBj
)

+ 1
2

p
∑

j=1
�2j

(

FjGj + B2j
)

. (30)

The expression of S in terms of Aj , Gj , Fj and Bj for the approximations of higher order can be derived easily from the formula
(24). However, they are too long formulas and we would rather not give them here.

3.3 Asymptotic analysis
We will now present another approach of constructing approximations of the DtoN operator, based on the construction of an
asymptotic expansion with respect to the thickness of thin layers.

3.3.1 Problem reformulation
The determination of the approximated DtoN operator by asymptotic expansions, based primarily on reformulating the problem
(2), which helps eliminate the dependence of the problem geometry on the small parameter ℎ. This can be done by the following
change of variable:

t =
s − ℎ̃j
ℎj

+ j, ℎ̃j−1 ≤ s ≤ ℎ̃j , j = 1, ..., p. (31)

We then set
j (t) = j (s) , j − 1 ≤ t ≤ j, j = 1, ..., p. (32)

We are now able to write the equations of the problem (2) verified by the new unknowns j (t) , j = 1, ..., p.
The derivative of  with respect to the new variable t is written as

)
)t
j (t) = ℎj

)
)s
j (s) , j − 1 ≤ t ≤ j, j = 1, ..., p. (33)
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By inserting these formulas in the problem (2), we obtain

)
)t
1 (t) = ℎ111 (t) in  ((0, 1) ;X) ,

1 (0) =
[

�1, �2
]T ,

)
)t
j (t) = ℎjjj (t) in  ((j − 1, j) ;X) , j = 2, ...p,

j (j − 1) = j−1 (j − 1) j = 2, ...p,

p (p) =
[

'1, '2
]T .

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(34)

3.3.2 Asymptotic expansion
The thickness ℎ of the thin layers is assumed to be small enough. This allows us to postulate the existence of an asymptotic
expansion for the solution of the problem (34) in the following form:

j (t) =
∞
∑

l=0
j,l (t)ℎl, j − 1 ≤ t ≤ j, j = 1, ..., p, (35)

where the functions j,l are independent of ℎ.
By inserting these expressions in our problem (34) and formally identifying the same powers in ℎl, it will lead to systems of
equations that are independent of ℎ. They allow to determine iteratively the terms of our asymptotic expansion.
We will start by writing the auxiliary problems arising from this formal identification in the equations of the problem (34).

)
)t
1,0 = 0;

)
)t
1,l = �111,l−1, l ≥ 1 in  ((0, 1) ;X) ,

1,0 (0) =
[

�1, �2
]T ; 1,l (0) = 0, l ≥ 1

)
)t
j,0 = 0;

)
)t
j,l = �jjj,l−1, l ≥ 1 in  ((j − 1, j) ;X) , j = 2, ...p,

j,l (j − 1) = j−1,l (j − 1) , l ≥ 0, j = 2, ...p.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(36)

Solving these equations allows us to proceed to the determination of DtoN operator approximations. We immediately observe
that

1,l (t) =
1
l!
(

t�11
)l [�1, �2

]T , l ≥ 0 in  ((0, 1) ;X) .
Then solving iteratively for j,l we obtain

p,l (t) =

(

∑

|�|=l

(M (t))�

�!

)

[

�1, �2
]T , l ≥ 0, in  ((p − 1, p) ;X) . (37)

whereM (t) =
(

(t − p + 1) �pp, �p−1p−1, ..., �22, �11
)

.
Recall that the asymptotic expansion of the solution p is given by

p (t) =
∞
∑

l=0
p,l (t)ℎl.

Substituting p for t in p (t), we obtain

p (p) =
∞
∑

l=0
p,l (p)ℎl =

[

'1, '2
]T .

with

p,l (p) =

(

∑

|�|=l

M�

�!

)

[

�1, �2
]T , l ≥ 0,

whereM =M (p) =
(

�pp, �p−1p−1, ..., �22, �11
)

.
Finally we obtain the following formula:

( ∞
∑

l=0

(

∑

|�|=l

M�

�!

)

ℎl
)

[

�1, �2
]T =

[

'1, '2
]T ,
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which allows to determine the asymptotic expansion of DtoN operator that is given by

S�1 =
(

�1Q1 + �2Q2
)−1 (' −

(

�1P1 + �2P2
)

�1
)

,

where
[

P1 Q1
P2 Q2

]

=
∞
∑

l=0

(

∑

|�|=l

M�

�!

)

ℎl.

We restrict the sum over l from 0 to n to get an approximation of order n. We observe that is the same formula as obtained in
Taylor expansions.

4 APPLICATIONS

In this sectionwe apply the results obtained in approximating the DtoN operator, to a problem of scattering of a transverse electric
(TE) electromagnetic wave by perfectly conducting planar obstacles, covered with thin homogenous dielectric multilayers. In
TE electromagnetic waves, there will be simplifications in the components of electric and magnetic fields, the total wave can
be represented only by its non zero magnetic component, which is a scalar two variables x and y function denoted u (x, y).
Therefore, the scattering problem can be reduced to the following scalar problem in dimension two.

△up + �pup = 0 in Ωp,
)up
)y

(

x,−ℎ̃p
)

= 0, x ∈ ℝ,

△uj + �juj = 0 in Ωj , j = 1, ...p − 1,

1
"j

)uj
)y

(

x,−ℎ̃j
)

= 1
"j+1

)uj+1
)y

(

x,−ℎ̃j
)

; x ∈ ℝ, j = 1, ...p − 1,

uj
(

x,−ℎ̃j
)

= uj+1
(

x,−ℎ̃j
)

x ∈ ℝ, j = 1, ...p − 1,

△u0 + �0u0 = 0 in Ω−,

1
"0

)u0
)y

(x, 0) = 1
"1

)u1
)y

(x, 0) ; u0 (x, 0) = u1 (x, 0) , x ∈ ℝ,

+ a condition called of radiation,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

with �j = k2"j�j , j = 0, ..., p.

