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Abstract

The paper is dedicated to the modeling and asymptotic investigation of a linear elas-
ticity problem, in the form of variational inequality, for a textile structure. The textile
is made of long and thin fibers crossing each others, forming a periodic squared
domain. The domain is clamped only partially and an in plane sliding between the
fibers is bounded by a contact function, which is chosen to be loose. We also assume
a non-penetration condition for the fibers. Both partial clamp and loose contact arise
a domain split, leading to different behaviors in each of the four parts. The homog-
enization is made via unfolding method, with an additional dimension reduction to
further simplify the problem. The four cell problems are inequalities heavily coupled
by the outer plane macro-micro constraints, while the macroscopic limit problem
results to be an inequality of Leray-Lions type with only macro in plane constraints.
On both scales, no uniqueness is expected.
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1 INTRODUCTION

This paper investigates the linearized elasticity problem for a textile. The domain of the structure is the square Ω = (0, L)2,
made of long individual fibers of length L. The distance between the fibers depends on a small parameter ", while the cross
section of each of them depends on a second parameter asymptotically related to the first one r ∼ ". The fibers periodically
cross each others in a fixed pattern forming a woven canvas structure. As we can see in Figure 1 , the domain is split into four
parts with respect to the boundary conditions: on Ω1 the clamp-conditions are set on the left and bottom boundary, while on
the remaining left and bottom boundary the fibers are assumed to be glued. Of fundamental importance for this paper are many
results already obtained in14, where the assumptions are identical but where the contact sliding between the fibers is bounded
by a strong contact function (of order g" ∼ "3 or greater) in all three directions. Here, we assume only an in plane contact of
order g" ∼ "2 and a non-penetration condition. Due to the presence of contact cone conditions the elasticity problem is stated
as a variational inequality, similar as in7,14.
Exactly as in14, small deformations and the sufficient forces applied to the elasticity problem are assumed such that the total
energy remains in the linear regime. For elasticity problems in porous plate in Von-Kármán regime one can look into15, where
however the fibers are glued and contact issues not considered, since the structure can be extended to a periodically perforated
shell. Forthcoming works will deal with nonlinear regime. In such frame we can recommend for now13.
Due to the loose contact, results in the clamped parts cannot be extended on the not clamped ones and therefore a domain split
is necessary. The homogenization leads to different Leray-Lions type limit problems (see17) on each part of the domain. The
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FIGURE 1 The textile domain is split according to partial clamp and glued conditions on the left and bottom boundary. Each
cell has a 2" periodic pattern. The distance between fibers is " and their cross-section is r ∼ ". The complete structure can be
seen as almost 2D.

inequality is maintained in both scales and we get a macroscopic problem with only in plane constraints and a microscopic
cell problem with the same macro-micro outer plane conditions already found in14. Moreover, the uniqueness of solutions is
not preserved in the limit. A physical interpretation of the in plane limit contact (see (82)) gives an idea of how the displace-
ments behave on the four parts of the domain (see Figure 2 left), which is realistic if compared with the real experiments (see
Figure 2 right). About numerical works devoted to simulation of textiles with contact sliding, one can look through1,2,19,20. The
homogenization is made via unfolding method, an equivalent formulation of the two scales convergence. Moreover, a dimension
reduction for beams and plates is additionally applied, which takes micro-structure into account and give rise to a representa-
tive homogeneous plate model. A first application of the unfolding method for boundary value problems has been done in4 in
periodically perforated domains. For more literature on the unfolding and homogenization in elasticity we refer to5,18 and the
references therein. About dimension reduction of homogeneous plates or rods one can read, for instance, in3,9,10. The combina-
tion of both is a part of current investigations in5, Chap. 11 and12,14,15.
The paper is organized as follows. Section 2 are notations, while Section 3 recalls the main results of14 for the parameterization
of a single curved rod in a fixed and mobile reference frame, giving transformation matrix, symmetric strain tensor and estimates
for the decomposition with Q1 interpolation. In Section 4 the previous results are extended to two beams of rods, one for each
direction. Boundary and contact conditions are introduced in the domain, defining the the set of admissible displacements. The
elasticity problem is set and existence and uniqueness of solutions are ensured. In Section 5, all the estimates for the displace-
ment fields are given. From the estimates in the clamped parts we port the results in the not clamped ones by using the same
techniques of14, as Korn inequality, Poincaré inequality and Trace theorem. Worthy to note the improved estimates in the third
direction from14 by using the non penetration and periodic oscillation condition with alternating change of the normal sign (see
Lemma 6), that allows to estimate the outer plane direction without defining an additional upper bound on the admissible deflec-
tion (a gap function g",3, see14). In Section 6 we pass to the limit for "→ 0 and get the fields weak convergences by compactness
results. Applying the unfolding operators, the limit unfolded fields are found as well as the strain tensors, contact conditions and
set of the limit displacements. Section 7 is dedicated to the build of the test-functions which have to satisfy certain properties.
Among the others, the strong convergence via unfolding. In Section 8 all the results are summarized and applied: the weak con-
vergence of the displacements together with the strong convergence of the test function imply integral convergence and the limit
problem is derived. Existence is ensured by the Stampacchia lemma, a version of Lax-Milgram for closed subsets of Hilbert
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FIGURE 2 Left figure gives a sketch of obtained by analysis yarn’s deformations in each textile part. On the right hand-side,
a real experiment for tension of the textile with 45o to the yarn directions is shown.

spaces (see16), while no uniqueness is expected. Following the strategy in5, Section 5.6 the cell problems with correctors are found,
while the macroscopic problems result to be of LerayLions type with their respective macroscopic in plane contact conditions.
In this paper we use the Einstein convention of summation over repeated indices.

2 NOTATION

Throughout the paper, the following notation will be used:

• Ω
.
= (0, L)2, l > 0 is a constant. For simplicity we assume that L

l
= a
b
where a and b are integers such that (a, b) = 1;

• Y
.
= (0, 1)2, 

.
= (0, 2)2 are the 1-periodic and 2-periodic cells respectively;

• " ∈ ℝ is a small parameter such that 2"N" = L and 2"n" = l,N" = k"a, n" = k"b where k" is an integer;

• "
.
= {(p, q) ∈ ℕ × ℕ | (p", q") ∈ Ω} = {0,… , 2N"}2 is the set of nodes;

• � ∈ (0, 1∕3] is a fixed constant and r is a parameter related to " via r
.
= �";

• !�
.
= (−�, �)2 is the reference beam cross-section, while the rescaled one is !r

.
= (−r, r)2 = (−�", �")2;

• Ui
.
= U ⋅ ei,i

.
=  ⋅ ei for i ∈ {1, 2, 3};

• )i
.
= )
)zi

, )Xi

.
= )
)Xi

denote the partial derivatives with respect to zi and Xi respectively for i ∈ {1, 2, 3};

• z
.
= (z1, z2, z3) ∈ ℝ3 and z′

.
= (z1, z2) ∈ ℝ2 (if not specified);

• (�, �) ∈ {1, 2}2 and (a, b, c) ∈ {0, 1}3 (if not specified);

• C is a real strictly positive constant independent of " (if not specified).
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3 PRELIMINARIES: PARAMETERIZATION OF A CURVED ROD

Many results of this section have been already proved in14, Section 3. We start defining the 2-periodic function

Φ(t)
.
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−� if t ∈ [0, �],

�
(

6
(t − �)2

(1 − 2�)2
− 4

(t − �)3

(1 − 2�)3
− 1

)

if t ∈ [�, 1 − �],

� if t ∈ [1 − �, 1],
Φ(2 − t) if t ∈ [1, 2]

(1)

and we rescale it to a 2"-periodic function setting Φ"(t) = "Φ
( t
"

)

which is piecewise 2(ℝ) and overall 1(ℝ). By definition,
such a function satisfies

"2‖Φ′′

"‖L∞(ℝ) + "‖Φ
′
"‖L∞(ℝ) + ‖Φ"‖L∞(ℝ) ≤ C".

Dealing with curved rods, the centerline of a rod is parameterized by the function

M"(z1)
.
= z1e1 + Φ"(z1)e3, z1 ∈ [0, L].

This curve has e1 as mean direction and oscillations direction e3. We refer the beam to themobile reference frame (Frenet-Serret),
denoted by

(

t", e2,n"
)

and defined by

t"
.
=

)1M"

|)1M"|
= 1

"

(

e1 + Φ′"e3
)

, n"
.
= t" ∧ e2 =

1

"

(

− Φ′"e1 + e3
)

where 
"
.
=
√

1 + (Φ′
")2. The unit vector fields t" and n" belong to 

1([0, L])3. Their derivatives are

dt"
dz1

= c"
"n",
dn"
dz1

= −c"
"t"

where the piecewise continuous function c"(z1)
.
=
Φ′′" (z1)

3" (z1)

is the curvature. We denote

C"
.
=
(

t" | e2 |n"
)

∈ SO(3)

the basis transformation matrix from the fixed frame (e1, e2, e3) to the mobile one (t", e2,n"). We set the straight reference rod
of length L and cross section !r

Pr
.
= (0, L) × !r.

The curved rod results to be
"

.
=  "(Pr),

where the function  " ∶ [0, L] ×ℝ2 → ℝ3 is the transition map from the straight to the curved rod and defined by

 "(z)
.
=M"(z1) + z2e2 + z3n"(z1).

The Jacobian for the changing of coordinates is

�"(z)
.
= det

(

∇ "(z)
)

= 
"(z1)
(

1 − z3c"(z1)
)

, ∀z ∈ Pr.

As already shown in14, Remark A.1, there exists �̂ ∈ (0, 1∕3] depending on the curvature of the parameterization such that, for
every � ≤ �̂, the Jacobian �" is bounded from below and above

1
C

≤ ‖�"‖L∞(Pr) ≤ C,

thus the transformation  " from Pr onto " results to be a diffeomorphism with

∇ " = C"

⎛

⎜

⎜

⎝

�" 0 0
0 1 0
0 0 1

⎞

⎟

⎟

⎠

and
(

∇ "
)−1 =

⎛

⎜

⎜

⎜

⎝

1
�"
0 0

0 1 0
0 0 1

⎞

⎟

⎟

⎟

⎠

CT
" . (2)
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In particular, there exist two constants C0, C1 such that for every � ∈ L2("):

C0‖�◦ "‖L2(Pr) ≤ ‖�‖L2(") ≤ C1‖�◦ "‖L2(Pr). (3)

This means that the L2 estimates for a function computed on the straight rod (with respect to the variable z) and the estimates
computed on the curved one (with respect to the variable x) will only differ by a constant.
From now on, we will simply denote � the function �◦ ".

3.1 The decomposition of displacement
Let u ∈ H1(")3 be a displacement. From11, Theorem 3.1,10, Lemma 3.2 and proceeding as in14, Section 3.3 we have the following
decomposition:

u = U e + u, a.e. in " or equivalently in Pr (4)
The quantity u ∈ H1(Pr)3 is called warping (or reminder term) of the displacement. For a.e. z1 ∈ (0, L), it satisfies (see11)

∫
!r

u(z1, z2, z3)dz2dz3 = 0, ∫
!r

u(z1, z2, z3) ∧
(

z2e2 + z3n"(z1)
)

dz2dz3 = 0.

The quantity U e ∈ H1(Pr)3 is called elementary displacement and it is defined by

U e(z)
.
= U(z1) +(z1) ∧ Φ"(z1)e3
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

middle line displacement

+(z1) ∧
(

z2e2 + z3n"(z1)
)1

where the fields U and  belong to H1(0, L)3. Note that the field describing the middle line displacement is decomposed in
a special way according to14, Definition 3.3. This is made in order to simplify the usual estimates for an elementary displacement
(see14, Lemma 3.4). Namely, we get

‖u‖L2(P") ≤ Cr‖e(u)‖L2("), ‖∇u‖L2(") ≤ C‖e(u)‖L2("), (5)

‖)1‖L2(0,L) ≤
C
r2
‖e(u)‖L2("), ‖)1U − ∧ e1‖L2(0,L) ≤

C
r
‖e(u)‖L2("). (6)

If the beam is clamped at one extremity, e.g. x = 0, then we have

U(0) = (0) = 0. (7)

The end of this section is dedicated to a secondary splitting for the fields U and . Specifically, given U, ∈ H1(0, L)3, we
set the unique decomposition

U = U(pwl) + U(0),  = (pwl) +(0), a.e. in (0, L), (8)

where U(pwl), (pwl) ∈ W 1,∞(0, L)3 coincide with the original functions on each node:

U(pwl)(p") = U(p"), (pwl)(p") = (p"), ∀p ∈ {0,… , 2N"}

and are then extended by Q1 interpolation in between the nodes, while the functions U(0),(0) ∈ H1(0, L)3 are reminder terms
which capture the high oscillations and are by definition zero on the nodes:

U(0)(p") = 0, (0)(p") = 0, ∀p ∈ {0,… , 2N"}.

In the following, we recall the estimates of such functions.

Lemma 1. 14, Lemma 3.6 The functions U(0),(0), U(pwl) and(pwl) satisfy

‖(0)
‖L2(0,L) + "‖d(0)

‖L2(0,L) + "‖d(pwl)
‖L2(0,L) ≤

C
"
‖e(u)‖L2("),

‖U(0)‖L2(0,L) + "‖dU(0)‖L2(0,L) + "‖dU(pwl)‖L2(0,L) ≤ C‖e(u)‖L2("),

‖dU(pwl) −(pwl) ∧ e1‖L2(0,L) ≤
C
"
‖e(u)‖L2(").

(9)

1The map (z2, z3) ←→ z2e2 + z3n"(z1) +(z1) ∧
(

z2e2 + z3n"(z1)
)

(z1 fixed) represents a small rotation of the cross section.
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Remark 1. On can decompose U and in another way by setting

U = Ů(pwl) + Ů(0),  = ̊(pwl) + ̊(0), a.e. in (0, L),

where Ů(pwl), ̊(pwl) ∈ W 1,∞(0, L)3 coincide with the original functions each second node:

Ů(pwl)(2p′") = U(2p′"), ̊(pwl)(2p′") = (2p′"), ∀p′ ∈ {0,… , N"}.

Then, proceeding as in the proof of14, Lemma 3.6, we obtain for these functions the same estimates as those of Lemma 1. In
particular, one has

‖(pwl) − ̊(pwl)
‖L2(0,L) + "

‖

‖

‖

d((pwl) − ̊(pwl))‖‖
‖L2(0,L)

≤ C
"
‖e(u)‖L2("),

‖U(pwl) − Ů(pwl)‖L2(0,L) + "
‖

‖

‖

d(U(pwl) − Ů(pwl))‖‖
‖L2(0,L)

≤ C‖e(u)‖L2(").
(10)

3.2 Symmetric gradient of the displacement of a curved rod
In this subsection, we give the symmetric gradient of a displacement with respect to the variables (z1, z2, z3) (for more details
see14, Subsection 3.4).
First, for every v ∈ H1(")3, equality (2)1 leads to

∇zv =
(

)1v
|

|

|

)2v
|

|

|

)3v
)

= ∇xv∇z " = ∇xvC"

⎛

⎜

⎜

⎝

�" 0 0
0 1 0
0 0 1

⎞

⎟

⎟

⎠

.

Hence

CT
" ∇xvC" =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
�"
)1v ⋅ t" )2v ⋅ t" )3v ⋅ t"

1
�"
)1v ⋅ e2 )2v ⋅ e2 )3v ⋅ e2

1
�"
)1v ⋅ n" )2v ⋅ n" )3v ⋅ n"

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

As a consequence we get

CT
" ex(v)C" =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
�"
)1v ⋅ t" ∗ ∗

1
2

( 1
�"
)1v ⋅ e2 + )2v ⋅ t"

)

)2v ⋅ e2 ∗

1
2

( 1
�"
)1v ⋅ n" + )3v ⋅ t"

) 1
2

(

)2v ⋅ n" + )3v ⋅ e2
)

)3v ⋅ n"

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (11)

We denote by ẽz(v) the right hand side of the above equality.
Additionally, in the next sections a vectorial notation for the strain tensor will be used. Indeed, the strain tensor ex(v) of a
displacement v ∈ H1(")3 is also written as a column vector with six entries by setting

Ex(v)
.
=
(

ex,11(v) ex,22(v) ex,33(v) ex,12(v) ex,13(v) ex,23(v)
)T . (12)

In that way, the symmetric matrix ẽz(v) = CT
" ex(v)C" is represented by the column vector

Ẽz(v)
.
=
(

ẽz,11(v) ẽz,22(v) ẽz,33(v) ẽz,12(v) ẽz,13(v) ẽz,23(v)
)T . (13)

Hence
Ẽz(v)

.
= C̃" Ex(v),
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where the matrix C̃" belongs to C1([0, L])6×6 and is given by

C̃" =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

2"

0 (Φ′")
2


2"
0 2Φ

′
"


2"
0

0 1 0 0 0 0
(Φ′")

2


2"
0 1


2"
0 −2Φ

′
"


2"
0

0 0 0 1

"

0 Φ′"

"

−Φ′"

2"
0 Φ′"


2"
0 1−(Φ′")

2


2"
0

0 0 0 −Φ′"

"

0 1

"

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (14)

Below, we use the decomposition (4) of a displacement u ∈ H1(")3 to express the matrix ẽz(U e) = CT
" ex(U

e)C". Concerning
the elementary displacement, we have (see14, Subsection 3.4).

