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Summary

In the present paper we investigate the qualitative behaviour of a fractional SEIR
model with general incidence rate function and time delay where the fractional
derivative is defined in the Caputo sense. The basic reproduction number 0 is
derived using the method of next generation matrix and we give a complete study
of local stability of both free and endemic steady state. Using Liapunov method we
prove the global stability of free and endemic steady state under some hypotheses
on the parameters of the system. Finally to illustrate our results, we use the model to
predict the first peak of the COVID-19 epidemic in Algeria.
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1 INTRODUCTION

The role of epidemiology is the study of the spread of infectious diseases in a population and the factors that are responsible to
contribute of their occurrence. Many authors used different types of mathematical models of infectious diseases to understand
the transmission mechanisms, predictions and choose the best control strategies1,2,3,4,5,6,7. To take into account the incubation
period of the disease some authors point out the importance to introduce time delay in these models which lead them to consider
delay differential equations5,8,9,10.
Fractional differentiation is a generalization of classical differentiation and integration to arbitrary order. Since it naturally

include both memory and non local effects, this is quite relevant to model the spread of epidemics. Therefore, large numbers of
researchers4,11,12,13,14,15,16 have started to study epidemic models using the fractional differential equations.
Recently some authors inserted to a fractional-order epidemic model time delay to take into account the incubation period

of the disease. Rihan et al17 investigated a fractional endemic SIR model with time delay and long-rang temporal memory.
They studied their stability and proved that Hopf bifurcation appears when the delay passes through some critical value �∗. Rida
& al.18 provided the qualitative behavior of a fractional order SEI model with logistic growth and time delay. Deng & al.8
studied the stability of n-dimensional linear fractional systems with multiple time delays and determined a sufficient stability
condition for the system. Naresh et al9 studied the dynamical behavior for a delayed fractional order SIS epidemic model with
specific functional response. Owusu-Mensah et al16 proposed a nonlinear fractional mathematical model to study the COVID-19
epidemic. Different other types of a fractional-order epidemic systems with delays was condidered in4,6,7,19.
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2 Gacem ET AL

Following these works we propose in this paper a fractional-order SEIR epidemic model with time delay incorporating a
generalized incidence rate function of the form f (S, I). The model that we propose is a generalisation of most of the models
mentioned above.
The rest of the paper is organized as follows: In section 2 we give some preliminaries about fractional calculus. In section 3

we give the model and prove some existence and uniqueness results. In section 4 we investigate the existence of both free and
endemic steady states in terms of the basic reproduction number. In section 5 we study the local stability of the two steady states
of the system. In section 6 we use the Liapunov function to prove global stability of both free and endemic steady states. In
section 7 we apply the model to simulate the COVID-19 epidemic in Algeria. Finally we end the paper by a conclusion.

2 PRELIMINARIES

In this section we recall some fundamental concepts of fractional differential calculus where the derivative is in the Caputo sense.

Definition 1 (20). The Caputo fractional derivative of order � > 0 for a function f ∈ Cn(ℝ+;ℝ) is defined as

D�f (t) = 1
Γ(n − �)

t

∫
0

f n(s)
(t − s)�−n+1

ds,

where n is a positive integer such that � ∈ (n − 1, n). Also, the corresponding fractional integral of ordre � with Re(�) > 0 is
given by

I�[0,t]f (t) =
1
Γ(�)

t

∫
0

(t − s)�−1f (s)ds,

where Γ(.) is the Gamma function.

Lemma 1 (21). Let f, g ∶ [a, b] ←→ ℝ be such that D�f (t) and D�g(t) exist almost everywhere and let a1, a2 ∈ ℝ. Then
D�(a1f (t) + a2g(t)) exists almost everywhere, and

D�(a1f (t) + a2g(t)) = a1 D�f (t) + a2 D�g(t).

Further the Caputo fractional derivative for a constant function is zero.

Lemma 2 (22). Suppose that f ∈ C[a, b] and D�f ∈ C[a, b] with 0 < � ≤ 1. Then there exists �(x) ∈ [a, x], such that

f (x) = f (a) + 1
�
D�f (�)(x − a)� .

Based on the previous Lemma we have the following result.

Corollary 1. Suppose that f ∈ C([a, b]) and D�f ∈ C([a, b]).
If D�f (t) ≥ 0, (resp: D�f (t) ⩽ 0) ∀t ∈ (a, b), then f is nondecreasing (resp: nonincreasing) in [a, b].

Definition 2. The constant point x∗ is a steady state of the fractional model

D�x(t) = f (t, x(t)),

if and only if f (t, x∗) = 0 for all t > 0.

Lemma 3 (13). Let � ∈ (0, 1) and consider a continuous function x ∶ [t0,∞) ←→ ℝ satisfying the following condition

D�x(t) + �x(t) ≤ �, t ≥ t0, �, � ∈ ℝ, � ≠ 0.

Then we have the inequality

x(t) ≤
(

x(t0) −
�
�

)

E�
(

−�(t − t0)�
)

+ �
�
,

for all t ≥ t0, where E� is the Mittag-Leffler function of one parameter defined by

E�(t) =
∞
∑

k=0

tk

Γ(�k + 1)
.

We can now state the following existence result for fractional differential equations.
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FIGURE 1 The diagram of the model.

Theorem 1 (23). Let � ∈ (0, 1], Ω ⊂ ℝn a domain and f ∶ [t0,∞) × Ω ←→ ℝn be a function satisfying the Lipschitz condition
on x and consider the following fractional order equation

D�x(t) = f (t, x(t)), t > t0,

with the initial condition x(t0) = x0 ∈ Ω. Then the above system has a unique maximal solution.

Lemma 4 (8). Let � > 0, � ∈ (0, 1], A,B two (n × n) square matrices and ' ∈ C ([−�, 0];ℝn). Consider the linear fractional
delayed differential system with the Caputo derivative

{

D�x(t) = Ax(t) + Bx(t − �), t > 0,
x(t) = '(t), t ∈ [−�, 0].

(1)

We define the characteristic equation of system (1) by

Δ(s) = det
(

s�In − A − Be−s�
)

= 0.

If all the roots of the characteristic equation Δ(s) = 0 have negative real parts, then the zero solution of system (1) is locally
asymptotically stable.

