Competing Interests’ Statement
None.
References
[1] Swynghedauw B, Besse S, Assayag P, Carré F, Chevalier B, Charlemagne D, et al. Molecular and cellular biology of the senescent hypertrophied and failing heart. Am J Cardiol 1995;76(13):2D-7D.
[2] Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015;89(9):1401-38.
[3] Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 2006;7(8):589-600.
[4] Nishida K, Otsu K. Autophagy during cardiac remodeling. J Mol Cell Cardiol 2016;95:11-8.
[5] Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79(1):215-62.
[6] Zaffagnini G, Savova A, Danieli A, Romanov J, Tremel S, Ebner M, et al. p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J 2018;37(5):e98308.
[7] Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 2016;97:245-62.
[8] Guimaraes DA, Dos Passos MA, Rizzi E, Pinheiro LC, Amaral JH, Gerlach RF, et al. Nitrite exerts antioxidant effects, inhibits the mTOR pathway and reverses hypertension-induced cardiac hypertrophy. Free Radic Biol Med 2018;120:25-32.
[9] Iismaa SE, Li M, Kesteven S, Wu J, Chan AY, Holman SR, et al. Cardiac hypertrophy limits infarct expansion after myocardial infarction in mice. Sci Rep 2018;8(1):6114.
[10] Price AM, Ferro CJ, Hayer MK, Steeds RP, Edwards NC, Townend JN. Premature coronary artery disease and early stage chronic kidney disease. QJM 2018;111(10):683-6.
[11] Ba L, Gao J, Chen Y, Qi H, Dong C, Pan H, et al. Allicin attenuates pathological cardiac hypertrophy by inhibiting autophagy via activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways. Phytomedicine 2019;58:152765.
[12] Rodrigues PG, Leite-Moreira AF, Falcão-Pires I. Myocardial reverse remodeling: how far can we rewind? Am J Physiol Heart Circ Physiol 2016;310(11):H1402-22.
[13] Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J. Aging and autophagy in the heart. Circ Res 2016;118(10):1563-76.
[14] Murphy SP, Ibrahim NE, Januzzi Jr JL. Heart failure with reduced ejection fraction: a review. JAMA 2020; 324(5):488-504.
[15] Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S, et al. Heart failure: preventing disease and death worldwide. ESC Heart Fail 2014;1(1):4-25.
[16] Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: a report from the American heart association. Circulation 2020;141(9):e139-596.
[17] Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell 2019;176(1-2):11-42.
[18] Nemchenko A, Chiong M, Turer A, Lavandero S, Hill JA. Autophagy as a therapeutic target in cardiovascular disease. J Mol Cell Cardiol 2011;51(4):584-93.
[19] Wang ZV, Ferdous A, Hill JA. Cardiomyocyte autophagy: metabolic profit and loss. Heart Fail Rev 2013;18(5):585-94.
[20] Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011;147(4):728-41.
[21] Terman A, Brunk UT. Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res 2005;68(3):355-65.
[22] Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK. Autophagy and apoptosis: where do they meet? Apoptosis 2014;19(4):555-66.
[23] Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ Res 2017;120(11):1812-24.
[24] Li L, Xu J, He L, Peng L, Zhong Q, Chen L, et al. The role of autophagy in cardiac hypertrophy. Acta Biochim Biophys Sin (Shanghai) 2016;48(6):491-500.
[25] Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 2007;13(5):619-24.
[26] Belke DD, Betuing S, Tuttle MJ, Graveleau C, Young ME, Pham M, et al. Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Invest 2002;109(5):629-39.
[27] Lyon RC, Zanella F, Omens JH, Sheikh F. Mechanotransduction in cardiac hypertrophy and failure. Circ Res 2015;116(8):1462-76.
[28] McMullen JR, Shioi T, Huang WY, Zhang L, Tarnavski O, Bisping E, et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110α) pathway. J Biol Chem 2004;279(6):4782-93.
[29] Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 2010;6(5):600-6.
[30] Gao J, Chen X, Shan C, Wang Y, Li P, Shao K. Autophagy in cardiovascular diseases: role of noncoding RNAs. Mol Ther Nucleic Acids 2020;23:101-18.
[31] Qi J, Luo X, Ma Z, Zhang B, Li S, Zhang J. Downregulation of miR-26b-5p, miR-204-5p, and miR-497-3p expression facilitates exercise-induced physiological cardiac hypertrophy by augmenting autophagy in rats. Front Genet 2020;11:78.