ẽz(U e) = CT
" ex(U

e)C" =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
�"

[

()1U − ∧ e1) + )1 ∧
(

Φ"e3 + z2e2 + z3n"
)

]

⋅ t" ∗ ∗

1
2�"

[

()1U − ∧ e1) + )1 ∧
(

Φ"e3 + z2e2 + z3n"
)

]

⋅ e2 0 ∗
1
2�"

[

()1U − ∧ e1) + )1 ∧
(

Φ"e3 + z2e2 + z3n"
)

]

⋅ n" 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (15)

Observe that

)1 ⋅
((Φ"


"
+ z3

)

e2 − z2n"
)

=
(

)1 ∧
(

Φ"e3 + z2e2 + z3n"
)

)

⋅ t",

−)1 ⋅
(

z3t" + Φ"e1
)

=
(

)1 ∧
(

Φ"e3 + z2e2 + z3n"
)

)

⋅ e2,

)1 ⋅
(

z2t" −
Φ"Φ′"

"

e2
)

=
(

)1 ∧
(

Φ"e3 + z2e2 + z3n"
)

)

⋅ n".

4 THE TEXTILE STRUCTURE

Let

P (1)r
.
=
{

z ∈ ℝ3 |
|

|

z1 ∈ (0, L), (z2, z3) ∈ !r
}

,

P (2)r
.
=
{

z ∈ ℝ3 |
|

|

z2 ∈ (0, L), (z1, z3) ∈ !r
}

be the straight reference rods in direction e1 and e2. For each in plane direction, we define two beams of curved rods by

 (1,q)
"

.
=  (1,q)"

(

P (1)r

)

,  (2,p)
"

.
=  (2,p)"

(

P (2)r

)

, (p, q) ∈ "

where the diffeomorphisms are defined by

 (1,q)" (z)
.
=M (1,q)

" (z1) + z2e2 + z3n(1,q)" (z1),
 (2,p)" (z)

.
=M (2,p)

" (z2) + z1e1 + z3n(2,p)" (z2)

and the middle lines by
M (1,q)

" (z1)
.
= z1e1 + q"e2 + (−1)q+1Φ"(z1)e3,

M (2,p)
" (z2)

.
= p"e1 + z2e2 + (−1)pΦ"(z2)e3.

Note that the quantities (−1)q+1 and (−1)p denote the fact that the woven fibers are alternate, allowing crossing between them.
The whole textile structure is given by

"
.
=  (1)" ∪  (2)" ,  (�)"

.
=
2N"−1
⋃

l=0
 (�,l)
" . (16)
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Each direction has its local mobile frames (t(1,q)" , e2,n(1,q)" ) and (e1, t
(2,p)
" ,n(2,p)" ) with

t(1,q)" (z1) =
)1M

(1,q)
"

|

|

|

)1M
(1,q)
"

|

|

|

, n(1,q)" (z1) = t(1,q)" (z1) ∧ e2, z1 ∈ [0, L],

t(2,p)" (z2) =
)2M

(2,p)
"

|

|

|

)2M
(2,p)
"

|

|

|

, n(2,p)" (z2) = e1 ∧ t(2,p)" (z2), z2 ∈ [0, L].

For simplicity, the displacements u(1,q) ∈ H1( (1,q)
" )3, u(2,p) ∈ H1( (2,p)

" )3 are also referred to their respective straight reference
frames with the same names:

u(1,q) ∈ H1(q"e2 + P (1)r )3, u(2,p) ∈ H1(p"e1 + P (2)r )3, (p, q) ∈ ".

Hence, we write (z ∈ q"e2 + P (1)r for u(1,q) and z ∈ p"e1 + P (2)r for u(2,p))

u(1,q)(z) = U(1,q)(z1) +(1,q)(z1) ∧
(

(−1)q+1Φ"(z1)e3 + (z2 − q")e2 + z3n(1,q)" (z1)
)

+ u(1,q)(z),

u(2,p)(z) = U(2,p)(z2) +(2,p)(z2) ∧
(

(−1)pΦ"(z2)e3 + (z1 − p")e1 + z3n(2,p)" (z2)
)

+ u(2,p)(z).
(17)

4.1 The contact and non penetration condition
The contact between fibers is restricted to the portions where the beams are right above each other. We define such contact
domains in the fixed frame

(

e1, e2, e3
)

by ((p, q) ∈ ")

C
.
=

⋃

(p,q)∈"

Cpq , Cpq
.
=
(

Cpq ∩ Ω
)

× {0}, Cpq
.
= (p", q") + !r.

By (1) and (17), in Cpq the displacements reduce for a.e. (z1, z2) ∈ !r to

u(1,q)(z1 + p", z2 + q", (−1)p+q+1r) = U(1,q)(p" + z1) +(1,q)(p" + z1) ∧ z2e2 + u
(1,q),

u(2,p)(z1 + p", z2 + q", (−1)p+qr) = U(2,p)(q" + z2) +(2,p)(q" + z2) ∧ z1e1 + u
(2,p).

(18)

The beam-to-beam interaction is characterized by the nonnegative gap-functions g",� , describing an admissible in plane sliding.
We assume

g",� = "2g� , g� ∈ (Ω) and therefore ‖g",�‖L2(Ω) ≤ C"2‖g�‖L∞(Ω).
In the internal part of Ω we do not allow areas where the fibers are glued:

∃C3 > 0 such that g�(z) ≥ C3, ∀z ∈ Ω. (19)

As we will see, this condition plays an important role in the build of the contact condition for the test-functions.
We define the in plane contact conditions by setting

|u(1,q)� − u(2,p)� | ≤ g",� , a.e in Cpq , ∀(p, q) ∈ ", (20)

while the outer plane component

0 ≤ (−1)p+q
(

u(1,q)3 − u(2,p)3

)

a.e in Cpq , ∀(p, q) ∈ ". (21)

only takes into account the fact that the fibers cannot penetrate each others and the oscillating manner of the beams switching
in the vertical position.

4.2 Boundary conditions
In order to properly study the textile behavior, we first split the whole domain Ω in the four domains

Ω = int
(

Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4
)

defined by (see Figure 1 )

Ω1
.
= (0, l)2, Ω2

.
= (l, L) × (0, l), Ω3

.
= (0, l) × (l, L), Ω4

.
= (l, L)2.
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In Ω1 we assume on both lateral boundaries z1 = 0 and z2 = 0 that every displacement equals zero. Given the structure (16),
this implies

Clamp condition

{

u(1,q)
|z1=0

= 0 for every q ∈ {0,… , 2n"},

u(2,p)
|z2=0

= 0 for every p ∈ {0,… , 2n"}.
(22)

Note that such clamp on Ω1 affects the behavior of the displacements in the whole Ω and justifies the domain splitting. Indeed,
the displacement u(1,q) inherits the clamp condition in z1 = 0 for all z2 ∈ (0, L) (and thus in Ω1 ∪ Ω2), while the displacement
u(2,p) inherits the clamp condition in z2 = 0 for all z1 ∈ (0, L) (and thus in Ω1 ∪ Ω3).
In the remaining left and bottom boundary, we assume that the fibers are glued:

Glued condition

{

u(1,q) = u(2,0) a.e. in C0q , q ∈ {0,… , 2N"},
u(1,0) = u(2,p) a.e. in Cp0, p ∈ {0,… , 2N"}.

(23)

4.3 The admissible displacements of the structure
Given the structure, the boundary and contact conditions, the closed convex set of the admissible displacements is denoted by

"
.
=
{

u =
(

u(1,0),… , u(1,2N"), u(2,0),… , u(2,2N")
)

∈
2N"
∏

q=0
H1(q"e2 + P (1)r )3 ×

2N"
∏

p=0
H1(p"e1 + P (2)r )3 ||

|

u satisfies (20)-(21)-(22)-(23)
}

.

We endow the product space
2N"
∏

q=0
H1(q"e2 + P (1)r )3 ×

2N"
∏

p=0
H1(p"e1 + P (2)r )3 (24)

with the semi-norm

‖u‖"
.
=

√

√

√

√

2N"
∑

q=0
‖ẽz(u(1,q))‖2L2(q"e2+P (1)r )

+
2N"
∑

p=0
‖ẽz(u(2,p))‖2L2(p"e1+P (2)r )

.

By the clamped and glued conditions (22)-(23), we easily check that this semi-norm is in fact a norm, thus " is a closed convex
subset of the product space (24).

4.4 The elasticity problem
Due to the contact conditions, the elasticity problem is stated as variational inequality (and in vectorial notation):

⎧

⎪

⎨

⎪

⎩

Find u" ∈ " such that for every v" ∈ ":

∫
"

A" Ex(u") ⋅ Ex(u" − v") dx ≤ ∫
"

f" ⋅ (u" − v") dx, (25)

where f" ∈ L2(")3 and where the material elasticity law is incorporated by the matrixA", which satisfies the usual Hooke’s law

• A" ∈ L∞(")6×6;

• A" is symmetric;

• A" is positive definite and therefore coercive: there exists two constants C0, C1 > 0 independent of " such that

C0|�|
2 ≤ A" � ⋅ � ≤ C1|�|

2 a.e. in ", ∀� ∈ ℝ6. (26)

Existence and uniqueness of problem (25) are ensured by Stampacchia lemma (see16) and the clamped and glued conditions
(22)-(23), which do not allow rigid motions in the kernel of the symmetric strain tensor.
In order to switch the elasticity problem from the mobile to the straight reference frame, we first recall the vector-transformation
matrices C̃(1,q)" (resp. C̃(2,p)" ) defined in (14) and we replace Φ" by (−1)q+1Φ" (resp. (−1)pΦ"). Then, we set

A" =
(

A(1,0)" ,… , A(1,2N")
" , A(2,0)" ,… , A(2,2N")

"
)

∈
2N"
∏

q=0
L∞(q"e2 + P (1)r )6×6 ×

2N"
∏

p=0
L∞(p"e1 + P (2)r )6×6,
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where
A(1,q)"

.
=
(

C̃(1,q)"

)TA"◦ 
(1,q)
" C̃(1,q)" , A(2,p)"

.
=
(

C̃(2,p)"

)TA"◦ 
(2,p)
" C̃(2,p)"

and the forces ((p, q) ∈ ")
F (1,q)"

.
= f"◦ (1,q)" a.e. in q"e2 + P (1)r ,

F (2,p)"
.
= f"◦ (2,p)" a.e. in p"e1 + P (2)r .

(27)

Following the computation in subsection 3.2 for both directions, we port problem (25) in the straight reference frame:
Find u" ∈ " such that for every v ∈ ":
2N"
∑

q=0
∫

q"e2+P
(1)
r

A(1,q)" Ẽz(u(1,q)" ) ⋅ Ẽz(u(1,q)" − v(1,q)) �(1,q) dz +
2N"
∑

p=0
∫

p"e1+P
(2)
r

A(2,p)" Ẽz(u(2,p)" ) ⋅ Ẽz(u(2,p)" − v(1,q)) �(2,p) dz

≤
2N"
∑

q=0
∫

q"e2+P
(1)
r

F (1,q)" ⋅
(

u(1,q)" − v(1,q)
)

�(1,q)dz +
2N"
∑

p=0
∫

p"e1+P
(2)
r

F (2,p)" ⋅
(

u(2,p)" − v(2,p)
)

�(2,p) dz

(28)

where Ẽz(u
(1,q)
" ) and Ẽz(u

(2,p)
" ) are ℝ6 column vectors (see (12)-(13)) with entries given by (15)-(11) in the respective direction

and where the displacements u(1,q)" and u(2,p)" are defined as in (17).

5 FIELDS ESTIMATES

We want now to estimate the fields involved in problem (28) or, equivalently, those that appear in the representation of
respectively strain tensor (see subsection 3.2) and displacement (see (17)). To do so, we first need an extension result.

5.1 Preliminary decomposition of the displacements
We want to apply the decomposition (8), this time not on a line [0, L] but for the 2D domain Ω. Consider the displacements
u(1,q)" and u(2,p)" defined in (17) and set the spaces

L(1)" =
2N"
⋃

q=0
(0, L) × {q"}, L(2)" =

2N"
⋃

p=0
{p"} × (0, L).

Given the functions U(1,q), (1,q) ∈ H1(L(1)" )
3 and U(2,p), (2,p) ∈ H1(L(2)" )

3, (p, q) ∈ ", we denote U(�),(�) ∈ W 1,∞(Ω)3

the functions defined on each node (p", q") by:
U(1)(p", q") = U(1,q)(p"), (1)(p", q") = (1,q)(p"),
U(2)(p", q") = U(2,p)(q"), (2)(p", q") = (2,p)(q").

Then, we extend them by Q1 interpolation on the vertexes of every cell "(p, q) + "Y included in Ω (see also14, Subsection 5.1).
Hence, we have

U(1,q) = U(1)(⋅, q") + U(1)N (⋅, q"),
(1,q) = (1)(⋅, q") +(1)

N (⋅, q"),

U(2,p) = U(2)(p", ⋅) + U(2)N (p", ⋅),
(2,p) = (2)(p", ⋅) +(2)

N (p", ⋅).
(29)

The functions (�)
N , U

(�)
N ∈ H1(L(�)" )

3 are the reminder terms covering the fast oscillations and have zero value on each node.
The following lemma recalls the results of Lemma 1 for the new setting.

Lemma 2. 14, Lemma 5.2 The fields U(�)N ,(�)
N satisfy

‖U(�)N ‖L2(L(�)" )
+ "‖)�U

(�)
N ‖L2(L(�)" )

≤ C‖u‖"
‖(�)

N ‖L2(L(�)" )
+ "‖)�

(�)
N ‖L2(L(�)" )

≤ C
"
‖u‖" .

(30)

The estimates on the warping (5) are also ported onto the complete structure by (3), leading to
2N"
∑

q=0

(

‖u(1,q)‖2
L2(q"e2+P

(1)
r )
+ "2‖∇u(1,q)‖2

L2(q"e2+P
(1)
r )

)

+
2N"
∑

p=0

(

‖u(2,p)‖2
L2(p"e1+P

(2)
r )
+ "2‖∇u(2,p)‖2

L2(p"e1+P
(2)
r )

)

≤ C"2‖u‖2" . (31)
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5.2 Global estimates
These estimates are a direct consequence of (6), decomposition (29) and the extension results in14, Subsection 5.1.
Lemma 3. 14, Lemma 5.3 One has

‖)�(�)
‖L2(Ω) ≤

C
"
√

"
‖u‖" ,

‖)�U(�) −(�) ∧ e�‖L2(Ω) ≤
C
√

"
‖u‖"

(32)

As a consequence of this lemma we get

Lemma 4. The fields U(1), U(2),(1) and(2) satisfy

‖(1)
‖L2(Ω1∪Ω2) + ‖(2)

‖L2(Ω1∪Ω3) ≤
C
"
√

"
‖u‖" ,

‖U(1)1 ‖L2(Ω1∪Ω2) + ‖U(2)2 ‖L2(Ω1∪Ω3) ≤
C
√

"
‖u‖" .

(33)

Proof. The proof is a direct consequence of (32), the Poincaré inequality and the clamp conditions (22).

Set the left and bottom boundary of Ω in the following way:


2
.
= [0, l] × {0} ⊂ Ω1, Γ2

.
= [0, L] × {0} ⊂ Ω1 ∪ Ω2,


1
.
= {0} × [0, l] ⊂ Ω1, Γ1

.
= {0} × [0, L] ⊂ Ω1 ∪ Ω3,



.
= 
2 ∪ 
1 ⊂ Ω1, Γ

.
= Γ2 ∪ Γ1 ⊂ Ω.