Lemma 5 (8). 1. If all the eigenvalues � of the matrixM = A + B satisfy | arg(�)| > � �
2
and the characteristic equation

Δ(s) = 0 has a no purely imaginary roots for � > 0 then the zero solution of system (1) is locally asymptotically stable.

2. Suppose � = 0. If all the eigenvalues � ofM satisfy | arg(�)| > � �
2
, then the zero solution of (1) is locally asymptotically

stable.

Lemma 6 (14). Let x∗ ∈ Ω ⊂ ℝn be an equilibrium point of the system

D�x(t) = f (t, x(t)), t ≥ t0,

and let V (t, x) ∶ [t0,∞) × Ω ←→ ℝ be a continuously differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x),
D�V (t, x) ≤ −W3(x),

for t ≥ t0 and x ∈ Ω, where Wi(x), i = 1, 2, 3 are continuous and positively defined functions on Ω. Then x∗ is uniformly
asymptotically stable.

3 THE MODEL

Denote byN(t) the total population size at time t. We assume thatN(t) is divided into four compartments which are: susceptible
individuals S(t), exposed individuals E(t), infected individuals I(t) and recovered individuals R(t) at time t. The susceptible
class S consists of individuals who are at risk of catching infection due to close contact with infected individuals. The exposed
class E are revealed individuals but not yet infectious. The infected class I consists of individuals who have already caught
the disease and they can transfer it to susceptible. the recovered class R consists of individuals who were infected and are now
healthy. Denote by � the recruitment rate of susceptible individuals, � the death rate of all individuals, � the death rate of infected
individuals caused by the disease and 
 the transfer rate from infected compartment to recovery compartment. The diagram of
the model is given in Figure 1. The spreading dynamic of the epidemic is then governed by the following fractional system
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

D�S(t) = � − f (S(t), I(t)) − �S(t),
D�E(t) = f (S(t), I(t)) − f (S(t − �), I(t − �))e−�� − �E(t),
D�I(t) = f (S(t − �), I(t − �))e−�� − (� + � + 
)I(t),
D�R(t) = 
I(t) − �R(t),

(2)

where D� is the Caputo fractional-order derivative with 0 < � ≤ 1. We add to system (2) the following initial conditions

S(�) = '1(�), E(�) = '2(�), I(�) = '3(�), R(�) = '4(�), � ∈ [−�, 0], (3)

where 'i ∈ C ([−�, 0];ℝ) are non negative such that 'i(0) > 0 for i = 1, 2, 3, 4. We assume that the incidence function f is
always positive, continuous and satisfy for all S ≥ 0, I ≥ 0 the following conditions1

(H1) f (0, I) = f (S, 0) = 0,
(H2) )f (S,0)

)S
= 0,

(H3) )f (S,I)
)S

> 0,
(H4) )f (S,I)

)I
> 0,

(H5) )2f (S,I)
)2I

< 0.

(4)

The time delay � in this model represents the incubation period and the term f (S(t− �), I(t− �))e−�� represents the individuals
who were exposed at time t − � and survive to time t. Denotes by C = C([−�, 0];ℝ) the Banach space of continuous functions
mapping the interval [−�, 0] intoℝ equipped with the sup-norm. The non negative cône of C is defined as C+ = C([−�, 0],ℝ+).
The phase space of system (2) is then C × C × C × C . Since the first and the third equations are independent of the variable E
and R the model can be reduced to the following sub-system

{

D�S(t) = � − f (S(t), I(t)) − �S(t),
D�I(t) = f (S(t − �), I(t − �))e−�� − (� + � + 
)I(t).

(5)

In the following we will prove existence and positivity of solutions of system (5).

Lemma 7. There exists a unique solution for the fractional-order system (5) with the initial conditions (3). Furthermore, every
solution of system (5)-(3) is positive, bounded and enters some compact attracting set.

Proof. By Theorem 1 system (5) with initial condition (3) have an unique solution on some time interval. To prove that S ≥ 0,
we use contradiction. Assume that there exists a &1 > 0 such that S(t) > 0 for t ∈ [0, &1), S(&1) = 0 and S(t) < 0 for
t ∈ (&1, &1 + �1] with �1 sufficiently small. From the first equation of system (5), we can see that D�S(t)|t=&1 = � > 0 and hence
by Lemma 2 there exists �1 such that

S(&1 + �1) = S(&1) +
1
�
D�S(�1)��1 ,

where &1 ≤ �1 ≤ &1 + �1. If we choose �1 sufficiently small we can see S(&1 + �1) > 0 which contradicts the fact that S(t) < 0
in [&1, &1 + �1]. Hence, we have S(t) ≥ 0 for t ≥ 0.
To prove that I ≥ 0 assume by contradiction that there exists a &2 > 0 such that I(t) > 0 for t ∈ [0, &2), I(&2) = 0 and I(t) < 0
for t ∈ (&2, &2 + �2] with �2 sufficiently small. From the second equation of system (5) we have

D�I(t)|t=&2 = f (S(t − �), I(t − �))e
−�� ≥ 0,

using the Lemma 2 there exists �2 where
I(&2 + �2) = I(&2) +

1
�
D�I(�2)��2 ,

where &2 ≤ &3 ≤ &2 + �2, and then I(&2 + �2) > 0 which contradicts the fact that I(t) < 0 for t ∈ [&2, &2 + �2].
Now we prove that S, I > 0. Let us assume that there exists t1 > 0 such that S(t1) is the minimum of S and S(t1) = 0, then

D�S(t1) = � > 0,

witch implies that D�S is non negative in [t1 − &, t1 + &[ for some & > 0, then by Corollary 1 S is strictly increasing function
and hence S(t1 − &) < S(t1) = 0 which is a contradiction. We can use a similar argument to prove that I > 0.
To prove the boundedness of solutions let us define

N(t) = e−��S(t − �) + I(t),
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the fractional derivative ofN(t) is
D�N(t) ≤ e−��D�S(t) +D�I(t)

≤ � − �N(t),
by Lemma 3

N(t) ≤
(

N0 −
�
�

)

E�(−�t�) +
�
�
,

whereN0 = S(0) + I(0). The last inequality leads to

lim sup
t←→+∞

N(t) ≤ �
�
.