[32] Ljubojević-Holzer S, Kraler S, Djalinac N, Abdellatif M, Voglhuber J, Schipke J, et al. Loss of autophagy protein ATG5 impairs cardiac capacity in mice and humans through diminishing mitochondrial abundance and disrupting Ca2+ cycling. Cardiovasc Res 2021;cvab112.
[33] Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales CR, Kong Y, et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci USA 2011;108(10):4123-8.
[34] Ceylan-Isik AF, Dong M, Zhang Y, Dong F, Turdi S, Nair S, et al. Cardiomyocyte-specific deletion of endothelin receptor A rescues aging-associated cardiac hypertrophy and contractile dysfunction: role of autophagy. Basic Res Cardiol 2013;108(2):335.
[35] Zhou L, Ma B, Han X. The role of autophagy in angiotensin II-induced pathological cardiac hypertrophy. J Mol Endocrinol 2016;57(4):R143-52.
[36] Hsu HC, Chen CY, Lee BC, Chen MF. High-fat diet induces cardiomyocyte apoptosis via the inhibition of autophagy. Eur J Nutr 2016;55(7):2245-54.
[37] Guo R, Hu N, Kandadi MR, Ren J. Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts. Autophagy 2012;8(4):593-608.
[38] Guo R, Ren J. Deficiency in AMPK attenuates ethanol-induced cardiac contractile dysfunction through inhibition of autophagosome formation. Cardiovasc Res 2012;94(3):480-91.
[39] Ninh VK, El Hajj EC, Mouton AJ, El Hajj MC, Gilpin NW, Gardner JD. Chronic ethanol administration prevents compensatory cardiac hypertrophy in pressure overload. Alcohol Clin Exp Res 2018;42(8):1408-17.
[40] Nah J, Miyamoto S, Sadoshima J. Mitophagy as a protective mechanism against myocardial stress. Compr Physiol 2017;7(4):1407-24.
[41] Fivenson EM, Lautrup S, Sun N, Scheibye-Knudsen M, Stevnsner T, Nilsen H, et al. Mitophagy in neurodegeneration and aging. Neurochem Int 2017;109:202-9.
[42] Xu R, Kang L, Wei S, Yang C, Fu Y, Ding Z, et al. Samm50 promotes hypertrophy by regulating Pink1-dependent mitophagy signaling in neonatal cardiomyocytes. Front Cardiovasc Med 2021;8:748156.
[43] Shirakabe A, Zhai P, Ikeda Y, Saito T, Maejima Y, Hsu CP, et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload–induced mitochondrial dysfunction and heart failure. Circulation 2016;133(13):1249-63.
[44] Vásquez-Trincado C, García-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, et al. Mitochondrial dynamics, mitophagy and cardiovascular disease: Mitochondria and cardiovascular disease. J Physiol 2016;594(3):509-25.
[45] Nakayama H, Chen X, Baines CP, Klevitsky R, Zhang X, Zhang H, et al. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 2007;117(9):2431-44.
[46] Mellis D, Caporali A. MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans 2018;46(1):11-21.
[47] Sun T, Li MY, Li PF, Cao JM. MicroRNAs in cardiac autophagy: small molecules and big role. Cells 2018;7(8):104.
[48] Wehbe N, Nasser S, Pintus G, Badran A, Eid AH, Baydoun E. MicroRNAs in cardiac hypertrophy. Int J Mol Sci 2019;20(19):4714.
[49] Van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 2008;105(35):13027-32.
[50] Shi J, Chen C, Xu X, Lu Q. MiR‐29a promotes pathological cardiac hypertrophy by targeting the PTEN/AKT/mTOR signalling pathway and suppressing autophagy. Acta Physiol (Oxf) 2019;227(2):e13323.
[51] Jin L, Zhou Y, Han L, Piao J. MicroRNA302-367-PI3K-PTEN-AKT-mTORC1 pathway promotes the development of cardiac hypertrophy through controlling autophagy. In Vitro Cell Dev Biol Anim 2020;56(2):112-9.
[52] Song XW, Li Q, Lin L, Wang XC, Li DF, Wang GK, et al. MicroRNAs are dynamically regulated in hypertrophic hearts, and miR-199a is essential for the maintenance of cell size in cardiomyocytes. J Cell Physiol 2010;225(2):437-43.