(34)

The clamped conditions (22) and (7) give the following boundary conditions on U(�) and(�)

U(1) = (1) = 0 a.e. on 
1, U(2) = (2) = 0 a.e. on 
2. (35)

5.3 Non penetration condition estimates
Since the displacement switches the vertical position and since two fibers cannot penetrate one into the other, we get a sufficient
good estimate for the distance between fibers in the outer plane component without assuming an additional upper bound contact
function g",3 in (21).
To show this, we start by giving the warping estimates in the contact areas.

Lemma 5. 14, Lemma 5.5 One has
∑

(p,q)∈"

(

‖u(1,q)‖2L2(Cpq)
+ ‖u(2,p)‖2L2(Cpq)

)

≤ C"‖u‖2"

The main result is shown in the following lemma and due to the heavy computation, the entire proof is shifted to Appendix 10.

Lemma 6. One has
‖

‖

‖

U(1)3 − U(2)3
‖

‖

‖L2(Ω)
+ "‖‖

‖

(1)
� −(2)

�
‖

‖

‖L2(Ω)
≤ C

√

"‖u‖" . (36)

We now give all the estimates for the outer plane fields.

Lemma 7. One has
‖U(�)3 ‖H1(Ω) + ‖(�)

� ‖H1(Ω) ≤
C
"
√

"
‖u‖" (37)

Proof. Since the proof is analogous, we just show the estimates for direction e1. First, it is easy to prove that the following
inequalities hold:

‖�‖2L2(Ω) ≤ 2
L
l
‖�‖2L2(Ω1∪Ω3) + 2L

2
‖)1�‖

2
L2(Ω), ∀� ∈ L2(Ω, )1),

‖ ‖2L2(Ω) ≤ 2
L
l
‖ ‖2L2(Ω1∪Ω2) + 2L

2
‖)2 ‖

2
L2(Ω), ∀ ∈ L2(Ω, )2).

(38)
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Now, from estimates (32)1, (33), (36), the above (38) and the Q1 interpolation properties, we have

‖(1)
� ‖L2(Ω) ≤ C

(

‖(1)
� ‖L2(Ω1∪Ω3) + ‖)1(1)

� ‖L2(Ω)
)

≤ C
(

‖(1)
� −(2)

� ‖L2(Ω) + ‖(2)
� ‖L2(Ω1∪Ω3) + ‖)1(1)

� ‖L2(Ω)
)

≤ C
"
√

"
‖u‖" ,

‖)2(1)
� ‖L2(Ω) ≤

C
"
‖(1)

� −(2)
� ‖L2(Ω) + C‖)2(2)

� ‖L2(Ω) ≤
C
"
√

"
‖u‖" .

This, together with (32)1 proves (32)2. We prove now (37)1 for � = 1. By (32)2 and (37)2, we first get that

‖)1U
(1)
3 ‖L2(Ω) + ‖)2U

(2)
3 ‖L2(Ω) ≤

C
"
√

"
‖u‖" ,

which together with (36) and the Q1-interpolation properties gives

‖)2U
(1)
3 ‖L2(Ω) ≤

C
"
‖U(1)3 − U(2)3 ‖L2(Ω) + ‖)2U

(2)
3 ‖L2(Ω) ≤

C
"
√

"
‖u‖"

and thus an estimate of the gradient of U(1)3 . By the Poincaré inequality and the clamp conditions (22) we get (37)1 for � = 1.
The proof for � = 2 is analogous.

5.4 Contact estimates
The remaining fields to estimate are the in plane fields in the not supported areas for the domain, that are, in the domainsΩ3∪Ω4
for the fields in direction e1 and Ω2 ∪ Ω4 for the fields in direction e2. In this sense, the 2D Korn’s inequality and the fact
that estimates (39) allow to switch between the supported direction to the not supported one are used. For more details on this
method, see14, Subsection 5.5.
Set

‖g‖L∞(Ω)
.
= ‖g1‖L∞(Ω) + ‖g2‖L∞(Ω).

In the following lemma, we recall the difference between the displacements in the in plane components.

Lemma 8. 14, Lemma 5.6 One has
‖

‖

‖

U(1)� − U(2)�
‖

‖

‖L2(Ω)
+ "‖‖

‖

(1)
3 −(2)

3
‖

‖

‖L2(Ω)
≤ C

(

"2‖g‖L∞(Ω) +
√

"‖u‖"
)

. (39)

Now, proceeding as in14, Lemma 5.9 and Corollary 5.10 we get theH1 norms of the in plane fields.

Lemma 9. One has
‖U(�)� ‖H1(Ω) + ‖(�)

3 ‖L2(Ω) ≤ C
(

"‖g‖L∞(Ω) +
1
√

"
‖u‖"

)

. (40)

5.5 Final decomposition of the displacements
Looking at the estimates for each field and the ones concerning their difference (36) and (39), we find convenient to define
combined fields.
First, proceeding as in the proof of14, Lemma 5.6 we obtain that the glued conditions (23) imply

‖U(1) − U(2)‖L2(Γ) + "‖(1) −(2)
‖L2(Γ) ≤ C‖u‖" . (41)

Regarding the outer plane fields, we set the decomposition

U3
.
= 1
2
(

U(1)3 + U(2)3
)

, U(g)3
.
= 1
2
(

U(1)3 − U(2)3
)

,

�
.
= 1
2
(

(1)
� +(2)

�

)

, (g)
�

.
= 1
2
(

(1)
� −(2)

�

)

.
(42)

Due to the clamped conditions (35) and estimates (41), one has

‖U3‖L2(
) + "‖�‖L2(
) ≤ C‖u‖" . (43)



13

We define the piece-wise linear functions U1 and U2 by

U1
.
= U(2)1 (0, ⋅) U2

.
= U(1)2 (⋅, 0) a.e. in (0, L).

The fields U1, U2 represent the macroscopic displacements of the mid-surface Ω.
Then, we define the fields U(S)� , U

(B)
� ∈ H1(Ω) by the equalities

U(1)1 = U1 + U(S)1 , U(1)2 = U2 + U(B)2 ,

U(2)1 = U1 + U(B)1 , U(2)2 = U2 + U(S)2 ,
(44)

where S is for stretching and B for bending. The function U(S)� stands for the relative stretching/compression of the beams whose
direction is e� , while U(B)� represents the bending of the beams whose direction is e3−� .
Note that
By the displacement representations (17), the extension operator and the splitting (29), the final decomposition of the

displacements becomes ((p, q) ∈ ")

u(1,q)(z) =

[

⎛

⎜

⎜

⎝

U1 + U(S)1
U2 + U(B)2
U3 + U(g)3

⎞

⎟

⎟

⎠

(z1, q") + U(1,q)N (z1)

]

+

[

⎛

⎜

⎜

⎝

1 +(g)
1

2 +(g)
2

(1)
3

⎞

⎟

⎟

⎠

(z1, q") +(1,q)
N (z1)

]

∧
(

(−1)q+1Φ"(z1)e3 + (z2 − q")e2 + z3n(1,q)" (z1)
)

+ u(1,q)(z),

u(2,p)(z) =

[

⎛

⎜

⎜

⎝

U1 + U(B)1
U2 + U(S)2
U3 − U(g)3

⎞

⎟

⎟

⎠

(z2, p") + U(2,p)N (z2)

]

+

[

⎛

⎜

⎜

⎝

1 −(g)
1

2 −(g)
2

(2)
3

⎞

⎟

⎟

⎠

(z2, p") +(2,p)
N (z2)

]

∧
(

(−1)pΦ"(z2)e3 + (z1 − p")e1 + z3n(2,p)" (z2)
)

+ u(2,p)(z).

(45)

Define the spaces (� ∈ {1, 2})
L2(Ω, )�)

.
=
{

� ∈ L2(Ω) ||
|

)�� ∈ L2(Ω)
}

.
In the following Lemma, we present the estimates for such decomposition.

Lemma 10. One has
‖U(S)� ‖L2(Ω,)�) + "‖)3−�U

(S)
� ‖L2(Ω) ≤

C
√

"
‖u‖" ,

‖U(B)� ‖L2(Ω) + "‖∇U(B)� ‖L2(Ω) ≤ C
(

"2‖g‖L∞(Ω) +
1
√

"
‖u‖"

)

,

‖U�‖H1(0,L) ≤ C
(

"‖g‖L∞(Ω) +
1

"
√

"
‖u‖"

)

,

(46)

and
‖U3‖H1(Ω) +

1
"
‖U(g)3 ‖L2(Ω) + ‖∇U(g)3 ‖L2(Ω) ≤

C
"
√

"
‖u‖" . (47)

For the rotation fields one has

‖�‖H1(Ω) +
1
"
‖(g)

� ‖L2(Ω) + ‖∇(g)
� ‖L2(Ω) ≤

C
"
√

"
‖u‖" ,

‖(�)
3 ‖L2(Ω,)�) + "‖)3−�

(�)
3 ‖L2(Ω) ≤ C

(

"‖g‖L∞(Ω) +
1

"
√

"
‖u‖"

)

.
(48)

Proof. We will only show the estimates for � = 1, since the case � = 2 follows by a symmetric argumentation.
By definition, we have )1U1 = 0 and thus )1U

(S)
1 = )1U

(1)
1 . This, together with Poincaré inequality, (32)1, (41) and the Q1

character of interpolated functions, implies that

‖U(S)1 ‖L2(Ω,)1) ≤ ‖U(1)1 − U1‖L2(Ω,)1) + ‖U(1)1 − U(2)1 ‖L2(Γ1)

≤ C‖)1U
(1)
1 ‖L2(Ω) + C‖u‖" ≤

C
√

"
‖u‖" ,

‖)2U
(S)
1 ‖L2(Ω) ≤

C
"
‖U(1)1 − U1‖L2(Ω) ≤

C
"
√

"
‖u‖" ,
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which proves (46)1.
The above estimates together with (39) lead to

‖U(B)1 ‖L2(Ω) = ‖U(2)1 − U1‖L2(Ω) ≤ ‖U(2)1 − U(1)1 ‖L2(Ω) + ‖U(S)1 ‖L2(Ω)

≤ C
(

"2‖g‖L∞(Ω) +
1
√

"
‖u‖"

)

,

which together with the Q1 character of interpolated functions proves (46)2.
By the above estimates of )2U

(S)
1 , (41) and (40)1 we get

‖U1‖L2(Ω) ≤ ‖U(S)1 ‖L2(Ω) + ‖U(1)1 − U(2)1 ‖L2(Γ1) + ‖U(1)1 ‖L2(Ω)

≤ C
(

"‖g‖L∞(Ω) +
1
√

"
‖u‖"

)

,

‖)2U1‖L2(Ω) ≤ ‖)2U
(S)
1 ‖L2(Ω) + ‖)2U

(1)
1 ‖L2(Ω) ≤ C

(

"‖g‖L∞(Ω) +
1

"
√

"
‖u‖"

)

which again together with the fact that )1U1 = 0, proves (46)3.
Estimates (47) and (48)1 follow from (36) and (37), while estimate (48)2 follow from (40)2, (32)1 and the Q1 character of
interpolated functions.

The clamped and glued conditions (35)-(41) yield

U(S)� = 0 a.e. on 
� , ‖U�‖L2(
�) ≤ C‖u‖" (49)

Now, we can use the remark 1 to define the global fields Ů(�), ̊(�) ∈ W 1,∞(Ω)3 in the following way ((p, q) ∈ " and
(p′, q′) ∈ {0,… , N"}2):

Ů(1)(2p′", q") = Ů(1,q)(2p′"), ̊(1)(2p′", q") = ̊(1,q)(2p′"),
Ů(2)(p", 2q′") = Ů(2,p)(2q′"), ̊(2)(p", 2q′") = ̊(2,p)(2q′").

Then, the estimates (10) give

‖U(�) − Ů(�)‖L2(Ω) ≤ C
√

"‖u‖" , ‖∇(U(�) − Ů(�))‖L2(Ω) ≤
C
√

"
‖u‖" . (50)

Hence, for the fields Ů(�), ̊(�) we obtain the same estimates as those in Lemmas 6, 7, 8, 9 and 10 ((47) and (48)).
Set

Ů1
.
= Ů(2)1 (0, ⋅), Ů2

.
= Ů(1)2 (⋅, 0).

Lemma 11. One has
‖U(�) − Ů(�)‖L2(Γ) ≤ C‖u‖" ,

‖Ů1‖H1(Ω) + ‖Ů2‖H1(Ω) ≤ C
(

"‖g‖L∞(Ω) +
1

"
√

"
‖u‖"

)

,

‖U� − Ů�‖L2(Ω) + "‖∇(U� − Ů�)‖L2(Ω) ≤ C‖u‖" .

(51)

Proof. Estimate (51)1 is an immediate consequence of (50). Then, this estimate and the Q1 character of these functions yield

‖U1 − Ů(2)1 (0, ⋅)‖L2(0,L) ≤ C‖u‖" ⇐⇒ ‖)2(U1 − Ů(2)1 (0, ⋅))‖L2(0,L) ≤
C
"
‖u‖" .

The above estimates together with (46)3 lead to the estimate (51)2 of Ů1 = Ů(2)1 (0, ⋅). Similarly we obtain the estimate of (51)2
of Ů2 = Ů(1)2 (⋅, 0).

5.6 Assumption on the right hand side
The forces applied must be chosen in order to keep the elasticity problem in a linear regime, since they heavily determine the
gradient estimates. Indeed, the coercivity of A" applied to problem (25) with v" = 0 gives

C0‖u"‖
2
"

≤ ∫
"

A"Ex(u") ⋅ Ex(u") dx ≤ |

|

|∫
"

f" ⋅ u" dx
|

|

|

. (52)
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Hence, we first set f̃ (�) ∈ H1(Ω)2 and f (�) ∈ H1(Ω)3 with

f̃ (�)1 = 0 a.e. in Ω3 ∪ Ω4, f̃ (�)2 = 0 a.e. in Ω2 ∪ Ω4.

and define the forces in the straight reference beam (27) by

F (1,q)" (z)
.
=
(

"2f̃ (1)1 e1 + "2f̃
(1)
2 e2 + "3f (1)

)

(z1, q") for a.e. z in q"e2 + P (1)r ,

F (2,p)" (z)
.
=
(

"2f̃ (2)1 e1 + "2f̃
(2)
2 e2 + "3f (2)

)

(p", z2) for a.e. z in p"e1 + P (2)r .
Switching to the straight reference frame (see (28)), we estimate the right hand side using the above forces defined, the final
displacements (45) and their estimates in Lemma 10 together with (31). We get

|

|

|∫
"

f" ⋅ u" dx
|

|

|

≤ C"5
2
∑

�=1

(

‖f̃ (�)‖H1(Ω) + ‖f (�)‖H1(Ω)
)

(

‖g‖L∞(Ω) +
1

"2
√

"
‖u"‖"

)

. (53)

Finally, from (52)-(53), we obtain an estimate for the elastic energy

‖u"‖" ≤ C"5∕2
(

‖g‖L∞(Ω) +
2
∑

�=1

(

‖f̃ (�)‖H1(Ω) + ‖f (�)‖H1(Ω)
)

)

≤ C"5∕2.

6 ASYMPTOTIC BEHAVIOR OF THE FIELDS

In this section we consider a sequence {u"}" of displacements belonging to " and satisfying

‖u"‖" ≤ C"5∕2. (54)

Applying (54) to the estimates in Lemma 10 and to (32)2 we get

‖U",�‖H1(Ω) + ‖U",3‖H1(Ω) ≤ C", ‖U(g)",3‖L2(Ω) + "‖∇U
(g)
",3‖L2(Ω) ≤ C",

‖U(S)",�‖L2(Ω,)�) + "‖)3−�U
(S)
",�‖L2(Ω) + ‖U(B)� ‖L2(Ω) + "‖∇U(B)� ‖L2(Ω) ≤ C"2,

‖",�‖H1(Ω) ≤ C", ‖(g)
",�‖L2(Ω) + "‖∇

(g)
",�‖L2(Ω) ≤ C"2,

‖(�)
",3‖L2(Ω,)�) + "‖)3−�

(�)
",3‖L2(Ω) ≤ C", ‖)�U(�)" −(�)

" ∧ e�‖L2(Ω) ≤ C"2.

(55)

6.1 Weak limit of the macroscopic fields
By the boundedness of the sequences (55), compactness results imply the weak convergences of the fields. Denote

H1

 (Ω)

.
=
{

� ∈ H1(Ω) |

|

|

� = 0 a.e. 