The solution of system (5) are then uniformly bounded and global. Further the set

B =
{

0 < S + I ≤ �
�

}

,

is a positive attracting set for system (5).

4 STEADY STATES

To find steady states of system (5) we solve the following system
{

� − f (S, I) − �S = 0,
e−��f (S, I) − (� + � + 
)I = 0.

(6)

It is clear that (S0, 0)T , with S0 = �
�
is always a solution of (6). System (5) admits a free steady state E0 = (S0, 0). To derive

the basic reproduction number of system (5) we use the method of next generation matrix2,3.

Lemma 8. The basic reproduction number of system (5) is given by

0 =
e−��

�+�+

)f
)I
(S0, 0).

Proof. Put X = (S, I)T , then system (5) can be written as follows
D�X = F (X) − V (X),
V (X) = V −(X) − V +(X),

where
F (X) =

(

0
e−��f (S, I)

)

,

and
V +(X) =

(

�
0

)

, V−(X) =
(

f (S, I) + �S
(� + � + 
)I

)

.

F (X) denote the rate of appearance of new infected individuals in each of the compartments S and I , V +(X) the rate of transfer
of individuals into the compartments S and I by all other means and V −(X) the rate of transfer of individuals out of the
compartments S and I . Let  and  be the Jacobian matrices of F (X), V (X) respectively at E0, then

 =

(

0 0
e−�� )f

)S
(S0, 0) e−�� )f

)I
(S0, 0)

)

,  =

(

� + )f
)S
(S0, 0) )f

)I
(S0, 0)

0 � + � + 


)

.

Following3 we define 0 as the spectral radius of the next generation matrix −1, with  non-singular as required. Using
(H2) we get

0 = �(−1) = e−��

�+�+

)f
)I
(S0, 0).

Theorem 2. If0 > 1, then system (5) have an unique endemic steady state E∗ = (S∗, I∗).

Proof. Let (S, I) be a solution of (6) such that I ≠ 0. We have by the first and second equations of (6)

� − �S = f (S, I) = e��(� + � + 
)I,

which means
S = �−e�� (�+�+
)I

�
.
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It is clear that S exists if and only if I < Ĩ = �e−��

�+�+

. We then suppose that 0 < I < Ĩ , where I is the solution of the following

equation
f
(

�−e�� (�+�+
)I
�

, I
)

− e��(� + � + 
)I = 0. (7)

If I = 0 we obtain the free steady state E0. For I ≠ 0, letH be the function defined by

H(I) =
f
(

�−e�� (�+�+
)I
�

,I
)

I
− e��(� + � + 
). (8)

Using the hypotheses (4) we conclude that the time derivative ofH is negative. By the definition of0 we have

lim
I←→0+

H(I) = e��(� + � + 
)(0 − 1),

if0 > 1 this leads to
lim
I←→0+

H(I) > 0.

On the other hand
lim
I←→Ĩ

H(I) = −e��(� + � + 
) < 0.

Thus by the fundamental Theorem of algebra there exists an unique positive root 0 < I∗ < Ĩ of (7) and system (5) has an unique
endemic steady state E∗ = (S∗, I∗).

5 LOCAL STABILITY OF STEADY STATES

In this section we study local stability of both free and endemic steady states. Denote by (S, I) one of the two steady states E0

or E∗. The linearized system (5) around (S, I) takes the following form
⎧

⎪

⎨

⎪

⎩

D�S(t) = −
(

)f (S,I)
)S

+ �
)

S(t) − )f (S,I)
)I

I(t),

D�I(t) = −(� + 
 + �)I(t) + e−�� )f (S,I)
)S

S(t − �) + e−�� )f (S,I)
)I

I(t − �).
(9)

Taking the Laplace transform on both sides of (9) we have
⎧

⎪

⎪

⎨

⎪

⎪

⎩

s�L[S(t)] = s�−1S(0) −
(

)f (S,I)
)S

+ �
)

L[S(t)] − )f (S,I)
)I

L[I(t)],

s�L[I(t)] = s�−1I(0) − (� + 
 + �)L[I(t)] + e−(�+s)� )f (S,I)
)S

(

L[S(t)]

+ ∫ 0
−� e

−st'1(t)dt
)

+ e−(�+s)� )f (S,I)
)I

(

L[I(t)] + ∫ 0
−� e

−st'3(t)dt
)

,

whereL[I(t)],L[S(t)] are the Laplace transform of S(t) and I(t) respectively. The above system can be written in the following
form

A(s)
(

L[S(t)]
L[I(t)]

)

=
(

B1(s)
B2(s)

)

,

with
⎧

⎪

⎪

⎨

⎪

⎪

⎩

B1(s) = s�−1S(0),

B2(s) = s�−1I(0) + e−(�+s)� )f (S,I)
)S

0
∫
−�
e−st'1(t)dt

+e−(�+s)� )f (S,I)
)I

0
∫
−�
e−st'3(t)dt,

and

A(s) =

(

s� + )f (S,I)
)S

+ � )f (S,I)
)I

−e−(�+s)� )f (S,I)
)S

s� − e−(�+s)� )f (S,I)
)I

+ � + 
 + �

)

.

The characteristic polynomial Δ(s) of A(s) is

Δ(s) = s2� +
[

)f (S,I)
)S

+ 2� − e−(�+s)� )f (S,I)
)I

+ 
 + �
]

s�

+(� + 
 + �)
(

)f (S,I)
)S

+ �
)

− �e−(�+s)� )f (S,I)
)I

.
(10)
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5.1 Local stability of free steady state E0

Theorem 3. Assume that � = 0. If0 < 1, the free steady state E0 is locally asymptotically stable.

Proof. For � = 0, the characteristic matrix of the linearized system (9) evaluated at E0 takes the form

A =

(

− )f (S0,0)
)S

− � − )f (S0,0)
)I

,
)f (S0,0)
)S

)f (S0,0)
)I

− (� + 
 + �)

)

,

since )f (S0,0)
)S

= 0, the characteristic polynomial of A is

P (�) = �2 +
(

2� − )f (S0,0)
)I

+ 
 + �
)

� − � )f (S
0,0)

)I
+�(� + 
 + �),

= �2 +
(

� + (� + 
 + �)(1 −0)
)

� + �(� + 
 + �)(1 −0).