[53] Li Z, Song Y, Liu L, Hou N, An X, Zhan D, et al. MiR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation. Cell Death Differ 2017;24(7):1205-13.
[54] Li Z, Liu L, Hou N, Song Y, An X, Zhang Y, et al. MiR-199-sponge transgenic mice develop physiological cardiac hypertrophy. Cardiovasc Res 2016;110(2):258-67.
[55] Jentzsch C, Leierseder S, Loyer X, Flohrschütz I, Sassi Y, Hartmann D, et al. A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. J Mol Cell Cardiol 2012;52(1):13-20.
[56] Wu H, Wang Y, Wang X, Li R, Yin D. MicroRNA-365 accelerates cardiac hypertrophy by inhibiting autophagy via the modulation of Skp2 expression. Biochem Biophys Res Commun 2017;484(2):304-10.
[57] Shao J, Lin W, Lin B, Wang Q, Chen Y, Fan C. MiR-377 accelerates cardiac hypertrophy by inhibiting autophagy via targeting PPARγ. All Life 2020;13(1):456-65.
[58] Kumarswamy R, Volkmann I, Beermann J, Napp LC, Jabs O, Bhayadia R, et al. Vascular importance of the miR-212/132 cluster. Eur Heart J 2014;35(45):3224-31.
[59] Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 2012;3:1078.
[60] Huang J, Sun W, Huang H, Ye J, Pan W, Zhong Y, et al. MiR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity. PLoS One 2014;9(4):e94382.
[61] Judith D, Jefferies HBJ, Boeing S, Frith D, Snijders AP, Tooze SA. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J Cell Biol 2019;218(5):1634-52.
[62] Ellis KL, Cameron VA, Troughton RW, Frampton CM, Ellmers LJ, Richards AM. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail 2013;15(10):1138-47.
[63] Zhang C, Wang H, Qi Y, Kan Y, Ge ZR. Effects of miR‑103a‑3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5. Int J Mol Med 2019;43(5):1951-60.
[64] Qi H, Ren J, E M, Zhang Q, Cao Y, Ba L, et al. MiR-103 inhibiting cardiac hypertrophy through inactivation of myocardial cell autophagy via targeting TRPV3 channel in rat hearts. J Cell Mol Med 2019;23(3):1926-39.
[65] Ba B, Mayila A, Guo Y, Xu J, Xing S, Cao GQ. NLRC5 enhances autophagy via inactivation of Akt/mTOR pathway and ameliorates cardiac hypertrophy. Int J Exp Pathol 2022;103(1):23-30.
[66] Qi H, Ren J, Ba L, Song C, Zhang Q, Cao Y, et al. MSTN attenuates cardiac hypertrophy through inhibition of excessive cardiac autophagy by blocking AMPK /mTOR and miR-128/PPARγ/NF-κB. Mol Ther Nucleic Acids 2020;19:507-22.
[67] Xie X, Bi HL, Lai S, Zhang YL, Li N, Cao H, et al. The immunoproteasome catalytic β5i subunit regulates cardiac hypertrophy by targeting the autophagy protein ATG5 for degradation. Sci Adv 2019;5(5):eaau0495.
[68] SHi Y, Ge J, Li R, Li Y, Li N. Targeting of midkine alleviates cardiac hypertrophy via attenuation of oxidative stress and autophagy. Peptides 2022;153:170800.
[69] Wang YM, Mi SL, Jin H, Guo QL, Yu ZY, Wang JT, et al. 9-PAHSA Improves Cardiovascular Complications by Promoting Autophagic Flux and Reducing Myocardial Hypertrophy in Db/Db Mice. Front Pharmacol 2022;12:754387.
[70] Maeyer CD, Beckers P, Vrints CJ, Conraads VM. Exercise training in chronic heart failure. Ther Adv Chronic Dis 2013;4(3):105-17.
[71] McMurray JJV. Clinical practice. systolic heart failure. N Engl J Med 2010;362(3):228-38.
[72] Sweitzer NK. What is an angiotensin converting enzyme inhibitor? Circulation 2003;108(3):e16-8.
[73] Yin X, Peng C, Ning W, Li C, Ren Z, Zhang J, et al. MiR-30a downregulation aggravates pressure overload-induced cardiomyocyte hypertrophy. Mol Cell Biochem 2013;379(1-2):1-6.