}

,

H2

 (Ω)

.
=
{

� ∈ H2(Ω) |

|

|

� = 0 and ∇� = 0 a.e. 

}

and
L2(0,l)

(

(0, L)z�
) .
=
{

� ∈ L2
(

(0, L)z�
)

|

|

|

� = 0 a.e. in (0, l)
}

,

Hk
(0,l)

(

(0, L)z�
) .
= Hk((0, L)z�

)

∩ L2(0,l)
(

(0, L)z�
)

, k ∈ {1, 2}.
The spacesH1

(0,l)

(

(0, L)z�
)

andH2
(0,l)

(

(0, L)z�
)

are for the functions that appear only in the not supported parts in the direction
e3−� that is why they vanish due to the clamp condition in their direction.

Lemma 12. There exist a subsequence of {"}, still denoted {"}, and functions U1 ∈ H2
(0,l)

(

(0, L)z2
)

, U2 ∈ H2
(0,l)

(

(0, L)z1
)

,
(�)
3 ∈ H1

(0,l)

(

(0, L)z�
)

, U3 ∈ H2

 (Ω) and� ∈ H1


 (Ω) such that

1
"
U",� ⇀ U� weakly inH1(Ω),

1
"
U",3 → U3 strongly inH1(Ω),

1
"
",� ⇀ � weakly inH1(Ω) and strongly in L2(Ω),

1
"
(�)
",3 ⇀ (�)

3 weakly in L2(Ω, )�)

(56)
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and (�) ∈ L2(Ω)3 such that
1
"2
(

)�U(�)" −(�)
" ∧ e�

)

⇀ (�) weakly in L2(Ω)3. (57)
Moreover, the following identities hold a.e. in Ω:

2 = −)1U3, 1 = )2U3, (1)
3 = )1U2, (2)

3 = −)2U1. (58)

Proof. Estimates in Lemma 10 imply the existence of U� , � ∈ H1(Ω) and (�)
3 ∈ L2(Ω, )�) such that the convergences

(56)1,3,4 hold, while (57) is a direct consequence of (32)2. It also exists U3 ∈ H1(Ω) such that
1
"
U",3 ⇀ U3 weakly inH1(Ω).

From (57) we have
1
"

(

)�U(�)" −(�)
" ∧ e�

)

→ 0 strongly in L2(Ω)3. (59)
Then, the above two convergences and (56)3 yield (56)2. Convergences (56) and (57) lead to the equalities (58). Now (58), the
fact that U1 and U2 do not depend on z1 and z2 respectively and the boundary conditions (35)-(43)-(49)-(54) lead to U1 ∈
H2
(0,l)

(

(0, L)z2
)

, U2 ∈ H2
(0,l)

(

(0, L)z1
)

,(�)
3 ∈ H1

(0,l)

(

(0, L)z�
)

, U3 ∈ H2

 (Ω) and� ∈ H1


 (Ω).

6.2 Unfold of the limit fields via in plane unfolding operator
Recall that  = [0, 2)2 is the 2-periodic reference cell in Ω.

Definition 1 (In plane unfolding operator). For every measurable function � in L2(Ω), one defines the measurable function
"(�) in L2(Ω × ) by

"(�)(z′, X′)
.
= �

(

2"
[ z′

2"

]

+ "X′
)

for a.e. (z′, X′) ∈ Ω ×  .

Its properties are the typical ones and can be found in6. In particular, this operator satisfies

‖"(�)‖L2(Ω×) ≤ C‖�‖L2(Ω), ∀� ∈ L2(Ω). (60)

Moreover, we introduce the mean value operator ∶ L1(Ω × ) ←→ L1(Ω) by

 (�)(⋅) =
1
||

∫


 (⋅, X1, X2)dX1dX2 ∀ ∈ L1(Ω × )

Denote the set containing the nine nodes of  by
K

.
= {0, 1, 2}2.

We define the spaces of special Q1 interpolates by

1()
.
=
{

� ∈ W 1,∞() ||
|

� is the Q1 interpolated of its values on K
}

,

1
per()

.
= 1() ∩H1

per(),

1
per,0()

.
=
{

� ∈ 1
per()

|

|

|

 (�) = 0
}

and

1((0, 2)X�
)
.
=
{

� ∈ W 1,∞((0, 2)X�
) ||
|

� is piecewise linear in [0, 1] and [1, 2]
}

,

1
per((0, 2)X�

)
.
= 1((0, 2)X�

) ∩H1
per((0, 2)X�

),

1
per,0((0, 2)X�

)
.
=
{

� ∈ 1
per((0, 2)X�

) ||
|

2

∫
0

�dX� = 0
}

.

While the unfolding for sequences bounded in H1(Ω) and L2(Ω) (see6) is well known, new results developed in8 extend the
unfolding method to sequences bounded anisotropically, i.e. in L2(Ω, )�). Set

L2(Ω;1
per((0, 2)X�

))
.
=
{

� ∈ L2(Ω;1
per())

|

|

|

� only depends on (z′, X�)
}

,

L2(Ω, )1;1
per((0, 2)X2

))
.
= L2(Ω;1

per((0, 2)X2
)) ∩ L2(Ω × (0, 2)X2

, )1),

L2(Ω, )2;1
per((0, 2)X1

))
.
= L2(Ω;1

per((0, 2)X1
)) ∩ L2(Ω × (0, 2)X1

, )2).
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Moreover, due to the boundary conditions (22)-(23) we set
L2(Ω, )�)

.
= {� ∈ L2(Ω, )�) | � = 0 a.e. on Γ3−�},

L2(Ω, )�;1
per((0, 2)X3−�

))
.
=
{

� ∈ L2(Ω, )�;1
per((0, 2)X3−�

))||
|

� = 0 a.e. on Γ3−� × (0, 2)X3−�

}

.

We are ready to give the asymptotic behaviour of our unfolded sequences.

Lemma 13. There exist a subsequence of {"}, still denoted {"}, and functions ̂� ∈ L2(Ω;1
per,0()) such that

1
"
"
(

U",�
)

, 1
"
"
(

Ů",�
)

→ U� strongly in L2(Ω;1()),

1
"
"
(

∇U",�
)

, 1
"
"
(

∇Ů",�
)

⇀ ∇U� weakly in L2(Ω × )2,

1
"
"
(

U",3
)

→ U3 strongly in L2(Ω;1()),

1
"
"
(

∇U",3
)

→ ∇U3 strongly in L2(Ω × )2,

1
"
"
(

",�
)

→ � strongly in L2(Ω;1()),

1
"
"
(

∇",�
)

⇀ ∇� + ∇X̂� weakly in L2(Ω × )2

(61)

and Û(S)� ∈ L2(Ω × (0, 2)X3−�
;1

per,0((0, 2)X�
)) ∩ L2(Ω;1()), U(S)� in the space L2(Ω, )�;1

per((0, 2)X3−�
)) such that

1
"2

"
(

U(S)",�
)

⇀ U(S)� weakly in L2(Ω;1()),

1
"2

"
(

)�U(S)",�
)

⇀ )�U(S)� + )X�
Û(S)� weakly in L2(Ω × ),

1
"
"
(

(�)
",3

)

⇀ (�)
3 weakly in L2(Ω;1())

(62)

and also U(B)� ∈ L2(Ω;1
per((0, 2)X�

)), Û(g)3 , ̂(g)
� ∈ L2(Ω;1

per()) such that

1
"2

"
(

U(B)",�

)

⇀ U(B)� weakly in L2(Ω;1()),

1
"3

"
(

U(g)",3
)

⇀ Û(g)3 weakly in L2(Ω;1()),

1
"2

"
(

(g)
",�

)

⇀ ̂(g)
� weakly in L2(Ω;1()).

(63)

Proof. First, remind that if a sequence {�"}" is defined as Q1 interpolate on the nodes (p, q) of Ω (see subsection 5.1), by
construction it follows that

{"(�")}" ⊂ Lp(Ω;Q1()). (64)
Due to the estimates (55) and the convergences in Lemma 12, we get (61)1,3,4,5,6 by5, Corollary 1.37, Proposition 1.39, Theorem 1.41. Since
1
"
"
(

∇Ů",�
)

does not depend on the microscopic variables, its limit (given by (61)2) does not depend on them either. Due to the

estimate (51)3,
1
"
"
(

∇U",�
)

converges to the same limit.
Convergences (62)1,2 are consequences of8, Lemma 4.3 and (63) (with the function U(B)� ∈ L2(Ω;1

per())) by
5, Theorem 1.36.

There also exists ̃(�)
3 ∈ L2(Ω, )1;1

per((0, 2)X3−�
)) (see again8, Lemma 4.3) such that

1
"
"
(

(�)
",3

)

⇀ ̃(�)
3 weakly in L2(Ω;1()).

From estimate (59) and the above convergences together with (61)-(63), we obtain
1
"
"
(

)1U
(1)
",2 −(1)

",3

)

⇀ 0 = )1U2 + )X1
U(B)2 − ̃(1)

3 weakly in L2(Ω × ),

1
"
"
(

)2U
(2)
",1 +(2)

",3

)

⇀ 0 = )2U1 + )X2
U(B)1 + ̃(2)

3 weakly in L2(Ω × ).
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Since U(B)2 is 2-periodic with respect to X1 and ̃(1)
3 does not depend on X1 (resp. since U

(B)
1 is 2-periodic with respect to X2

and ̃(2)
3 does not depend on X2) and besides since )1U3 +2 = 0 (resp. )2U3 −1 = 0) by (58), we get

)X1
U(B)2 = 0, )X2

U(B)1 = 0. (65)

Hence, the function U(B)2 (resp. U(B)1 ) does not depend on the microscopic variable X1 (resp. X2). So, we have U(B)1 ∈
L2(Ω;1

per((0, 2)X1
)), U(B)2 ∈ L2(Ω;1

per((0, 2)X2
)). Moreover, from the above convergences and (65), we obtain

)1U2 = ̃(1)
3 , )2U1 = −̃

(2)
3 . (66)

Using (58) and equalities (66), we get ̃(1)
3 = (1)

3 and ̃(2)
3 = (2)

3 . This (62)3.

Now we unfold convergence (57) and the derivatives of (56)4.

Lemma 14. There exist a subsequence of {"}, still denoted {"}, and functions ̂(�)
3 ∈ L2(Ω;1

per,0()) such that

1
"
"
(

)�
(�)
",3

)

⇀ )�
(�)
3 + )X�

̂(�)
3 weakly in L2(Ω × ). (67)

There exist Û(1)2 , Û(2)1 , Û3 ∈ L2(Ω;1
per,0()) and ̃

(3−�)
� ∈ L2(Ω;1

per((0, 2)X�
)) such that

1
"2

"
(

)1U(1)" −(1)
" ∧ e1

)

⋅ e3 ⇀ (1)
3 + )X1

(Û3 + Û(g)3 ) + (̂2 + ̂(g)
2 ), weakly in L2(Ω × ),

1
"2

"
(

)1U(1)" −(1)
" ∧ e1

)

⋅ e2 ⇀ ̃(1)
2 + )X1

Û(1)2 − ̂(1)
3 weakly in L2(Ω × )

(68)

and
1
"2

"
(

)2U(2)" −(2)
" ∧ e2

)

⋅ e3 ⇀ (2)
3 + )X2

(Û3 − Û(g)3 ) − (̂1 − ̂(g)
1 ) weakly in L2(Ω × ),

1
"2

"
(

)2U(2)" −(2)
" ∧ e2

)

⋅ e1 ⇀ ̃(2)
1 + )X2

Û(2)1 + ̂(2)
3 weakly in L2(Ω × ).

(69)

Proof. We start by proving (67) in direction e1 and (68)2. By estimates (32)-(40)-(55) and the Q1 interpolation properties, we
have

‖U(1)",2‖H1(Ω) ≤ C", ‖(1)
",3‖L2(Ω,)1) + "‖)2

(1)
",3‖L2(Ω) ≤ C",

‖)2()1U
(1)
",2 −(1)

",3)‖L2(Ω) + "‖)2()1
(1)
",3)‖L2(Ω) ≤ C".

Moreover, convergence (57) holds.
Hence, by8, Lemma 5.4 and (64), there exist ̂(1)

3 , Û(1)2 ∈ L2(Ω;1
per,0()) and ̃

(1)
2 ∈ L2(Ω;1

per((0, 2)X2
)) such that

1
"
"
(

)1
(1)
",3

)

⇀ )1
(1)
3 + )X1

̂(1)
3 weakly in L2(Ω × ),

1
"2

"
(

)1U
(1)
",2 −(1)

",3

)

⇀ ̃(1)
2 + )X1

Û(1)2 − ̂(1)
3 weakly in L2(Ω × ).

Direction e2 follows by analogous argumentation, thus (67) and (68)2-(69)2 hold.
Now we prove (68)1-(69)1. By convergences (57)-(61)6 and estimates (47)-(48)1,5, Lemma 11.11 and property (64) applied to the
sequences (U3,",2,"), (U3,",−",1), there exist Û3 ∈ L2(Ω;1

per,0()) such that, up to a subsequence,

1
"2

"
(

)1U",3 +",2
)

⇀ (1)
3 + )X1

Û3 + ̂2 weakly in L2(Ω × ),

1
"2

"
(

)2U",3 −",1
)

⇀ (2)
3 + )X2

Û3 − ̂1 weakly in L2(Ω × ).

Hence, by convergences (63)2,3 and decompositions (42) we have
1
"2

"
(

)1U
(1)
",3 +(1)

",2

)

= 1
"2

"
(

)1U",3 +",2
)

+ 1
"2

"
(

)1U
(g)
",3

)

+ 1
"2

"
(

(g)
",2

)

⇀ (1)
3 + )X1

Û3 + )X1
Û(g)3 + ̂2 + ̂(g)

2 weakly in L2(Ω × ),
1
"2

"
(

)2U
(2)
",3 −(2)

",1

)

= 1
"2

"
(

)2U",3 −",1
)

− 1
"2

"
(

)2U
(g)
",3

)

+ 1
"2

"
(

(g)
",1

)

⇀ (1)
3 + )X1

Û3 − )X1
Û(g)3 − ̂1 + ̂(g)

1 weakly in L2(Ω × )
and thus (68)1-(69)1 hold.
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6.3 Unfold of the complete structure via global unfolding operator
We note that the limit functions have been unfolded just in the 2D plane Ω. However, the nature of the textile is a 3D structure
and that is why a new unfolding operator is introduced. Set

Cyl(1)
.
= (0, 2) × (−�, �) × (−�, �),

Cyl(2)
.
= (−�, �) × (0, 2) × (−�, �),

Cyl
.
= Cyl(1) × Cyl(2).

Definition 2 (Global unfolding operator). For every measurable function � in L1( (1)" ) and  in L1( (2)" ), one defines the
measurable functions Π(1,b)" (�) in the space L1(Ω × Cyl(1)) and Π(2,a)" ( ) in L1(Ω × Cyl(2)) respectively by ((a, b) ∈ {0, 1}2)

Π(1,b)" (�)(z′, X)
.
= �

(

2"
[ z′

2"

]

+ "b e2 + "X
)

, for a.e. (z′, X) ∈ Ω × Cyl(1),

Π(2,a)" ( )(z′, X)
.
=  

(

2"
[ z′

2"

]

+ "a e1 + "X
)

, for a.e. (z′, X) ∈ Ω × Cyl(2).

Note that this unfolding operator changes the convergence rate, since a dimension reduction is additionally applied.

Lemma 15. For every � ∈ L1( (�)" ) one has

∫
 (�)"

�(z)dz ≤ "
4

1
∑

c=0
∫
Ω

∫
Cyl(�)

Π(�,c)" (�)(z′, X)dz′dX.

As a direct consequence, we get that
2
∑

�=1

1
∑

c=0
‖Π(�,c)" (�)‖L2(Ω×Cyl(�)) ≤

C
√

"
‖�‖L2("), ∀� ∈ L2("). (70)

In order to apply the global unfolding Π(�,c)" to the unfolded fields in Lemma 12, note that the in plane operator and the global
unfolding operators are related in the following way: for each � defined on", its extension � ∈ W 1,∞(Ω) (see subsection 5.1)
satisfies the equalities of the traces

Π(1,b)" (�)(z′, X1, 0) = �
(

2"
[ z′

2"

]

+ "X1e1 + "be2
)

= "(�)(z′, X1, b), for a.e. (z′, X1) ∈ Ω × (0, 2), b ∈ {0, 1},

Π(2,a)" (�)(z′, 0, X2) = �
(

2"
[ z′

2"

]

+ "ae1 + "X2e2
)

= "(�)(z′, a, X2), for a.e. (z′, X2) ∈ Ω × (0, 2), a ∈ {0, 1}.