Since R0 < 1, all the coefficients of P are positive and by Routh-Hurwitz Theorem all the roots � of P have negative real
parts which imply that | arg(�)| > �

2
> � �

2
. Using Lemma 5/(2) we conclude that the free steady state is locally asymptotically

stable.

Theorem 4. Assume that � > 0. If0 < 1, then the free steady state E0 is locally asymptotically stable.

Proof. From (10) the characteristic equation at E0 is given by

s2� +
(

2� − e−(�+s)� )f (S
0,0)

)I
+ 
 + �

)

s� − �e−(�+s)� )f (S
0,0)

)I
+ �(� + 
 + �) = 0. (11)

To prove local stability of E0 we use Lemma 5. Assume by contradiction that the equation (11) has a pair of imaginary roots
s = !ei

�
2 , ! > 0. After substituting s into equation (11), we obtain

!2�e��i +
(

2� − e−��e−i!� )f (S
0,0)

)I
+ 
 + �

)

!�e
��i
2 − �e−��e−i!� )f (S

0,0)
)I

+ �(� + 
 + �) = 0,

separating real and imaginary parts, we have
{

A1 cos(!�) + A2 sin(!�) = A3,
A2 cos(!�) − A1 sin(!�) = A4,

(12)

where
A1 = �e−�� )f (S

0,0)
)I

+ !�e−�� )f (S
0,0)

)I
cos( ��

2
),

A2 = !�e−�� )f (S
0,0)

)I
sin( ��

2
),

A3 = !2� cos(��) + !�
(

2� + 
 + �
)

cos( ��
2
) + �(� + 
 + �),

A4 = !2� sin(��) + !�(2� + 
 + �) sin( ��
2
).

Eliminating � by squaring and adding the two equations in (12), we obtain

!4� + A5!3� + A6!2� + A7!� + A8 = 0, (13)

where
A5 = 2(2� + 
 + �) sin(��) sin( ��

2
) + 2(2� + 
 + �) cos(��) cos( ��

2
),

A6 = −
(

e−�� )f (S
0,0)

)I

)2
+ (2� + 
 + �)2 + 2�(� + 
 + �) cos(��),

A7 = 2
(

− �(e−�� )f (S
0,0)

)I
)2 + �(� + 
 + �)(2� + 
 + �)

)

cos( ��
2
),

A8 = �2(� + 
 + �)2 − �2
(

e−�� )f (S
0,0)

)I

)2
.

We have
A5 = 2(2� + 
 + �) sin(��) sin( ��

2
) + 2(2� + 
 + �) cos(��) cos( ��

2
),

= 2(2� + 
 + �) cos( ��
2
),

which implies that A5 > 0. Further we have for A6

A6 = −
(

e−�� )f (S
0,0)

)I

)2
+ (2� + 
 + �)2 + 2�(� + 
 + �) cos(��)

= (� + 
 + �)2(1 −2
0) + �

2 + 2�(� + 
 + �) + 2�(� + 
 + �) cos(��)
≥ (� + 
 + �)2(1 −2

0) + �
2 + 2�(� + 
 + �) − 2�(� + 
 + �)

≥ (� + 
 + �)2(1 −2
0) + �

2,
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hence, if0 < 1 we get A6 > 0. For A7

A7 = 2�
(

− (e−�� )f (S
0,0)

)I
)2 + (� + 
 + �)(2� + 
 + �)

)

cos( ��
2
)

= 2�
(

− (e−�� )f (S
0,0)

)I
)2 + (
 + � + �)2 + �(� + 
 + �)

)

cos( ��
2
)

= 2�
(

(� + 
 + �)2(1 −2
0) + �(� + 
 + �)

)

cos( ��
2
),

if0 < 1, consequently A7 > 0. Finally

A8 = �2(� + 
 + �)2 − �2
(

e−�� )f (S
0,0)

)I

)2

= �2(� + 
 + �)2(1 −2
0).

If 0 < 1, then A8 > 0. Since ! > 0 we conclude that equation (13) cannot have a positive real root and hence equation (11)
has no purely imaginary roots. On the other hand the characteristic equation of the linearized system (9) at E0 is given by

|

|

|

|

|

−� − � − )f
)I
(S0, 0)

0 −(
 + � + �) + e−�� )f
)I
(S0, 0) − �

|

|

|

|

|

= (−� − �)
(

e−�� )f
)I
(S0, 0) − (
 + � + �) − �

)

= (� + �)
(

� − (R0 − 1)
)

(
 + � + �)
= 0,

which have two negative real roots �1 = −� < 0 and �2 = R0 − 1 < 0. The condition | arg(�i)| > � �
2
is then satisfied, by

Lemma 5/(1) the free steady state is locally asymptotically stable.

5.2 Local stability of endemic steady state E∗

We turn now to prove local stability of the endemic steady state E∗.

Theorem 5. Suppose that � = 0. If0 > 1, then the endemic steady sate E∗ is locally asymptotically stable if
)f
)I
(S∗, I∗) < (� + 
 + �). (14)

Proof. Put � = 0. The characteristic equation of system (9) at E∗ takes the form

�2 + b� + c = 0, (15)

where
b =

[

)f (S∗,I∗)
)S

+ 2� + 
 + � − )f (S∗,I∗)
)I

]

,

c = �
[

(� + 
 + �) − )f (S∗,I∗)
)I

]

+ (� + 
 + �) )f (S
∗,I∗)

)S
.

By hypothesis (14) we can see that b > 0, c > 0 and the Routh-Hurwitz criterion imply that all the roots � of (15) have
negative real parts which means that | arg(�)| > �

2
> � �

2
. By Lemma 5/(2) the endemic steady state E∗ is locally asymptotically

stable.

Theorem 6. Suppose that � > 0. If 0 > 1, then the endemic steady state E∗ is locally asymptotically stable if condition (14)
holds.