If we set j (s) =
[

Uj (s) , Vj (s)
]T =

[

uj (x,−s) ,
1
"j

)uj
)y

(x,−s)
]T

, then �1 = ' = 0 and j =
[

Aj Gj
Fj Bj

]

=

⎡

⎢

⎢

⎣

0 −"j
1
"j

(

�j +
)2

)x2

)

0

⎤

⎥

⎥

⎦

in the corresponding problem (2). In this case, the approximated DtoN operator of order n is

S ∶ � ←→ S� =
−P2,n
Q2,n

�, (38)

where
[

P2,n, Q2,n
]

is the second row of the 2 × 2 matrix M̃p,n =
n
∑

l=0
Nlℎl, Nl =

∑

|�|=l

M�

�!
withM =

(

�pp, ..., �11
)

.

We can prove easily thatNl is a diagonal matrix if l is even and it is with zeros in its diagonal if l is odd number. Consequently,
P2,n has only odd powers of ℎ and Q2,n has only even ones.

Remark 3. If the scattered wave is transverse magnetic (TM), it will be reduced to the same problem with the condition

up
(

x,−ℎ̃p
)

= 0 instead of
)up
)y

(

x,−ℎ̃p
)

= 0 and substituting � for ".
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Approximation of order 2
The matrix M̃p,2 for the approximation of order 2 is M̃p,2 = N0 +N1ℎ +N2ℎ2. As we have seen before, the matrices N0 and
N1 are

N0 =
[

1 0
0 1

]

; N1 =
p
∑

j=1
�j

[

Aj Gj
Fj Bj

]

=
[

0 G1
F1 0

]

, (39)

where

G1 = −
p
∑

j=1
�j"j , F1 =

p
∑

j=1

�j
"j
Lj with Lj = �j +

)2

)x2
. (40)

Using the results obtained in the formulas (25)-(30) we see that the matrixN2 can be written as

N2 =
[

A2 0
0 B2

]

,

where

A2 = −
p
∑

j=1

(

1
2
�j"j +

p
∑

k=j+1
�k"k

)

�j
"j
Lj , B2 = −

p
∑

j=1

(

1
2
�j"j +

j−1
∑

k=1
�k"k

)

�j
"j
Lj .

Thus, the approximate DtoN operator of order 2 is

S ∶ � ←→ S� =
−F1ℎ

1 + B2ℎ2
�. (41)

Approximation of order 4
As we mentioned above the matricesN3 andN4 are in the form

N3 =
[

0 G3
F3 0

]

, N4 =
[

A4 0
0 B4

]

.

Since the approximated DtoN operator of order 4 is

S ∶ � ←→ S� =
−F1ℎ − F3ℎ3

1 + B2ℎ2 + B4ℎ4
�, (42)

we need to calculate only F3 and B4.
Using the general formula (24) for calculatingNl we see that

F3 = −
p
∑

i,j,i>j
!ij

�i�j
"i"j
LjLi −

1
6

p
∑

j=1

�3j
"j
L2j ,

B4 =
p
∑

i,j,i>j

ij

�i�j
"i"j
LjLi +

1
6

p
∑

j=1
bj

�3j
"j
L2j ,

where

!ij =
1
2

(

�i"i + �j"j
)

+
i−1
∑

k=j+1
�k"k, 
ij = !ijaj −

1
12
�2j "

2
j ,

aj =
1
2
�j"j +

j−1
∑

k=1
�k"k, bj =

1
4
�j"j +

j−1
∑

k=1
�k"k.

An approximation of order 4 that is a polynomial with respect to the thickness of thin layers is

S ∶ � ←→ S� =
(

−F1ℎ −
(

F3 − F1B2
)

ℎ3
)

�,

where

F3 − F1B2 = 2
p
∑

i,j,i>j
aj

�i�j
"i"j
LjLi +

p
∑

j=1
cj
�2j
"2j
L2j ,

with
aj =

1
2
�j"j +

j−1
∑

k=1
�k"k, cj =

1
3
�j"j +

j−1
∑

k=1
�k"k.
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In the case where the scattered wave is transverse magnetic (TM), the approximated DtoN operator of order 4 is

S ∶ � ←→ S� =
−1 − A2ℎ2 − A4ℎ4

G1ℎ +G3ℎ3
�, (43)

where

G1 = −
p
∑

i=1
�i�i, A2 = −

p
∑

i=1
ai
�i
�i
Li, G3 =

p
∑

i=1
ci
�i
�i
Li,

A4 =
p
∑

i,j,i>j

ij

�i�j
�i�j

LjLi +
1
6

p
∑

i=1
bi
�3i
�i
L2i ,

with

!ij =
1
2

(

�i�i + �j�j
)

+
i−1
∑

k=j+1
�k�k, 
ij = !ijai −

1
12
�2i �

2
i ,

ai =
1
2
�i�i +

p
∑

k=i+1
�k�k, bi =

1
4
�i�i +

p
∑

k=i+1
�k�k,

ci =

(

1
2
�i�i +

i−1
∑

k=1
�k�k

)

ai −
1
12
�2i �

2
i .
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