Hence, unfolding via Π(�,c)" is equivalent to the unfolding via " restricted to the beams centerlines in the respective direction.
We are ready to give the strain tensor convergences.

Lemma 16. Under the assumptions of Lemma 12, there exist a subsequence of {"}, still denoted {"}, and fields ℜ(�,c) ∈
L2(Ω;H1

per((0, 2)X�
))3 such that

1
"
Π(1,b)"

(

)1(1,q)
"

)

⇀

⎛

⎜

⎜

⎜

⎝

)12U3
−)11U3
)11U2

⎞

⎟

⎟

⎟

⎠

+ )X1
ℜ(1,b) weakly in L2(Ω × Cyl(1))3,

1
"
Π(2,a)"

(

)2(2,p)
"

)

⇀

⎛

⎜

⎜

⎜

⎝

)22U3
−)12U3
−)22U1

⎞

⎟

⎟

⎟

⎠

+ )X2
ℜ(2,a) weakly in L2(Ω × Cyl(2))3

(71)

and U(�,c) ∈ L2(Ω;H1
per((0, 2)X�

))3 such that

1
"2
Π(1,b)" ()1U(1,q)" −(1,q)

" ∧ e1)⇀
⎛

⎜

⎜

⎝

)1U
(S,b)
1

̃(1,b)
2
(1)
3

⎞

⎟

⎟

⎠

+ )X1
U(1,b) −ℜ(1,b) ∧ e1 weakly in L2(Ω × Cyl(1))3,

1
"2
Π(2,a)" ()2U(2,p)" −(2,p)

" ∧ e2)⇀
⎛

⎜

⎜

⎝

̃(2,a)
1

)2U
(S,a)
2

(2)
3

⎞

⎟

⎟

⎠

+ )X2
U(2,a) −ℜ(2,a) ∧ e2 weakly in L2(Ω × Cyl(2))3,

(72)
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where U(S,b)1 = U(S)1|X2=b
∈ L2(Ω, )1), U

(S,a)
2 = U(S)2|X1=a

∈ L2(Ω, )2), ̃
(1,b)
2 = ̃(1)

2|X2=b
, ̃(2,a)

1 = ̃(2)
1|X1=a

∈ L2(Ω).

Proof. We just prove direction e1, since the second one follows the same argumentation. From splitting (29) and theQ1 extension
properties, we first obtain

(1,q)
" = (1)

" +(1)
",N , U(1,q)" = U(1)" + U(1)",N .

By estimates (30), there exist a subsequence of {"}, still denoted {"}, and ̂(1,b)
N , Û(1,b)N ∈ L2(Ω;H1

per((0, 2)X1
))3 such that

1
"3
Π(1,b)"

(

U(1)",N
)

⇀ Û(1,b)N weakly in L2(Ω;H1(Cyl(1)))3,

1
"2
Π(1,b)"

(

(1)
",N

)

⇀ ̂(1,b)
N weakly in L2(Ω;H1(Cyl(1)))3.

(73)

By convergences (61)6, (63)3, (67) and the fact that 1 convergences can be restricted to the beams centerlines, we have
1
"
Π(1,b)"

(

)1(1,q)
"

)

= 1
"
"
(

)1(1)
"

)

|X2=b
+ 1
"
Π(1,b)"

(

(1)
",N

)

⇀ )1
⎛

⎜

⎜

⎝

1
2
(1)
3

⎞

⎟

⎟

⎠

+ )X1

⎛

⎜

⎜

⎜

⎝

(

̂1 + ̂(g)
1

)

|X2=b
+ ̂(1,b)

N,1
(

̂2 + ̂(g)
2

)

|X2=b
+ ̂(1,b)

N,2

̂(1)
3|X2=b

+ ̂(1,b)
N,3

⎞

⎟

⎟

⎟

⎠

weakly in L2(Ω × Cyl(1))3.

By convergences (62)2, (68), (69), (73)1,2 and the fact that 1 convergences can be restricted to the beams centerlines, we get
1
"2
Π(1,b)" ()1U(1,q)" −(1,q)

" ∧ e1) =
1
"2

"()1U(1)" −(1)
" ∧ e1)|X2=b +

1
"2
Π(1,b)" ()1U

(1)
",N −(1)

",N ∧ e1)

⇀

⎛

⎜

⎜

⎜

⎝

)1U
(S)
1|X2=b

̃(1)
2|X2=b
(1)
3

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

)X1
Û(S)1|X2=b

(

)X1
Û(1)2 − ̂(1)

3

)

|X2=b
(

)X1
(Û3 + Û(g)3 ) + (̂2 + ̂(g)

2 )
)

|X2=b

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

)X1
Û(1,b)N,1

)X1
Û(1,b)N,2 − ̂(1,b)

N,3
)X1

Û(1,b)N,3 + ̂(1,b)
N,2

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

)1U
(S)
1|X2=b

̃(1)
2|X2=b
(1)
3

⎞

⎟

⎟

⎟

⎠

+ )X1

⎛

⎜

⎜

⎜

⎝

Û(S)1|X2=b
+ Û(1,b)N,1

Û(1)2|X2=b
+ Û(1,b)N,2

(Û3 + Û(g)3 )|X2=b + Û(1,b)N,3

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

(̂1 + ̂(g)
1 )|X2=b + ̂(1,b)

N,1
(̂2 + ̂(g)

2 )|X2=b + ̂(1,b)
N,2

̂(1)
3 + ̂(1,b)

N,3

⎞

⎟

⎟

⎟

⎠

∧ e1

weakly in L2(Ω × Cyl(1))3.

Since U(S)1 ∈ L2(Ω, )1;1
per((0, 2)X2

)) and ̃(1)
2 ∈ L2(Ω;1

per((0, 2)X2
)), their restrictions to the line {X2 = b} are U(S,b)1 ∈

L2(Ω, )1) and ̃
(1,b)
2 ∈ L2(Ω) respectively. Set

ℜ(1,b) .=

⎛

⎜

⎜

⎜

⎝

(̂1 + ̂(g)
1 )|X2=b + ̂(1,b)

N,1
(̂2 + ̂(g)

2 )|X2=b + ̂(1,b)
N,2

̂(1)
3 + ̂(1,b)

N,3

⎞

⎟

⎟

⎟

⎠

, U(1,b) .=

⎛

⎜

⎜

⎜

⎝

Û(S)1|X2=b
+ Û(1,b)N,1

Û(1)2|X2=b
+ Û(1,b)N,2

(

Û3 + Û(g)3
)

|X2=b
+ Û(1,b)N,3

⎞

⎟

⎟

⎟

⎠

.

Since ̂1, ̂2, ̂
(3)
1 ∈ L2(Ω;1

per,0()), ̂
(g)
1 , ̂(g)

2 ∈ L2(Ω;1
per()) and the function ̂(1,b)

N ∈ L2(Ω;H1
per((0, 2)X1

))3, the
restriction to the lines {X2 = b} implies thatℜ(1,b) ∈ L2(Ω;H1

per((0, 2)X1
))3.

Since Û(S)1 ∈ L2(Ω × (0, 2)X2
;1

per,0((0, 2)X1
)) ∩ L2(Ω;1()), the functions Û3 and Û(g)3 ∈ L2(Ω;1

per,0()), Û
(2)
1 , Û(g)3 ∈

L2(Ω;1
per()), Û

(1,b)
N ∈ L2(Ω;H1

per((0, 2)X1
))3, the restriction to the lines {X2 = b} implies thatU(1,b) ∈ L2(Ω;H1

per((0, 2)X1
))3.

Using identities (58) we get (71)1 and (72)1.
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6.4 The limit of the warping
Set the spaces

W
(1) .
=
{

(w(1,0), w(1,1)) ∈ H1(Cyl(1))3×2||
|

2 periodic with respect to X1, ∫
Cyl(1)

w(1,b)(⋅, X)dX2dX3 = 0

and ∫
Cyl(1)

w(1,b)(⋅, X) ∧
(

(X2 − b)e2 +X3n(1,b)(X1)
)

dX2dX3 = 0, b ∈ {0, 1}
}

,

W
(2) .
=
{

(w(2,0), w(2,1)) ∈ H1(Cyl(2))3×2||
|

2 periodic with respect to X2, ∫
Cyl(2)

w(2,a)(⋅, X)dX1dX3 = 0

and ∫
Cyl(2)

w(2,a)(⋅, X) ∧
(

(X1 − a)e1 +X3n(2,a)(X2)
)

dX1dX3 = 0, a ∈ {0, 1}
}

.

In the following, we show the warping convergences.

Lemma 17. 14, Lemma 7.7 There exist a subsequence of {"}, still denoted {"}, and u(1,b) ∈ L2(Ω;W
(1)
), u(2,a) ∈ L2(Ω;W

(2)
) such

that the following convergences hold:
1
"3
Π(�,c)" (u")⇀ u(�,c) weakly in L2(Ω;H1(Cyl(�)))3, c ∈ {0, 1}.

The strain tensors limits for the warping are directly inherited by (11) and the limit convergences for the reference frame given
by Appendix 10, leading to (see also14, Subsection 7.3)

1
"2
Π(�,c)"

(

ẽz(u")
)

⇀  (�,c)X (u(�,c)) weakly in L2(Ω × Cyl(�))3×3, c ∈ {0, 1}

where for every � ∈ H1(Cyl(1))3 and every  ∈ H1(Cyl(2))3 we have

 (1,b)X (�) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
�(1,b)

)X1
� ⋅ t(1,b) ∗ ∗

1
2
( 1
�(1,b)

)X1
� ⋅ e2 + )X2

� ⋅ t(1,b)
)

)X2
� ⋅ e2 ∗

1
2
( 1
�(1,b)

)X1
� ⋅ n(1,b) + )X3

� ⋅ t(1,b)
) 1
2
(

)X2
� ⋅ n(1,b) + )X3

� ⋅ e2
)

)X3
� ⋅ n(1,b)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and

 (2,a)X ( ) =

⎛

⎜

⎜

⎜

⎜

⎝

)X1
 ⋅ e1 ∗ ∗

1
2
(

)X1
 ⋅ t(2,a) + 1

�(2,a)
)X2

 ⋅ e1
) 1

�(2,a)
)X2

 ⋅ t(2,a) ∗
1
2
(

)X1
 ⋅ n(2,a) + )X3

 ⋅ e1
) 1

2
( 1
�(2,a)

)X2
 ⋅ n(2,a) + )X3

 ⋅ t(2,a)
)

)X3
 ⋅ n(2,a)

⎞

⎟

⎟

⎟

⎟

⎠

.

6.5 The limit strain tensor for the elementary displacement
Notation 1. For every � ∈ ℝ9, we set

� (1,0)
.
=
⎛

⎜

⎜

⎝

�1
0
0

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

�5
−�6
�7

⎞

⎟

⎟

⎠

∧
(

Φ(1,0)e3 +X2e2 +X3n(1,0)
)

, � (1,1)
.
=
⎛

⎜

⎜

⎝

�2
0
0

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

�5
−�6
�7

⎞

⎟

⎟

⎠

∧
(

Φ(1,1)e3 + (X2 − 1)e2 +X3n(1,1)
)

,

� (2,0)
.
=
⎛

⎜

⎜

⎝

0
�3
0

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

�8
−�5
−�9

⎞

⎟

⎟

⎠

∧
(

Φ(2,0)e3 +X1e1 +X3n(2,0)
)

, � (2,1)
.
=
⎛

⎜

⎜

⎝

0
�4
0

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

�8
−�5
−�9

⎞

⎟

⎟

⎠

∧
(

Φ(2,1)e3 + (X1 − 1)e1 +X3n(2,1)
)

.

Accordingly, we define
 (1,b)11 (� ) = 1

�(1,b)
� (1,b) ⋅ t(1,b),  (1,b)12 (� ) = 1

2�(1,b)
� (1,b) ⋅ e2,

 (1,b)13 (� ) = 1
2�(1,b)

� (1,b) ⋅ n(1,b),  (1,b)23 (� ) =  (1,b)22 (� ) =  (1,b)33 (� ) = 0,
(74)
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and
 (2,a)22 (� ) = 1

�(2,a)
� (2,a) ⋅ e2,  (2,a)12 (� ) = 1

2�(2,a)
� (2,a) ⋅ t(2,a),

 (2,a)23 (� ) = 1
2�(2,a)

� (2,a) ⋅ n(2,a),  (2,a)11 (� ) =  (2,a)13 (� ) =  (2,a)33 (� ) = 0.
(75)

First note that the strain tensor admits a weak limit in the form of a weak convergent subsequence. Indeed, from (54) and (70)
we have

‖

‖

‖

1
"2
Π(�,c)"

(

ẽz(u")
)

‖

‖

‖L2(Ω×Cyl(�))
≤ 1
"5∕2

‖u"‖" ≤ C.

Set
Ŵ(1) .=

{

(ŵ(1,0), ŵ(1,1)) ∈ H1(Cyl(1))3×2 ||
|

2 periodic with respect to X1
}

,

Ŵ(2) .=
{

(ŵ(2,0), ŵ(2,1)) ∈ H1(Cyl(2))3×2 ||
|

2 periodic with respect to X2
}

.
We first consider the direction e1. By Lemma 17, the representation of the limit strain tensor (15) together with Lemma 16 and
the limit mobile reference frame given by Appendix 10, the limit strain tensor is split in two main parts (b ∈ {0, 1})

1
"2
Π(1,b)"

(

ẽz(u")
)

⇀  (1,b)()U) +  (1,b)X (û(1,b)) weakly in L2(Ω;H1(Cyl(1)))3×3 (76)

where  (1,b) is given by (74) but with � replaced by

)U =
(

)1U
(S,0)
1 , )1U

(S,1)
1 , )2U

(S,0)
2 , )2U

(S,1)
2 , )12U3, )11U3, )11U2, )22U3, )22U1

)

, (77)

while  (1,b)X (û(1,b)) is the symmetric gradient of the displacement û(1,b) defined by

û(1,b)
.
= U(1,b) +

(

(1)
3 e2 − ̃(1,b)

2 e3 +ℜ(1,b)) ∧
(

Φ(1,b)e3 +X3n(1,b) + (X2 − b)e2
)

+ u(1,b).

We have û(1,b) ∈ L2(Ω; Ŵ(1)).
Concerning direction e2, the same argumentation applies and the limit strain tensor becomes (a ∈ {0, 1})

1
"2
Π(2,a)"

(

ẽz(u")
)

⇀  (2,a)()U) +  (2,a)X (û(2,a)) weakly in L2(Ω;H1(Cyl(2)))3×3,

where  (2,a) is given (75) but with � replaced by (77), while  (2,a)X (û(2,a)) is the symmetric gradient of the displacement û(2,a)
defined by

û(2,a)
.
= U(2,a) +

(

−(2)
3 e1 + ̃(2,a)

1 e3 +ℜ(2,a)) ∧
(

Φ(2,a)e3 +X3n(2,a) + (X1 − a)e1
)

+ u(2,a).

We have û(2,a) ∈ L2(Ω; Ŵ(2)).

6.6 Unfold of the contact conditions via contact unfolding operator
To obtain the limit contact conditions, it is necessary to introduce a third unfolding operator defined on the contact areas. Set
the contact area by

Cab
.
= a e1 + b e2 + !� .

Definition 3 (Contact unfolding operator). For every measurable function � in L2(C), we define the measurable functions
T Cab
" (�) ∈ L2(Ω × !�) by

T Cab
" (�)(z′, X′)

.
= �

(

2"
[

z′

2"

]

+ "
(

a
b

)

+ "
(

X′
1

X′
2

))

for a.e. (z′, X′) ∈ Ω × !� .