Proof. To prove this theorem we use similar arguments as in Theorem 4. By (10) the characteristic equation at E∗ is

s2� +
[

)f (S∗,I∗)
)S

+ 2� − e−(�+s)� )f (S
∗,I∗)
)I

+ 
 + �
]

s� + (� + 
 + �)
(

� + )f (S∗,I∗)
)S

)

− �e−(�+s)� )f (S
∗,I∗)
)I

= 0. (16)

Assume that equation (16) has a purely imaginary root s = wei
�
2 , w > 0. Substituting s in (16) and separating real and imaginary

parts we get
{

B1 cos(w�) + B2 sin(w�) = B3,
B2 cos(w�) − B1 sin(w�) = B4,

(17)
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where
B1 = �e−�� )f (S

∗,I∗)
)I

+ e−�� )f (S
∗,I∗)
)I

w� cos( ��
2
),

B2 = w� sin( ��
2
)e−�� )f (S

∗,I∗)
)I

,

B3 = !2� cos (��) + !� cos( ��
2
)
(

)f (S∗,I∗)
)S

+ 2� + 
 + �
)

+
(

� + )f (S∗,I∗)
)S

)

(� + 
 + �),

B4 = !2� sin(��) + !� sin( ��
2
)
(

)f (S∗,I∗)
)S

+ 2� + 
 + �
)

.
Adding the squares of both equations (17) give

w4� + B5w3� + B6w2� + B7w� + B8 = 0, (18)

where
B5 = 2 cos(��) cos( ��

2
)
(

)f (S∗,I∗)
)S

+ 2� + 
 + �
)

+2 sin(��) sin( ��
2
)
(

)f (S∗,I∗)
)S

+ 2� + 
 + �
)

,

B6 =
(

)f (S∗,I∗)
)S

+ 2� + 
 + �
)2
−
(

e−�� )f (S
∗,I∗)
)I

)2

+2
(

� + )f (S∗,I∗)
)S

)

cos(��)(� + 
 + �),

B7 = 2
(

� + )f (S∗,I∗)
)S

)

cos( ��
2
)
(

)f (S∗,I∗)
)S

+ 2� + 
 + �
)

(� + 
 + �)

−2� cos( ��
2
)
(

e−�� )f (S
∗,I∗)
)I

)2
,

B8 =
(

� + )f (S∗,I∗)
)S

)2
(� + 
 + �)2 − �2

(

e−�� )f (S
∗,I∗)
)I

)2
.

It is clear that if all the coefficients Bi, i = 5, ..., 8 are positive then equation (18) cannot have a positive root. Since

B5 = 2 cos(��) cos( ��
2
)
(

)f (S∗,I∗)
)S

+ 2� + 
 + �
)

+2 sin(��) sin( ��
2
)
(

)f (S∗,I∗)
)S

+ 2� + 
 + �
)

,

= 2 cos( ��
2
)
(

)f (S∗,I∗)
)S

+ 2� + 
 + �
)

,

we can see that B5 > 0. On the other hand we have

B6 =
(

)f (S∗,I∗)
)S

+ 2� + 
 + �
)2
−
(

e−�� )f (S
∗,I∗)
)I

)2

+2(� + )f (S∗,I∗)
)S

) cos(��)(� + 
 + �),

>
(

)f (S∗,I∗)
)S

+ 2� + 
 + �
)2
−
(

e−�� )f (S
∗,I∗)
)I

)2

−2(� + )f (S∗,I∗)
)S

)(� + 
 + �),

=
(

)f (S∗,I∗)
)S

+ �
)2
+
(

� + 
 + �
)2
−
(

e−�� )f (S
∗,I∗)
)I

)2

=
(

� + 
 + � − e−�� )f (S
∗,I∗)
)I

)(

� + 
 + � + e−�� )f (S
∗,I∗)
)I

)

+
(

)f (S∗,I∗)
)S

+ �
)2
,

condition (14) imply that B6 > 0. Further

B7 = 2 cos( ��
2
)
[

(� + )f (S∗,I∗)
)S

)( )f (S
∗,I∗)

)S
+ 2� + 
 + �)(� + 
 + �)

−�
(

e−�� )f (S
∗,I∗)
)I

)2]
,

= 2 cos( ��
2
)
[

(� + )f (S∗,I∗)
)S

)2(� + 
 + �)

+(� + )f (S∗,I∗)
)S

)(� + 
 + �)2 − �
(

e−�� )f (S
∗,I∗)
)I

)2]
,

= 2 cos( ��
2
)
[

(� + )f (S∗,I∗)
)S

)2(� + 
 + �) + f (S∗,I∗)
)S

(� + 
 + �)2

+�(� + 
 + �)2 − �
(

e−�� )f (S
∗,I∗)
)I

)2]
,

= 2 cos( ��
2
)
[

(� + )f (S∗,I∗)
)S

)2(� + 
 + �) + f (S∗,I∗)
)S

(� + 
 + �)2

+�
(

(� + 
 + � − e−�� )f (S
∗,I∗)
)I

)(� + 
 + � + e−�� )f (S
∗,I∗)
)I

)
)]

,



10 Gacem ET AL

and
B8 = (� + )f (S∗,I∗)

)S
)2
(

� + 
 + �
)2
− �2

(

e−�� )f (S
∗,I∗)
)I

)2
,

=
(

( )f (S
∗,I∗)

)S
)2 + 2� )f (S

∗,I∗)
)S

)

(� + 
 + �)2

+�2(� + 
 + �)2 − �2
(

e−�� )f (S
∗,I∗)
)I

)2
,

=
(

( )f (S
∗,I∗)

)S
)2 + 2� )f (S

∗,I∗)
)S

)

(� + 
 + �)2

+�2
(

� + 
 + � − e−�� )f (S
∗,I∗)
)I

)(

� + 
 + � + e−�� )f (S
∗,I∗)
)I

)

.