[74] Wang B, Shen D, Tang J, Li J, Xiao Y, Chen X, et al. Sodium (±)‐5‐bromo‐2‐(α‐hydroxypentyl) benzoate ameliorates pressure overload‐induced cardiac hypertrophy and dysfunction through inhibiting autophagy. J Cell Mol Med 2019;23(9):6048-59.
[75] Wang X, Wu X, Lu Y, Sun Y, Zhu H, Liang J, et al. Potential involvement of miR-30e-3p in myocardial injury induced by coronary microembolization via autophagy activation. Cell Physiol Biochem 2017;44(5):1995-2004.
[76] Mitchell R, Hopcroft LEM, Baquero P, Allan EK, Hewit K, James D, et al. Targeting BCR-ABL-independent TKI resistance in chronic myeloid leukemia by mTOR and autophagy inhibition. J Natl Cancer Inst 2018;110(5):467-78.
[77] Bailey ST, Smith AM, Kardos J, Wobker SE, Wilson HL, Krishnan B, et al. MYC activation cooperates with Vhl and Ink4a/Arf loss to induce clear cell renal cell carcinoma. Nat Commun 2017;8:15770.
[78] Mizushima N, White E, Rubinsztein DC. Breakthroughs and bottlenecks in autophagy research. Trends Mol Med 2021;27(9):835-8.
[79] Xu M, Wan C, Huang S, Wang H, Fan D, Wu HM, et al. Oridonin protects against cardiac hypertrophy by promoting P21-related autophagy. Cell Death Dis 2019;10(6):403.
[80] Li RL, Wu SS, Wu Y, Wang XX, Chen HY, Xin JJ, et al. Irisin alleviates pressure overload-induced cardiac hypertrophy by inducing protective autophagy via mTOR-independent activation of the AMPK-ULK1 pathway. J Mol Cell Cardiol 2018;121:242-55.
[81] Xiao Y, Yang Z, Wu Q, Jiang X, Yuan Y, Chang W, et al. Cucurbitacin B protects against pressure overload induced cardiac hypertrophy. J Cell Biochem 2017;118(11):3899-910.
[82] Weng L, Zhang W, Ye Y, Yin P, Yuan J, Wang X, et al. Aliskiren ameliorates pressure overload-induced heart hypertrophy and fibrosis in mice. Acta Pharmacol Sin 2014;35(8):1005-14.
[83] Zhang Y, Ding X, Dai H, Peng W, Guo N, Zhang Y, et al. SB‐216763, a GSK‐3β inhibitor, protects against aldosterone‐induced cardiac, and renal injury by activating autophagy. J Cell Biochem 2018;119(7):5934-43.
[84] McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, et al. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 2004;109(24):3050-5.
[85] Sciarretta S, Volpe M, Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 2014;114(3):549-64.
[86] Kumar V, Aneesh KA, Kshemada K, Ajith KGS, Binil RSS, Deora N, et al. Amalaki rasayana, a traditional Indian drug enhances cardiac mitochondrial and contractile functions and improves cardiac function in rats with hypertrophy. Sci Rep 2017;7(1):8588.
[87] Liu R, Zhang HB, Yang J, Wang JR, Liu JX, Li CL. Curcumin alleviates isoproterenol-induced cardiac hypertrophy and fibrosis through inhibition of autophagy and activation of mTOR. Eur Rev Med Pharmacol Sci 2018;22(21):7500-08.
[88] Li YH, Chen C, Yao FJ, Su Q, Liu D, Xue RC, et al. AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1. Arch Biochem Biophys 2014;558:79-86.
[89] Wang ZP, Shen D, Che Y, Jin YG, Wang SS, Wu QQ, et al. Corosolic acid ameliorates cardiac hypertrophy via regulating autophagy. Biosci Rep 2019;39(12):BSR20191860.
[90] Su F, Shi M, Zhang J, Zheng Q, Zhang D, Zhang W, et al. Simvastatin protects heart from pressure overload injury by inhibiting excessive autophagy. Int J Med Sci 2018;15(13):1508-16.
[91] Liu B, Li L, Liu G, Ding W, Chang W, Xu T, et al. Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes. Acta Pharmacol Sin 2021;42(5):701-14.