Let � ∈ L1( (1)" ),  ∈ L
1( (2)" ) and ' ∈ L

2(Ω). This operator is related to the previous ones via the identities (a.e. (z′, X′) ∈
Ω × !�):

T Cab
" (�)(z′, X′

1, X
′
2) = Π

(1,b)
" (�)(z′, a +X′

1, X
′
2, (−1)

a+b+1�),

T Cab
" ( )(z′, X′

1, X
′
2) = Π

(2,a)
" ( )(z′, X′

1, b +X
′
2, (−1)

a+b�).
(78)

In particular, from (60) and (78)3 we have that
1
∑

a,b=0
‖T Cab

" (')‖L2(Ω×!� ) ≤ C‖'‖L2(C), ∀' ∈ L2(C).
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By (18)-(29), the displacements decomposition in the contact areas becomes a.e. (z1, z2) ∈ !r:

u(1,q)" (z1 + p", z2 + q", (−1)p+q+1r) =U(1)" (p" + z1, q") +(1)
" (p" + z1, q") ∧ z2e2

+ U(1,q)",N (p" + z1) +(1,q)
",N (p" + z1) ∧ z2e2 + u

(1,q)
" ,

u(2,p)" (z1 + p", z2 + q", (−1)p+qr) =U(2)" (p", q" + z2) +(2)
" (p", q" + z2) ∧ z1e1

+ U(2,p)",N (q" + z2) +(2,p)
",N (q" + z2) ∧ z1e1 + u

(2,p)
" .

(79)

We estimate now the difference in the contact areas.

Lemma 18. The displacements satisfy
∑

(p,q)∈"

‖u(1,q)",� − u(2,p)",� ‖

2
L2(Cpq)

≤ C"4,
∑

(p,q)∈"

‖u(1,q)",3 − u(2,p)",3 ‖

2
L2(Cpq)

≤ C"6. (80)

Proof. Estimate (80)2 follows the lines of14, Lemma 7.8, using the results of Lemma 6.
We prove now (80)1 for � = 1, since the proof for � = 2 is similar. Observe that decomposition (44) in Cpq and the Q1
interpolation properties yield (see14, Lemma 5.1)

U(1)",1(p" + z1, q") = U",1(q") + U(S)",1(p" + z1, q"),

U(2)",1(p", q" + z2) = U",1(q") + z2)U",1(q" + z2) + U(B)",1 (p", q" + z2).

Then, the above writings (79) give
u(1,q)" (z1 + p", z2 + q", (−1)p+q+1r) − u(2,p)" (z1 + p", z2 + q", (−1)p+qr)

=
[

U(S)",1(p" + z1, q") − z2)U",1(q" + z2) − U(B)",1 (p", q" + z2)
]

+
[

u(1,q)",1 − u(2,p)",1 + U(1,q)",N,1(p" + z1) − U(2,p)",N,1(q" + z2) − z2
(1)
",3(p" + z1, q") − z2

(1,q)
",N,3(p" + z1)

]

(81)

Then, (80)1 follows by estimates (55) and Lemmas 2-5 together with (54).

We finally give the limit contact conditions.

Lemma 19. The in plane limit contact conditions are

|U(S,b)1 − U(B,a)1 | + �||
|

)2U1 + )1U2
|

|

|

≤ g1 a.e. in Ω,

|U(S,a)2 − U(B,b)2 | + �||
|

)2U1 + )1U2
|

|

|

≤ g2 a.e. in Ω.
(82)

The outer plane limit contact conditions are a.e. in Ω × Cab

0 ≤ (−1)a+b
[ (X1 − a)2

2
)11U3 −

(X2 − b)2

2
)22U3 + û

(1,b)
3 (⋅, X1, X2 − b, (−1)a+b+1�) − û

(2,a)
3 (⋅, X1 − a,X2, (−1)a+b�)

]

. (83)

Proof. The outer plane limit contact condition (83) follows the same lines of14, Section 7.5 and taking into account that

(X′
1, X

′
2) = (X1 − a,X2 − b) with (X′

1, X
′
2) ∈ !� , (X1, X2) ∈ Cab.

Now we turn into (82) and we consider the first component. Applying the contact unfolding operator to (81) and due to the
estimates in Lemmas 2-5 together with (54), we have that

1
"2
T Cab
"

[

U(1,q)",N,1(p" + z1) − U(2,p)",N,1(q" + z2) − z2
(1,q)
",N,3(p" + z1) + u

(1,q)
",1 (z

′) − u(2,p)",1 (z
′)
]

→ 0 strongly in L2(Ω × !�).

Then, convergences (61)2, (62)1,3, (63)1 and equalities (58)3 yield
1
"2
T Cab
"

[

U(S)",1(p" + z1, q") − U(B)",1 (p", q" + z2) − z2)2U",1(q" + z2) − z2
(1)
",3(p" + z1, q")

]

⇀ U(S)1 (⋅, b) − U(B)1 (⋅, a) −X
′
2

(

)2U1 +(1)
3

)

= U(S)1 (⋅, b) − U(B)1 (⋅, a) −X
′
2()2U1 + )1U2) weakly in L2(Ω × !�).

Hence, the in plane condition in the first component a.e z′ ∈ Ω and every X′ ∈ !� is

|U(S)1 (z
′, b) − U(B)1 (z

′, a) −X′
2()2U1(z2) + )1U2(z1))| ≤ g1(z′).



24

By the admissible choices X′
2 = ±�, the above inequality becomes

|U(S)1 (z
′, b) − U(B)1 (z

′, a)| + �|)2U1(z2) + )1U2(z1)| ≤ g1(z′) for a.e. z′ ∈ Ω.

Then, due to the above inequality we get (82)1,2 in the first component. The second one follows a symmetric argumentation.

6.7 The displacements limit set
Denote

M
.
= H2

(0,l)
(

(0, L)z2
)

×H2
(0,l)

(

(0, L)z1
)

×H2

 (Ω),

S
.
= L2(Ω, )1)2 × L2(Ω, )2)2, B

.
= L2(Ω)4,

m
.
= L2(Ω; Ŵ(1)) × L2(Ω; Ŵ(2)),

where M is the space of the macroscopic functions that appear in the strain tensors, B is the space of the relative macroscopic
bendings functions that appear in the contact and right hand side of the problem, m is the space that gathers all the microscopic
fields. In particular, the functions belonging to their respective spaces are defined by

V
.
=
(

V1,V2,V3
)

∈ M ,
V (S)

.
=
(

V (S,0)1 ,V (S,1)1 ,V (S,0)2 ,V (S,1)2

)

∈ S ,
V (B)

.
=
(

V (B,0)1 ,V (B,1)1 ,V (B,0)2 ,V (B,1)2

)

∈ B ,
v̂
.
=
(

v̂(1,0), v̂(1,1), v̂(2,0), v̂(2,1)
)

∈ m.

(84)

Adding the limit contact conditions (82) and (83), we finally define the limit set of admissible displacements by


.
=
{

(

V ,V (S),V (B), v̂
)

∈ M × S × B × m
|

|

|

|U(S,b)1 − U(B,a)1 | + �|)2U1 + )1U2| ≤ g1 a.e. in Ω,

|U(S,a)2 − U(B,b)2 | + �|)2U1 + )1U2| ≤ g2 a.e. in Ω,

and a.e. in Ω × Cab 0 ≤ (−1)a+b
[ (X1 − a)2

2
)11V3 −

(X2 − b)2

2
)22V3

+v̂(1,b)3 (⋅, X1, X2 − b, (−1)a+b+1�) − v̂
(2,a)
3 (⋅, X1 − a,X2, (−1)a+b�)

]

, (a, b) ∈ {0, 1}2
}

.

Note that  is a closed convex subset of the Hilbert space M × S × B × m endowed with the product norm.

7 BUILD OF THE TEST-FUNCTIONS

First, define the spaces
M

.
= 3(Ω)3 ∩ M , S

.
= 2(Ω)4 ∩ S , B

.
= 2(Ω)4 ∩ B ,

m
.
= W 1,∞(Ω; Ŵ(1)) ×W 1,∞(Ω; Ŵ(2)).

Accordingly to (84), we take (V ,V (S),V (B), v̂) ∈ M×S×B×m. We also assume the following additional boundary conditions
(see (34)):

V (S,0)1 = 0 a.e. on 
1 ∪ Γ2, V (S,0)2 = 0 a.e. on Γ1 ∪ 
2,
V (B,0)1 = 0, ∇V (B,a)1 = 0 a.e. on 
1 ∪ Γ2,
V (B,0)2 = 0, ∇V (B,b)2 = 0 a.e. on Γ1 ∪ 
2,

v̂(�,c) = 0 a.e. on )Ω × Cyl(�).

z′ = [z′] + {z′}, [z′] ∈ ℤ2, {z′} ∈ (0, 1)2, for a.e. z′ ∈ ℝ2.

We set
Ck

.
=
[

(k − �)", (k + �)"
]

k ∈ {0,… , 2N"},
Ik

.
=
[

(k + �)", (k + 1 − �)"
]

, k ∈ {0,… , 2N" − 1}.
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We define the different test functions for z ∈ q"e2 + P (1)r , q ∈ {0,… , 2N"} (the reference beams of direction e1).
First, the functions V (1,q)",� , V (1,q)",3 ∈ W 2,∞(0, L) are defined by

V (1,q)",1 (z1)
.
= V1(q"), constant for a.e. z1 ∈ [0, L],

V (1,q)",2 (z1)
.
=

⎧

⎪

⎨

⎪

⎩

V2(p") + (z1 − p"))1V2(p") +
1
2
(z1 − p")2)11V2(p") if z1 ∈ Cp,

cubic interpolated if z1 ∈ Ip,

V (1,q)",3 (z1)
.
=

⎧

⎪

⎨

⎪

⎩

V3(p", q") + (z1 − p"))1V3(p", q") +
1
2
(z1 − p")2)11V3(p", q") if z1 ∈ Cp,

cubic interpolated if z1 ∈ Ip

then V (S,q)",1 , ()2V3)
(1,q)
" ∈ W 1,∞(0, L), V (B,p)",2 ∈ W 2,∞(0, L), (below b ≡ q mod 2)

V (S,q)",1 (z1)
.
=

{

V (S,b)",1 (p", q") if z1 ∈ Cp,

linear interpolated if z1 ∈ Ip,

()2V3)(1,q)" (z1)
.
=

{

)2V3(p", q") + (z1 − p"))12V3(p", q") if z1 ∈ Cp,
linear interpolated if z1 ∈ Ip,

V (B,q)",2 (z1)
.
=

{

V (S,a)2 (p", q") + (z1 − p"))1V
(S,a)
2 (p", q") if z1 ∈ Cp,

cubic interpolated if z1 ∈ Ip

and v̂(1,q)" ∈ W 1,∞((0, L) × (q" − �", q" + �") × (−�", �")
)3

v̂(1,q)" (z)
.
=

⎧

⎪

⎨

⎪

⎩

v̂(1,b)
(

p", q", 2
{ z1
2"

}

,
z2 − q"
"

,
z3
"

)

if z1 ∈ Cp,

linear interpolated with respect to the first variable, if z1 ∈ Ip,

Now, we define the different test functions for z ∈ p"e1 + P (2)r , p ∈ {0,… , 2N"} (the reference beams of direction e2).
First, the functions V (2,p)",� , V (2,p)",3 ∈ W 2,∞(0, L) are defined by

V (2,p)",1 (z2)
.
=

⎧

⎪

⎨

⎪

⎩

V1(q") + (z2 − q"))2V1(q") +
1
2
(z2 − q")2)22V1(q") if z2 ∈ Cq ,

cubic interpolated if z2 ∈ Iq ,

V (2,p)",2 (z2)
.
= V2(p"), constant for a.e. z2 ∈ [0, L],

V (2,p)",3 (z2)
.
=

⎧

⎪

⎨

⎪

⎩

V3(p", q") + (z2 − q"))2V3(p", q") +
1
2
(z2 − q")2)22V3(p", q"), if z2 ∈ Cq ,

cubic interpolated if z2 ∈ Iq

then V (S,p)",2 , ()1V3)
(2,p)
" ∈ W 1,∞(0, L), V (B,p)",1 ∈ W 2,∞(0, L) (below a ≡ p mod 2)

V (S,p)",2 (z2)
.
=

{

V (S,a)",2 (p", q") if z2 ∈ Cq ,

linear interpolated if z2 ∈ Iq ,

()1V3)(2,p)" (z2)
.
=

{

)1V3(p", q") + (z2 − q"))12V3(p", q") if z2 ∈ Cq ,
linear interpolated if z2 ∈ Iq ,

V (B,p)",1 (z2)
.
=

{

V (B,a)1 (p", q") + (z2 − q"))2V
(B,a)
2 (p", q") if z2 ∈ Cq ,

cubic interpolated if z2 ∈ Iq
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and v̂(2,p)" ∈ W 1,∞((p" − �", p" + �") × (0, L) × (−�", �")
)3

v̂(2,p)" (z)
.
=

⎧

⎪

⎨

⎪

⎩

v̂(2,a)
(

p", q",
z1 − p"
"

, 2
{ z2
2"

}

,
z3
"

)

, if z2 ∈ Cq ,

linear interpolated with respect to the second variable, if z2 ∈ Iq .

Now, we compose the test displacements v" in the directions e1 and e2 by
v(1,q)" (z) = V e(1,q)

" (z) + "3v̂(1,q)" (z), z ∈ q"e2 + P (1)r ,
v(2,p)" (z) = V e(2,p)

" (z) + "3v̂(2,p)" (z), z ∈ p"e1 + P (2)r ,
(85)

where the elementary displacements are defined by

V e(1,q)
" (z)

.
=

⎛

⎜

⎜

⎜

⎝

"V (1,q)",1 (z1) + "2V
(S,q)
",1 (z1)

"V (1,q)",2 (z1) + "2V
(B,q)
",2 (z1)

"V (1,q)",3 (z1)

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

"()2V3)
(1,q)
" (z1)

−")1(V
(1,q)
",3 )(z1)

")1(V
(1,q)
",2 (z1)) + "2)1(V

(B,q)
",2 )(z1)

⎞

⎟

⎟

⎟

⎠

∧
(

"Φ(1,b)
(

2
{ z1
2"

})

e3 +
(

z2 − q"
)

e2 + z3n(1,b)
(

2
{ z1
2"

}))

,

V e(2,p)
" (z)

.
=

⎛

⎜

⎜

⎜

⎝

"V (2,p)",1 (z2) + "2V
(B,p)
",1 (z2)

"V (2,p)",2 (z2) + "2V
(S,p)
",2 (z2)

"V (2,p)",3 (z2)

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

")2(V
(2,p)
",3 )(z2)

−"()1V3)
(2,p)
" (z1)

−")2(V
(2,p)
",1 (z2)) − "2)2(V

(B,p)
",1 )(z2)

⎞

⎟

⎟

⎟

⎠

∧
(

"Φ(2,a)
(

2
{ z2
2"

})

e3 +
(

z1 − p"
)

e1 + z3n(2,a)
(

2
{ z2
2"

}))

.

7.1 The limit strain tensors for the test-functions
The limit of the unfolded strain tensor is an immediate consequence of the unfolding operator properties and of the regularity
of the test functions (see also14, Lemma 8.1). We easily obtain

1
"2
Π(�,c)

(

ẽz(v")
)

→  (�,c)()V) +  (�,c)X (v̂(�,c)) strongly in L2(Ω × Cyl(�))3×3 (86)

where  (1,b) and  (2,a) are respectively given by (74) and (75) but with � replaced by

)V
.
=
(

)1V
(S,0)
1 , )1V

(S,1)
1 , )2V

(S,0)
2 , )2V

(S,1)
2 , )12V3, )11V3, )11V2, )22V3, )22V1

)

. (87)

7.2 The initial contact conditions for the test-functions
Regarding the outer plane component, conditions (21) are satisfied by construction of the test displacements (see also14, Section 8.1).
First, observe that by construction, the glued conditions (23) are satisfied.
Now, we check the in plane contact conditions (20). We set

N
.
= ‖)11V2‖L∞(Ω) + ‖)22V1‖L∞(Ω) +

2
∑

�=1

1
∑

c=0

(

‖)�V
(B,c)
3−� ‖L∞(Ω) +

2
∑

�=1
‖v̂(�,c)� ‖L∞(Ω×Cyl(�))

)

.