Condition (14) yealds that B7 > 0 and B8 > 0. Then we conclude that equation (18) cannot have positive roots. We now check
the condition of Lemma 5/(1) about the eigenvalues of the matrix of the linearized system. The characteristic equation of system
(9) at E∗ is

P (�) =
|

|

|

|

|

|

−
(

� + )f (S∗,I∗)
)S

+ �
)

− )f (S∗,I∗)
)I

e−�� )f (S
∗,I∗)

)S
−(
 + � + �) + e−�� )f (S

∗,I∗)
)I

− �

|

|

|

|

|

|

= �2 + �
(

(
 + � + �) − e−��
)f
)I
(S∗, I∗) +

)f
)S
(S∗, I∗) + �

)

+
(

)f (S∗,I∗)
)S

+ �
)

(

(
 + � + �) − e−��
)f
)I
(S∗, I∗)

)

+
)f
)S
(S∗, I∗)

)f
)I
(S∗, I∗)e−��

= 0.
According to condition (14) all the coefficients of P are positive and by the Routh-Hurewitz Theorem all the roots have negative
real parts. So the condition | arg(�)| > � �

2
is satisfyed. By Lemma 5/(1) The endemic steady state E∗ is locally asymptotically

stable.

6 GLOBAL STABILITY

In this section we study global stability of both free and endemic steady states by using the method of Lyapunov function. We
prove first global stability of free steady state.

6.1 Global stability of free steady state E0

Theorem 7. If0 < 1 then the free steady state E0 is globally asymptotically stable.

Proof. Define the Lyapunov function V as follows

V (t) = S(t) − S0 − ∫ t
0

f (S0,I(t))
f (S(�),I(t))

d� + e��I(t) + ∫ t
t−� f (S(�), I(�))d�,

it is clear that V is non-negative defined function at E0. We have

D�V (t) ≤
(

1 − f (S0,I(t))
f (S(t),I(t))

)

D�S(t) + e��D�I(t) + f (S(t), I(t)) − f (S(t − �), I(t − �)).

By using the two equations of system (8) we have

D�V (t) ≤
(

1 − f (S0,I(t))
f (S(t),I(t))

)(

� − �S(t) − f (S(t), I(t))
)

+ f (S(t − �, I(t − �))
−e��(� + 
 + �)I(t) + f (S(t), I(t)) − f (S(t − �), I(t − �)),

since � = �S0, thus

D�V (t) ≤ �
(

1 − f (S0,I(t))
f (S(t),I(t))

)

(S0 − S(t)) + f (S0, I(t)) − (� + � + 
)e��I(t),

the condition )2f (S(t),I(t))
)2I(t)

< 0 yealds that

f (S0, I(t)) < I(t)
)f (S0, I(t))

)I(t)
< I(t)

)f (S0, 0)
)I(t)

,
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and hence
D�V (t) ≤ �

(

1 − f (S0,I(t))
f (S(t),I(t))

)

(S0 − S(t)) + I(t) )f (S
0,0)

)I(t)
− (� + � + 
)e��I(t),

≤ �
(

1 − f (S0,I(t))
f (S(t),I(t))

)

(S0 − S(t)) + (� + � + 
)e��(0 − 1)I(t).

Since f is an increasing function in the first variable, we can see that
f (S0,I(t))
f (S(t),I(t))

≥ 1, ∀ S0 ≥ S(t),
f (S0,I(t))
f (S(t),I(t))

≤ 1, ∀ S0 ≤ S(t),

so
(

1 − f (S0,I(t))
f (S(t),I(t))

)(S0 − S(t)
)

≤ 0. If0 < 1, then

D�V (t) ≤ −W3,

where
W3 = �(1 −

f (S0,I(t))
f (S(t),I(t))

)(S(t) − S0) + (� + � + 
)e��(1 −0)I(t) ≥ 0.

According to Lemma 6 and since the free steady stateE0 is locally asymptotically stable then by the Lasalle invariance principle
it is globally asymptotically stable.

6.2 Global stability of endemic steady state E∗

Theorem 8. Assume that 0 > 1 and the condition (14) holds. Then the endemic steady state E∗ is globally asymptotically
stable if the following inequality hold

(

f (S∗,I∗)
f (S,I∗)

− f (S∗,I)
f (S,I)

)(

1 − f (S,I)
f (S∗,I∗)

)

≤ 0, ∀S, I > 0.

Proof. LetH(x) = x − 1 − ln x. Note thatH ∶ ℝ+ ←→ ℝ+ has a strict global minimum at x = 1.
Define the Lyapunov function as follows

L(t) = S(t) − S∗ − ∫ S(t)
S∗

f (S∗,I(t))
f (�,I(t))

d� + e��
(

I(t) − I∗ − ∫ I(t)
I∗

f (S(t),I∗)
f (S(t),�)

d�
)

+� ∫ �
0

(

f (S(t−�),I(t−�))
f (S∗,I∗)

− 1 − ln f (S(t−�),I(t−�))
f (S∗,I∗)

)

d�,

where
� = f (S∗, I∗).

The fractional derivative of L satisfies

D�L(t) ≤
(

1 − f (S∗,I(t))
f (S(t),I(t))

)

D�S(t) + e��
(

1 − f (S(t),I∗)
f (S(t),I(t))

)

D�I(t)

+�
[

− f (S(t−�),I(t−�))
f (S∗,I∗)

+ f (S(t),I(t))
f (S∗,I∗)

+ ln
(

f (S(t−�),I(t−�)
f (S(t),I(t))

) ]

,
(19)

using the first equation of (5) we get
(

1 − f (S∗,I(t))
f (S(t),I(t))

)

D�S(t) =
(

1 − f (S∗,I(t))
f (S(t),I(t))

)

(� − �S(t) − f (S(t), I(t))) .

The first equation of (6) leads to
� = �S∗ + f (S∗, I∗),

that is,
(

1 − f (S∗,I(t))
f (S(t),I(t))

)

D�S(t) =
(

1 − f (S∗,I(t))
f (S(t),I(t))

)(

�(S∗ − S(t)) + f (S∗, I∗)
−f (S(t), I(t))

)

,
thus,

(

1 − f (S∗,I(t))
f (S(t),I(t))

)

D�S(t) = �S∗
(

1 − f (S∗,I(t))
f (S(t),I(t))

)

(1 − S(t)
S∗
)

+f (S∗, I∗)
(

1 − f (S∗,I(t))
f (S(t),I(t))

)(

1 − f (S(t),I(t))
f (S∗,I∗)

)

.
(20)

Since
e�t

(

1 − f (S(t),I∗)
f (S(t),I(t))

)

D�I(t) =
(

1 − f (S(t),I∗)
f (S(t),I(t))

)
(

f (S(t − �), I(t − �)) − e��(� + 
 + �)I(t)
)

,

using the second equation of system (6) we have
f (S∗,I∗)

I∗
= (� + � + 
)e�� ,
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which leads to,
e�t

(

1 − f (S(t),I∗)
f (S(t),I(t))

)

D�I(t) = f (S∗, I∗)
(

1 − f (S(t),I∗)
f (S(t),I(t))

)

(

f (S(t−�),I(t−�))
f (S∗,I∗)

− I(t)
I∗

)

,
hence,

e�t
(

1 − f (S(t),I∗)
f (S(t),I(t))

)

D�I(t) = f (S∗, I∗)
(

1 − f (S(t),I∗)
f (S(t),I(t))

)

(

f (S(t),I(t))
f (S(t),I∗)

− I(t)
I∗

)

+f (S∗, I∗)
(

1 − f (S(t),I∗)
f (S(t),I(t))

)

(

f (S(t−�),I(t−�))
f (S∗,I∗)

− f (S(t),I(t))
f (S(t),I∗)

)

.
(21)

Substituting the equations (20) and (21) into (19) we get

D�L(t) ≤ �S∗
(

1 − f (S∗,I(t))
f (S(t),I(t))

)

(1 − S(t)
S∗
)

+f (S∗, I∗)
(

1 − f (S∗,I(t))
f (S(t),I(t))

)(

1 − f (S(t),I(t))
f (S∗,I∗)

)

+f (S∗, I∗)
(

1 − f (S(t),I∗)
f (S(t),I(t))

)

(

f (S(t),I(t))
f (S(t),I∗)

− I(t)
I∗

)

+f (S∗, I∗)
(

1 − f (S(t),I∗)
f (S(t),I(t))

)

(

f (S(t−�),I(t−�))
f (S∗,I∗)

− f (S(t),I(t))
f (S(t),I∗)

)

+f (S∗, I∗)
[

− f (S(t−�),I(t−�))
f (S∗,I∗)

+ f (S(t),I(t))
f (S∗,I∗)

+ ln f (S(t−�),I(t−�))
f (S(t),I(t))

]

.

(22)

Put
A =

(

1 − f (S∗,I(t))
f (S(t),I(t))

)(

1 − f (S(t),I(t))
f (S∗,I∗)

)

+
(

1 − f (S(t),I∗)
f (S(t),I(t))

)

(

f (S(t−�),I(t−�))
f (S∗,I∗)

− f (S(t),I(t))
f (S(t),I∗)

)

+
[

− f (S(t−�),I(t−�))
f (S∗,I∗)

+ f (S(t),I(t))
f (S∗,I∗)

+ ln f (S(t−�),I(t−�))
f (S(t),I(t))

]

,
then (22) become

D�L(t) ≤ �S∗
(

1 − f (S∗,I(t))
f (S(t),I(t))

)

(1 − S(t)
S∗
)

+f (S∗, I∗)
(

1 − f (S(t),I∗)
f (S(t),I(t))

)

(

f (S(t),I(t))
f (S(t),I∗)

− I(t)
I∗

)

+ Af (S∗, I∗),
(23)

and after some calculations
A = 2 − f (S∗,I(t))

f (S(t),I(t))
+ f (S∗,I(t))

f (S∗,I∗)
− f (S(t),I(t))

f (S(t),I∗)
− f (S(t−�),I(t−�))f (S(t),I∗)

f (S(t),I(t))f (S∗,I∗)
+ ln( f (S(t−�),I(t−�)

f (S(t),I(t))
)

= 2 − f (S∗,I(t))
f (S(t),I(t))

+ f (S∗,I(t))
f (S∗,I∗)

− f (S(t),I(t))
f (S(t),I∗)

− f (S(t−�),I(t−�))f (S(t),I∗)
f (S(t),I(t))f (S∗,I∗)

+ ln( f (S(t−�),I(t−�))f (S(t),I
∗)

f (S(t),I(t))f (S∗,I∗)
) + ln( f (S

∗,I∗)
f (S(t),I∗)

) + f (S∗,I∗)
f (S(t),I∗)

− f (S∗,I∗)
f (S(t),I∗)

= − f (S(t−�),I(t−�))f (S(t),I∗)
f (S(t),I(t))f (S∗,I∗)

+ 1 + ln( f (S(t−�),I(t−�)f (S(t),I
∗)

f (S(t),I(t))f (S∗,I∗)
)

− f (S∗,I∗)
f (S(t),I∗)

+ 1 + ln( f (S
∗,I∗)

f (S(t),I∗)
) − f (S∗,I(t))

f (S(t),I(t))
+ f (S∗,I(t))

f (S∗,I∗)
− f (S(t),I(t))

f (S(t),I∗)
+ f (S∗,I∗)

f (S(t),I∗)
,

= −H
(

f (S(t−�),I(t−�)f (S(t),I∗)
f (S(t),I(t))f (S∗,I∗)

)

−H
(

f (S∗,I∗)
f (S(t),I∗)

)

− f (S∗,I(t))
f (S(t),I(t))

+ f (S∗,I(t))
f (S∗,I∗)

− f (S(t),I(t))
f (S(t),I∗)

+ f (S∗,I∗)
f (S(t),I∗)

,

but
− f (S∗,I(t))
f (S(t),I(t))

+ f (S∗,I(t))
f (S∗,I∗)

− f (S(t),I(t))
f (S(t),I∗)

+ f (S∗,I∗)
f (S(t),I∗)

=
(

f (S∗,I∗)
f (S(t),I∗)

− f (S∗,I(t))
f (S(t),I(t))

)(

1 − f (S(t),I(t))
f (S∗,I∗)

)

,
thus

A = −H
(

f (S(t−�),I(t−�)f (S(t),I∗)
f (S(t),I(t))f (S∗,I∗)

)

−H
(

f (S∗,I∗)
f (S(t),I∗)

)

+
(

f (S∗,I∗)
f (S(t),I∗)

− f (S∗,I(t))
f (S(t),I(t))

)(

1 − f (S(t),I(t))
f (S∗,I∗)

)

,
(24)

substituting (24) into (23), we gets

D�L(t) ≤ �S∗
(

1 − f (S∗,I(t))
f (S(t),I(t))

)

(1 − S(t)
S∗
)

+f (S∗, I∗)
{

(

1 − f (S(t),I∗)
f (S(t),I(t))

)

(

f (S(t),I(t))
f (S(t),I∗)

− I(t)
I∗

)

−H
(

f (S(t−�),I(t−�)f (S(t),I∗)
f (S(t),I(t))f (S∗,I∗)

)

−H
(

f (S∗,I∗)
f (S(t),I∗)

)

+
(

f (S∗,I∗)
f (S(t),I∗)

− f (S∗,I(t))
f (S(t),I(t))

)(

1 − f (S(t),I(t))
f (S∗,I∗)

)}

.