Below, we replace the test displacements v(1,q)",� and v(2,p)",� in the in plane components by �∗"v
(1,q)
",� and �∗"v

(2,p)
",� , where �∗"

.
= 1−C∗"

where C∗ is a nonnegative constant that will be assigned later. Concerning the difference of the displacements in the in plane
components, we get (remind that � < 1)

v(1,q)",� (z
′, (−1)a+b+1�") − v(2,p)",� (z

′, (−1)a+b+1�")

= "2
(

V (S,b)1 (p", q") − V (B,a)",1 (p", q") − z2−q"
"

(

)1V2(p") + )2V1(q")
)

V (B,b)2 (p", q") − V (S,a)2 (p", q") + z1−p"
"

(

)1V2(p") + )2V1(q")
)

)

+ "3
(

− z2−q"
"
)2V

(B,a)
1 (p", q") − (z1−p")(z2−q")

"2
)11V2(p") −

(z2−q")2

2"2
)22V1(q") + v̂

(1,b)
1 − v̂(2,a)1

z1−p"
"
)1V

(B,b)
2 (p", q") + (z1−p")(z2−q")

"2
)22V1(q") +

(z1−p")2

2"2
)11V2(p") + v̂

(1,b)
2 − v̂(2,a)2

)

.
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Regarding the in plane contact in original, we have a.e. in Cpq that

�∗"

(

|v(1,q)",1 (z
′, (−1)a+b+1�") − v(2,p)",1 (z

′, (−1)a+b�")|
|v(1,q)",2 (z

′, (−1)a+b+1�") − v(2,p)",2 (z
′, (−1)a+b�")|

)

≤ �∗""
2

(

|

|

|

V (S,b)1 (p", q") − V (B,a)",1 (p", q") − z2−q"
"

(

)1V2(p") + )2V1(q")
)

|

|

|

|

|

|

V (B,a)2 (p", q") − V (S,b)2 (q", p") + z1−p"
"

(

)1V2(p") + )2V1(q")
)

|

|

|

)

+ "3N
(

1
1

)

≤ �∗""
2
(

g1(p", q")
g2(p", q")

)

+ "3N
(

1
1

)

≤ "2
(

g1(p", q")
g2(p", q")

)

+ "3N
(

1
1

)

− C∗C3"3
(

1
1

)

≤ "2
(

g1(p", q")
g2(p", q")

)

where the last inequality is true only if (recall property (19) of g�) we take the value C∗ = N∕C3. Hence, the in plane contact
conditions (20) are satisfied.
Also, by construction of the test displacements, the glued conditions (23) are satisfied.

8 THE UNFOLDED LIMIT PROBLEM

In this section, all tools and results developed in this paper are summarized and lead to the homogenization of the textile.
However, since in problem (28) the vectorial notation is used, we have to write the limit strain tensors in such notation. From
(74)-(75), we define the column vectors with six entries E(�,c) ∈ L2(Ω)6, E(�,c)

X ∈ L2(Ω;H1(Cyl(�)))6 by

E(�,c)()U) =
(

 (�,c)11  (�,c)22  (�,c)33  (�,c)12  (�,c)13  (�,c)23

)T
,

E(�,c)
X (û(�,c)) =

(

 (�,c)X,11  (�,c)X,22  (�,c)X,33  (�,c)X,12  (�,c)X,13  (�,c)X,23

)T
.

(88)

Theorem 1. Let u" ∈ " be a solution of problem (28). We assume that the sequence {A"}" satisfies the assumptions in
Subsection 4.4 and that there exist A(�,c) ∈ L∞(Cyl(�))6×6 such that

Π(�,c)"

(

A"

( ⋅
"

))

(z′, X)→ A(�,c)(X) for a.e. (z′, X) ∈ Ω × Cyl(�). (89)

Then, there exist a subsequence of {"}, still denoted {"}, such that (U, Ũ, û) ∈  is a solution of the unfolded limit problem:
Find (U,U(S),U(B), û) ∈  such that for every (V ,V (S),V (B), v̂) ∈  :

2
∑

�=1

1
∑

c=0
∫

Ω×Cyl(�)

A(�,c)
(

E(�,c)()U) + E(�,c)
X (û)

)

⋅
(

E(�,c)()U − )V
)

+ E(�,c)
X (û − v̂)

)

�(�,c)dz′dX

≤ C0(�)
2
∑

�=1
∫
Ω

(

f (�)� (U� − V�) + f
(�)
3 (U3 − V3)

)

dz′ − C1(�)
2
∑

�=1
∫
Ω

f̃ (�)� ()�U3 − )�V3)dz′

+
C0(�)
2

1
∑

c=0
∫
Ω

(

f̃ (�)�

(

U(S,c)� − V (S,c)�

)

+ f̃ (3−�)�

(

U(B,c)� − V (B,c)�

)

)

dz′,

(90)

where )U and )V are defined in (77) and (87) respectively and

C0(�)
.
= 4�2

2

∫
0


(t)dt, C1(�)
.
= 4�2

2

∫
0

Φ(t)
(t)dt (91)

Moreover, the solution is not unique.

Proof. Concerning the limits of the unfolded frame, as well as the integration over the textile domain, we refer to Appendix 10.
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First, from convergences (76)-(6.5)-(86) written in vectorial notation (see (88)), convergence (89) and6, Corollary 2.12 we get

1
"5

2N"
∑

s=0
∫

s"e�+P
(�)
r

A(�,s)" Ẽz(u(�,s)" ) ⋅ Ẽz(v(�,s)" ) �(�,s) dz

→
1
∑

c=0
∫

Ω×Cyl(�)

A(�,c)
(

E(�,c)()U) + E(�,c)
X (û(�,c))

)

⋅
(

E(�,c)()V) + E(�,c)
X (v̂(�,c))

)

�(�,c) dz′dX,

(92)

where u" is the solution to problem (28) and v" is the test function defined as in (85). By convergences (76)-(6.5), the weak
lower semicontinuity of the convex functionals, problem (28) and6, Corollary 2.12 we have

2
∑

�=1

1
∑

c=0
∫

Ω×Cyl(�)

A(�,c)
(

E(�,c)()U) + E(�,c)
X (û(�,c))

)

⋅
(

E(�,c)()U) + E(�,c)
X (û(�,c)

)

�(�,c)
)

dz′dX

≤ lim inf
"→0

1
"5

2
∑

�=1

2N"
∑

s=0
∫

s"e�+P
(�)
r

A(�,s)" Ẽz(u(�,s)" ) ⋅ Ẽz(u(�,s)" ) �(�,s)dz

= lim inf
"→0

1
"5

2
∑

�=1

2N"
∑

s=0
∫

s"e�+P
(�)
r

F (�,s)" ⋅ u(�,s)" (z) �(�,s)dz.

(93)

We prove now that the last term in (93) converges. By assumptions on the forces in subsection 5.6, the definition of displacement
(45) and convergences in Lemma 13 we have (see Lemma 23 for the details)

1
"5

2
∑

�=1

2N"
∑

s=0
∫

s"e�+P
(�)
r

F (�,s)" ⋅ u(�,s)" �(�,s) dz→C0(�)
2
∑

�=1

(

∫
Ω

f (�)� U� dz′ + ∫
Ω

f (�)3 U3 dz′
)

− C1(�)
2
∑

�=1
∫
Ω

f̃ (�)� )�U3 dz′

+
C0(�)
2

1
∑

c=0

(

∫
Ω

(

f̃ (�)� U(S,c)� + f̃ (3−�)� U(B,c)�

)

dz′
)

.

(94)

At last, again by assumptions on the forces in subsection 5.6, the definition of test displacement (85) and convergences in Section
7 we obtain the limit of

1
"5

2
∑

�=1

2N"
∑

s=0
∫

s"e�+P
(�)
r

F (�,s)" ⋅ v(�,s)" �(�,s) dz

replacing in (94) the functions U, Ũ by V , Ṽ . Hence, inequality (90) follows due to (92), (93) and (94). A density argument gives
(90) for any test function in  .
The existence of solutions for problem (90) is a direct consequence of the bilinearity, boundedness and coercivity (since from
(26) and (89) one obtains

C0|�|
2 ≤ A(�,c)(X) � ⋅ � ≤ C1|�|

2 for a.e. X ∈ Cyl(�) and ∀� ∈ ℝ6)

together with the Stampacchia Lemma.
Concerning uniqueness, assume that (U,U(S),U(B), û), (U′,U(S)′ ,U(B)′ , û′) are both solutions of (90). By the two inequalities
given by (90) with (U,U(S),U(B), û) as a solution and (U′,U(S)′ ,U(B)′ , û′) as a test function and vice versa, we get that

2
∑

�=1

1
∑

c=0
∫

Ω×Cyl(�)

A(�,c)
(

E(�,c)()U − )U′) + E(�,c)
X (û(�,c) − û(�,c)′)

)

⋅
(

E(�,c)()U − )U′) + E(�,c)
X (û(�,c) − û(�,c)′)

)

�(�,c)dzdX ≤ 0.

By the coercivity of A(�,c), this implies
2
∑

�=1

1
∑

c=0

‖

‖

‖

E(�,c)()U − )U′) + E(�,c)
X (û(�,c) − û(�,c)′)‖‖

‖L2(Ω×Cyl(�))
= 0.
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Lemma 20 below gives û(�,c)′ = û(�,c) + r(�,c), where r(�,c) are 4 rigid displacements, and )U = )U′, which together with the
limit boundary conditions (see the definition of ) imply that

U = U′, U(S) = U(S)′ .

Concerning the fields U(B) and U(B)′ , the limit contact conditions (see again the definition of ) and the fact that U(S) = U(S)′

imply that a.e. z ∈ Ω and (a, b) ∈ {0, 1}2:
|

|

|

U(B,a)1 − U(B,a)
′

1
|

|

|

≤ |

|

|

U(S,b)1 − U(B,a)1
|

|

|

+ |

|

|

U(S,b)
′

1 − U(B,a)
′

1
|

|

|

≤ 2g1,
|

|

|

U(B,b)2 − U(B,b)
′

2
|

|

|

≤ |

|

|

U(S,a)2 − U(B,b)2
|

|

|

+ |

|

|

U(S,a)
′

2 − U(B,b)
′

2
|

|

|

≤ 2g2.

Hence, the proof is complete.

8.1 The microscopic cell problem
For every � ∈ ℝ9, we introduce the displacements Ŵ� = (Ŵ

(1,b)
� , Ŵ (2,a)

� ) by

Ŵ (1,b)
� (X1) = �6�(X1)n(1,b)(X1), Ŵ (2,a)

� (X2) = �8�(X2)n(2,a)(X2) (95)

where � ∈ 1per(ℝ) is a 2-periodic function satisfying

�(t) = 1
2
(t − c)2 a.e. in [c − �, c + �], c ∈ {0, 1, 2}.

We define the convex subset Ŵ� of Ŵ(1) × Ŵ(2) by

Ŵ�
.
=
{

(ŵ(1), ŵ(2)) ∈ Ŵ(1) × Ŵ(2) |
|

|

0 ≤ (−1)a+b
(

(

Ŵ (1,b)
� (X1) + ŵ

(1,b)
3 (X1, X2 − b, (−1)a+b+1�)

)

−
(

Ŵ (2,a)
� (X2) + ŵ

(2,a)
3 (X1 − a,X2, (−1)a+b�)

)

)

a.e. on Cab

}

.
(96)

Note that this set includes the micro-macro outer plane contact conditions (83).

Lemma 20. Let � be in ℝ9 and v̂ ∈ Ŵ(1) × Ŵ(2) satisfying

E(� ) + EX(v̂) = 0. (97)

Then � = 0 and v̂(1,b), v̂(2,a) are periodic rigid displacements
v̂(1,b)(X) = a(1,b) +

(

b(1,b)e1 − Φ(1,b)(X1)e3
)

∧
(

(X2 − b)e2 +X3n(X1)
)

in Cyl(1),
v̂(2,a)(X) = a(2,a) +

(

b(2,a)e2 − Φ(2,a)(X2)e3
)

∧
(

(X1 − a)e1 +X3n(X2)
)

in Cyl(2),
(98)

where a(1,b), a(2,a) belong to ℝ3 and b(1,b), b(2,a) belong to ℝ.

Proof. The solution of the equation (97) is given by
v̂(1,b) = (1,b) + (1,b) ∧

(

(X2 − b)e2 +X3n(X1)
)

,
v̂(2,a) = (2,a) + (2,a) ∧

(

(X1 − a)e1 +X3n(X2)
)

with (see (74)-(75))

(1,b)(X1) = b(1,b) − (X1 − 1)
⎛

⎜

⎜

⎝

�5
−�6
�7

⎞

⎟

⎟

⎠

− Φ(1,b)(X1)e3,

(2,a)(X1) = b(2,a) − (X2 − 1)
⎛

⎜

⎜

⎝

�8
−�5
−�9

⎞

⎟

⎟

⎠

− Φ(2,a)(X2)e3
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and

(1,b)(X1) = a(1,b) + (X1 − 1)
[

b(1,b) ∧ e1 − �1+be1
]

− 1
2
(X1 − 1)2

⎛

⎜

⎜

⎝

�5
−�6
�7

⎞

⎟

⎟

⎠

∧ e1,

(2,a)(X2) = a(2,a) + (X2 − 1)
[

b(2,a) ∧ e2 − �3+ae2
]

− 1
2
(X2 − 1)2

⎛

⎜

⎜

⎝

�8
−�5
−�9

⎞

⎟

⎟

⎠

∧ e2,

where b(1,b), a(1,b), b(2,a), a(2,a) belong to ℝ3.
First, note that the functionsX1 ←→ (X1−1)2 andX2 ←→ (X2−1)2 can be extended to 2-periodic functions. Then, the periodicity
of(1,b) and (1,b) (resp.(2,a) and (2,a) ) with respect to X1 (resp. X2) yields �1 = �2 = … = �9 = 0 and thus � = 0.
Furthermore, one gets b(1,b) ∧ e1 and b(2,a) ∧ e2 = 0. This leads to the expression (98) of v̂(1,b) and v̂(2,a).

Now, replacing U and V by a unique � in problem (90) leads to the following microscopic cell problem:

For � in ℝ9, find �̂ ∈ Ŵ� such that for every v̂ ∈ Ŵ� ∶
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)
(

E(�,c)(� ) + E(�,c)
X (�̂)

)

⋅ E(�,c)
X (�̂ − v̂) �(�,c) dX ≤ 0. (99)

Applying the change of functions

̂̂�
(1,b)
(�, ⋅) = �̂ (1,b)(�, ⋅) − Ŵ (1,b)

� , ̂̂�
(2,a)

(�, ⋅) = �̂ (2,a)(�, ⋅) − Ŵ (2,a)
� ,

̂̂v
(1,b)
(�, ⋅) = v̂(1,b)(�, ⋅) − Ŵ (1,b)

� , ̂̂v
(2,a)

(�, ⋅) = v̂(2,a)(�, ⋅) − Ŵ (2,a)
� ,

(100)

we transform the above problem in an equivalent one:

For � in ℝ9, find ̂̂�(�, ⋅) ∈ Ŵ0 such that for every ̂̂v ∈ Ŵ0 ∶
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)
(

E(�,c)(� ) + E(�,c)
X (Ŵ� ) + E

(�,c)
X (̂̂�(�, ⋅))

)

⋅ E(�,c)
X (̂̂�(�, ⋅) − ̂̂v) �(�,c) dX ≤ 0, (101)

where Ŵ0 is the set Ŵ� with � = 0 (see (95)-(96)).

This problem admits solutions by the Stampacchia lemma (see16). Moreover, if ̂̂�(�, ⋅), ̃̃�(�, ⋅) are both solutions of (101), then
there exist 4 rigid displacements r(�,c)� ∈ Ŵ(1) × Ŵ(2) such that

̂̂�
(�,c)

(�, ⋅) = r(�,c)� + ̃̃�
(�,c)

(�, ⋅). (102)

Indeed, we can consider problem (101) with ̂̂�(�, ⋅) as solution and ̃̃�(�, ⋅) as test-function, then the same problem with ̃̃�(�, ⋅)
as solution and ̂̂�(�, ⋅) as the test function. Summing up both inequalities leads to

2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c) E(�,c)
X (̃̃�(�, ⋅) − ̂̂�(�, ⋅)) ⋅ E(�,c)

X (̃̃�(�, ⋅) − ̂̂�(�, ⋅)) �(�,c) dX ≤ 0,

from where we get that EX(̂̂�) = EX(̃̃�), since by coercivity the above quantity is also nonnegative. Hence, (102) follows by
Lemma 20.