(25)

Since f is a monotonically increasing function with respect to S, this implies that
f (S∗,I(t))
f (S(t),I(t))

≥ 1, ∀ S∗ ≥ S(t),
f (S∗,I(t))
f (S(t),I(t))

≤ 1, ∀ S∗ ≤ S(t),
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and then
(

1 − f (S∗,I(t))
f (S(t),I(t))

)(

1 − S(t)
S∗

)

≤ 0,
using the hypothesis (4) we get

(

1 − f (S(t),I∗)
f (S(t),I(t))

)(

f (S(t),I(t))
f (S(t),I∗)

− I(t)
I∗

)

≤ 0.
If

(

f (S∗,I∗)
f (S(t),I∗)

− f (S∗,I(t))
f (S(t),I(t))

)(

1 − f (S(t),I(t))
f (S∗,I∗)

)

≤ 0,
we can conclude that

D�L(t) ≤ −W3,
where

W3 = �S∗
( f (S∗,I(t))
f (S(t),I(t))

− 1
)

(1 − S(t)
S∗
)

+f (S∗, I∗)
{

( f (S(t),I∗)
f (S(t),I(t))

− 1
)

(

f (S(t),I(t))
f (S(t),I∗)

− I(t)
I∗

)

+H
(

f (S(t−�),I(t−�)f (S(t),I∗)
f (S(t),I(t))f (S∗,I∗)

)

+H
(

f (S∗,I∗)
f (S(t),I∗)

)

+
(

f (S∗,I∗)
f (S(t),I∗)

− f (S∗,I(t))
f (S(t),I(t))

)(

f (S(t),I(t))
f (S∗,I∗)

− 1
)}

≥ 0.
By the Lasalle invariance principle and Lemma 6we conclude that the endemic steady state is globally asymptotically stable.

Remark 1. The condition
(

f (S∗,I∗)
f (S,I∗)

− f (S∗,I)
f (S,I)

)(

1 − f (S,I)
f (S∗,I∗)

)

≤ 0,

is satisfied by the most used incidence functions such as f (S, I) = �SnIm and f (S, I) = �SnIm

1+aS
with a > 0 and n, m ≥ 0. More

generally the condition is also satisfied by the incidence function of the type f (S, I) = �SI
 (I)

where  is a concave function.

7 NUMERICAL SIMULATIONS

In this section we give some numerical simulations to illustrate our results. As an example we take the incidence function
f (S, I) = �SI which leads to the following model

⎧

⎪

⎪

⎨

⎪

⎪

⎩

D�S(t) = � − �S(t)I(t) − �S(t),
D�E(t) = �S(t)I(t) − �S(t − �)I(t − �)e−�� − �E(t),
D�I(t) = �S(t − �)I(t − �)e−�� − (� + � + 
)I(t),
D�R(t) = 
I(t) − �R(t).

(26)

We use the SEIR model (26) to describe the disease of COVID-19 in algeria at the beginning of the infection. Since it was
reported that the first case of COVID-19 epidemic in Algeria dates from 25 February 202024 we run then our simulations from
this date. The basic reproduction number in this case is given by 0 = �

e−��

�+�+

�
�
. Since we conduct our simulations on a short

period of time (some months) we can assume that the death rate mortality of infected individuals � = 0. The parameters of
system (26) are given in Table 1 and are taken from25.

We first consider the case with classic derivative � = 1 and without delay � = 0. Numerical simulations give the graphics in
figure 2. As described in25 we observe a peak of infected individuals after 90 days from the beginning of the infection.
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TABLE 1 Parameters and values of model (26).

Parameters meaning values

� recruitment rate of susceptible individuals 10−5

� transmission rate per infectious individuals 2.1
� Death rate of all individuals 10−5


 transfer rate of infected individuals to recovery compartment 0.1
� Death rate of infected individuals caused by the disease 0
� Incubation period 2 − 14 (days)

Source:25
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FIGURE 2 Model (26) in the case � = 1 and without delay � = 0.

In figure 3 we have plotted the solutions of system (26) in the case � = 0.9 and � = 5 days. We can observe a peak of infected
individuals of around 140 days after the beginning of the infection which corresponds to late July 2020.
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FIGURE 3 Solutions of model (26) in the case � = 5 and � = 0.9.
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FIGURE 4 Solutions of model (26) in the case � = 8 days.

In figure 4 we have plotted the solutions in the case � = 8 days and � = 0.9 and in figure 5 we have taken � = 10 days. We
observe a peak of infected individuals around 160 days after the beginning of the infection which corresponds to late July. Since
the WHO data26 show a peak of the epidemic of COVID-19 in Algeria at 24 July, 2020, we can conclude that the model (26)
with fractional derivative and time delay describes the epidemic more precisely than the one with classic derivative and without
delay.
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FIGURE 5 Solutions of model (26) in the case � = 10 days.

8 CONCLUSION

In this paper we have investigated a fractional-order SEIR epidemic model with general incidence rate function and time delay.
The basic reproduction number is computed using the method of next generation matrix. We have obtained necessary and
sufficient conditions for local stability of both free and endemic steady states. Using the method of Liapunov function we have
proved the global stability of the two steady states under some conditions on the incidence function. The system is used to
describe the COVID-19 epidemic in Algeria at the beginning of the appearance of the epidemic in late February 2020. Rather
than the case without delay and with classic derivative our simulations predict the first peak of the epidemic around late July
2020 which is consistent with WHO data. We can then conclude that the introduction of time delay and fractional derivative
in epidemic models can describe more really the spreading of an epidemic. The model we have proposed is a generalisation of
many other models in literature and can be used to describe many other types of epidemics.
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