Lemma 21. The map � ∈ ℝ9 ←→ EX(̂̂�(�, ⋅)) ∈ L2(Cyl)6 is continuous. Moreover, there exists a constant C independent on �
such that

∀� ∈ ℝ9, ‖

‖

‖

EX(̂̂�(�, ⋅))
‖

‖

‖L2(Cyl)
≤ C|� |. (103)
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Proof. Consider problem (101) with � (resp �) as parameter andwith ̂̂�(�, ⋅) (resp. ̂̂�(�, ⋅)) as test-function. Taking the difference,
we obtain

C0
‖

‖

‖

EX(̂̂�(�, ⋅)) − E
(�,c)
X (̂̂�(�, ⋅))‖‖

‖

2

L2(Cyl)

≤
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)
(

E(�,c)
X (̂̂�(�, ⋅)) − E(�,c)

X (̂̂�(�, ⋅))
)

⋅
(

E(�,c)
X (̂̂�(�, ⋅)) − E(�,c)

X (̂̂�(�, ⋅))
)

�(�,c) dX

≤
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)E(�,c)
X (̂̂�(�, ⋅)) ⋅

(

E(�,c)
X (̂̂�(�, ⋅)) − E(�,c)

X (̂̂�(�, ⋅))
)

�(�,c) dX

+
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)E(�,c)
X (̂̂�(�, ⋅)) ⋅

(

E(�,c)
X (̂̂�(�, ⋅)) − E(�,c)

X (̂̂�(�, ⋅))
)

�(�,c) dX

≤ −
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)
(

E(�,c)(� ) + E(�,c)(Ŵ� )
)

⋅
(

E(�,c)
X (̂̂�(�, ⋅)) − E(�,c)

X (̂̂�(�, ⋅))
)

�(�,c) dX

−
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)
(

E(�,c)(�) + E(�,c)(Ŵ�)
)

⋅
(

E(�,c)
X (̂̂�(�, ⋅)) − E(�,c)

X (̂̂�(�, ⋅))
)

�(�,c) dX

≤
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)
(

E(�,c)(� − � ) + E(�,c)(Ŵ�−� )
)

⋅
(

E(�,c)
X (̂̂�(�, ⋅)) − E(�,c)

X (̂̂�(�, ⋅))
)

�(�,c) dX

≤C‖‖
‖

E(�,c)(� − �) + E(�,c)
X (Ŵ�−�)

‖

‖

‖L2(Cyl)
‖

‖

‖

E(�,c)
X (̂̂�(�, ⋅)) − E(�,c)

X (̂̂�(�, ⋅))‖‖
‖L2(Cyl)

.

Hence,
‖

‖

‖

EX(̂̂�(�, ⋅)) − EX(̂̂�(�, ⋅))
‖

‖

‖L2(Cyl)
≤ C‖‖

‖

E(�,c)(� − �) + E(�,c)
X (Ŵ�−�)

‖

‖

‖L2(Cyl)
≤ C|� − �| (104)

and thus the continuity of � ∈ ℝ9 ←→ EX(̂̂�(�, ⋅)) ∈ L2(Cyl)6 for the strong topology ofL2(Cyl)6 is proved. SinceEX(̂̂�(0, ⋅)) =
0, the above inequality also proves (103).

Since the cell problem (99) has been solved, we can now define the homogenizing operator and its main properties.

Proposition 1. Under the assumptions of Theorem 1, the function Aℎom defined by (n ∈ {1,… , 9})

Aℎomn (� )
.
=

2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)
(

E(�,c)(� ) + E(�,c)
X (Ŵ� ) + E

(�,c)
X (̂̂�(�,X))

)

⋅ E(�,c)(en) �(�,c) dX

with ̂̂�(�, ⋅) a solution to problem (101) is continuous and monotone.

Proof. First note that the map � ∈ ℝ9 ←→ EX(̂̂�(�, ⋅)) ∈ L2(Cyl)6 is continuous by Lemma 21. Hence, the map � ∈ ℝ9 ←→
Aℎom(� ) ∈ ℝ9 is continuous. Moreover, due to (104), it is a Lipschitzian map.
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Now we prove the monotonicity. The change of functions (100) and the coercivity of the matrix A lead to
(

Aℎom(� ) − Aℎom(�)
)

⋅ (� − �)

=
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)
(

E(�,c)(� − �) + E(�,c)
X (�̂(�, ⋅) − �̂(�, ⋅))

)

⋅ E(�,c)(� − �) �(�,c) dX

≥ C
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

|

|

|

E(�,c)(� − �) + E(�,c)
X (�̂(�, ⋅) − �̂(�, ⋅))||

|

2
�(�,c) dX

−
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)
(

E(�,c)(� ) + E(�,c)
X (�̂(�, ⋅))

)

⋅
(

E(�,c)
X (�̂(�, ⋅) − �̂(�, ⋅))

)

�(�,c) dX

−
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)
(

E(�,c)(�) + E(�,c)
X (�̂(�, ⋅))

)

⋅
(

E(�,c)
X (�̂(�, ⋅) − �̂(�, ⋅))

)

�(�,c) dX.

The first integral is nonnegative, as well as the other two by (99)with the choice of �̂(�, ⋅) and �̂(�, ⋅) as test functions respectively.
Hence, for every (�, �) ∈ ℝ9, we get

(

Aℎom(� ) − Aℎom(�)
)

⋅ (� − �) ≥ C
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

|

|

|

E(�,c)(� − �) + E(�,c)
X (�̂(�, ⋅) − �̂(�, ⋅))||

|

2
dX ≥ 0

and thus the monotonicity of Aℎom is proved.

At last, we show the strict monotonicity of the homogenizing operator.

Lemma 22. There exists a constant C1 > 0 such that

∀� ∈ ℝ9, Aℎom(� ) ⋅ � ≥ C1|� |
2. (105)

Proof. Step 1. In this step we prove that there exists a constant C1 > 0 such that for all � ∈ ℝ9 it holds
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

|

|

|

E(�,c)(� ) + E(�,c)
X (Ŵ� ) + E

(�,c)
X

(̂̂�(�, ⋅)
)

|

|

|

2
dX ≥ C1|� |

2. (106)

Suppose by contradiction that the statement does not hold. Hence, for every n ∈ ℕ∗ there exist �n ∈ ℝ9∖{0} such that
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

|

|

|

E(�,c)(�n) + E
(�,c)
X (Ŵ�n) + E

(�,c)
X

(̂̂�(�n, ⋅)
)

|

|

|

2
dX ≤ 1

n
|�n|

2.

Dividing by |�n|2 on both sides we get
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

|

|

|

E(�,c)
( �n
|�n|

)

+ E(�,c)
X

(

Ŵ �n
|�n |

)

+ 1
|�n|

E(�,c)
X

(̂̂�(�n, ⋅)
)

|

|

|

2
dX ≤ 1

n
. (107)

The sequence
{ �n
|�n|

}

n
is bounded in ℝ9 while

{ 1
|�n|

EX
(̂̂�(�n, ⋅)

)

}

n
is bounded in L2(Cyl)6 by Lemma 21. Therefore, by

Korn’s Inequality and Lemma 21, there exist periodic rigid displacements rn = (r(1,b)n , r(2,a)n ) ∈ Ŵ(1) × Ŵ(2) such that
‖

‖

‖

1
|�n|

̂̂�(�n, ⋅) − rn
‖

‖

‖H1(Cyl)
≤ ‖

‖

‖

1
|�n|

EX
(̂̂�(�n, ⋅)

)

‖

‖

‖L2(Cyl)
≤ C

and therefore the sequence
{ 1
|�n|

̂̂�(�n, ⋅) − rn
}

n
is uniformly bounded in Ŵ(1) × Ŵ(2). Hence, there exist a subsequence of {n},

still denoted {n}, � ∈ ℝ9 with |� | = 1 and �0 ∈ Ŵ(1) × Ŵ(2) such that
�n
|�n|

→ �, 1
|�n|

̂̂�(�n, ⋅) − rn ⇀ �0 weakly in Ŵ(1) × Ŵ(2).
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By the weak convergences above and the weak lower semicontinuity, passing to the limit in (107) gives
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

|

|

|

E(�,c)(�
)

+ E(�,c)
X

(

Ŵ�
)

+ E(�,c)
X

(

�0
)

|

|

|

2
dX

≤ lim inf
n→+∞

2
∑

�=1

1
∑

c=0
∫

Cyl(�)

|

|

|

E(�,c)
( �n
|�n|

)

+ E(�,c)
X

(

Ŵ �n
|�n |

)

+ E(�,c)
X

( 1
|�n|

̂̂�(�n, X)
)

|

|

|

2
dX ≤ 0

and thus
0 = E(� ) + EX(Ŵ� ) + EX

(

�0
)

= E(� ) + EX
(

�̂0
)

, �̂0 = Ŵ� + �0 ∈ Ŵ(1) × Ŵ(2).
Lemma 20 gives � = 0, which is a contradiction. Hence (106) is proved.
Step 2. In this step we prove the thesis of the lemma.
Again reintroducing the change of functions (100) we have

Aℎom(� ) ⋅ � =
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)
(

E(�,c)(� ) + E(�,c)
X (Ŵ� ) + E

(�,c)
X (̂̂�(�, ⋅))

)

⋅ E(�,c)(� ) �(�,c) dX

=
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)
(

E(�,c)(� ) + E(�,c)
X (�̂(�, ⋅))

)

⋅
(

E(�,c)(� ) + E(�,c)
X (�̂(�, ⋅))

)

�(�,c)dX

−
2
∑

�=1

1
∑

c=0
∫

Cyl(�)

A(�,c)
(

E(�,c)(� ) + E(�,c)
X (�̂(�, ⋅))

)

⋅ E(�,c)
X (�̂(�, ⋅)) �(�,c) dX.

The second integral is nonnegative by problem (101), while in the first one we apply (106) and the coercivity of the matrices
A(�,c). We conclude thereby that for every � ∈ ℝ9 there exists a constant C1 > 0 such that (105) is satisfied.

8.2 The macroscopic problem
Denote

H .
=
{

(

V ,V (S),V (B)
)

∈ M × S × B
|

|

|

|V (S,b)1 − V (B,a)1 | + �||
|

)2V1 + )1V2
|

|

|

≤ g1 a.e. in Ω,

|V (S,a)2 − V (B,b)2 | + �||
|

)2V1 + )1V2
|

|

|

≤ g2 a.e. in Ω, (a, b) ∈ {0, 1}2
}

Theorem 2. Let the assumptions of Theorem 1 hold, let Aℎom be as in Proposition 1, let )U and )V be as in (77) and (87)
respectively and let C0(�) and C1(�) be as in (91).
Then, the homogenized problem
Find

(

U,U(S),U(B)
)

∈ H such that

∫
Ω

Aℎom()U) ⋅ ()U − )V) dz′ ≤C0(�)
2
∑

�=1

(

∫
Ω

f (�)� (U� − V�)dz′ + ∫
Ω

f (�)3 (U3 − V3)dz′
)

+
C0(�)
2

1
∑

c=0

(

∫
Ω

f̃ (�)�

(

U(S,c)� − V (S,c)�

)

+ f̃ (3−�)�

(

U(B,c)� − V (B,c)�

)

dz′
)

− C1(�)
2
∑

�=1
∫
Ω

f̃ (�)� ()�U3 − )�V3)dz′, ∀
(

V ,V (S),V (B)
)

∈ H

(108)

admits solutions. Moreover, such a solution is not unique.

Proof. The existence of solutions for problem (108) is a direct consequence of the continuity, boundedness (see Proposition 1)
and coercivity (see Lemma 22) of the homogenizing operator Aℎom, together with the Stampacchia Lemma.
Concerning uniqueness, assume that

(

U,U(S),U(B)
)

,
(

U′,U(S)′ ,U(B)′
)

are both solutions of (108). Then, by the two inequalities
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given by (108) with
(

U,U(S),U(B)
)

as a solution and
(

U′,U(S)′ ,U(B)′
)

as a test function and vice versa, we get that

∫
Ω

(

Aℎom()U) − Aℎom()U′)
)

⋅ ()U − )U′) dz′ ≤ 0,

which together with the monotonicity of Aℎom implies that the above quantity is also nonnegative. Hence, by the coercivity of
Aℎom this implies that )U = )U′ in the L2 sense, thus the not uniqueness of the solution is shown in the same fashion as in the
proof of Theorem 1.

The operator structure of the homogenized problem is known as the Leray−Lions operator.

9 CONCLUSIONS

As a conclusion, we can give and approximation of the displacements in the direction beams e1 and e2

u(1,q)(z) ≈
⎛

⎜

⎜

⎝

"U1 + "2U
(S,b)
1

"U2 + "2U
(B,b)
2

"U3

⎞

⎟

⎟

⎠

(z1, q") +
⎛

⎜

⎜

⎝

")2U3
−")1U3
")1U2

⎞

⎟

⎟

⎠

(z1, q") ∧ (−1)q+1Φ"(z1)e3

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
middle line displacement

+
⎛

⎜

⎜

⎝

")2U3
−")1U3
")1U2

⎞

⎟

⎟

⎠

(z1, q") ∧
(

(z2 − q")e2 + z3n(1,q)" (z1)
)

+ "3û(1,q)(z),

u(2,p)(z) ≈
⎛

⎜

⎜

⎝

"U1 + "2U
(B,a)
2

"U2 + "2U
(S,a)
2

"U3

⎞

⎟

⎟

⎠

(z2, p") +
⎛

⎜

⎜

⎝

")2U3
−")1U3
")2U1

⎞

⎟

⎟

⎠

(z2, p") ∧ (−1)pΦ"(z2)e3

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
middle line displacement

+
⎛

⎜

⎜

⎝

")2U3
−")1U3
")2U1

⎞

⎟

⎟

⎠

(z2, p") ∧
(

(z1 − p")e1 + z3n(2,p)" (z2)
)

+ "3û(2,p)(z).

We note that, even though the glued conditions in the definition of elasticity problem before the limit (28) do not allow in plane
rigid motions of the displacements and therefore ensure uniqueness, this characteristic is not preserved in the limit problem (90)
and more precisely neither in the microscopic scale (see (102)) nor in the macroscopic scale (see the proof of Theorem 1).
In fact, this behavior could have been already expected once the limit contact conditions were found. Indeed, assume
(U,U(S),U(B)), (U′,U(S)′ ,U(B)′) ∈  such that (U,U(S)) = (U′,U(S)′). Consider direction e1. By (82), we would have

⎧

⎪

⎨

⎪

⎩

|U(S,b)1 − U(B,a)1 | ≤ g1 − �
|

|

|

)2U1 + )1U2
|

|

|

a.e. in Ω,

|U(S,b)
′

1 − U(B,a)
′

1 | ≤ g1 − �
|

|

|

)2U′1 + )1U
′
2
|

|

|

a.e. in Ω.

It is then clear that U(B) = U(B)′ if and only if

g1(z1, z2) − �
|

|

|

)2U1(z2) + )1U2(z1)
|

|

|

= 0, a.e. (z1, z2) ∈ Ω.

But this is in general not true: with the admissible choice of g1(z1, z2) = � for a.e. (z1, z2) ∈ Ω and by the fact that U1 only
depends on z2 (and U2 only on z1) such equality would be satisfied if and only if U1(z2) = C1z2, U2(z1) = C2z1 for a.e.
(z1, z2) ∈ Ω, C1 + C2 = ±1. But this is impossible due to the boundary conditions.
Hence, uniqueness is not ensured and in none of the 4 parts of the domain Ω1-Ω4.
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10 APPENDIX

10.1 Proof of Lemma 6
Proof. We set for a.e. z′ = (z1, z2) in !r:

u(1,q)(p" + z1, q" + z2) = u(1,q)" (z1 + p", z2 + q", (−1)p+q+1r),
u(2,p)(p" + z1, q" + z2) = u(2,p)" (z1 + p", z2 + q", (−1)p+qr),

u(1,q)(p" + z1, q" + z2) = u
(1,q)
" (z1 + p", z2 + q", (−1)p+q+1r),

u(2,p)(p" + z1, q" + z2) = u
(2,p)
" (z1 + p", z2 + q", (−1)p+qr)

Step 1. In this step, we rewrite the displacements in the contact areas as (for a.e. z′ = (z1, z2) in !r)

u(1,q)(p" + z1, q" + z2) = U(1,q)(p") +(1,q)(p") ∧
(

z1e1 + z2e2) +Q(1)
p,q(z

′),

u(2,p)(p" + z1, q" + z2) = U(2,p)(q") +(2,p)(q") ∧
(

z1e1 + z2e2) +Q(2)
p,q(z

′),
(109)

where the reminder terms Q(�)
p,q are estimated by

∑

(p,q)∈"

‖Q(�)
p,q‖

2
L2(!r)

≤ C"‖u‖2" . (110)

Remind the decomposition of the displacements in the contact parts given by (18). For a.e. z′ = (z1, z2) in !r, we rewrite them
as in (109), where Q(�)

p,q are defined by

Q(1)
p,q(z

′)
.
=
(

U(1,q)(p" + z1) − U(1,q)(p") −(1,q)(p") ∧ z1e1
)

+
(

(1,q)(p" + z1) −(1,q)(p")
)

∧ z2e2 + u(1,q)(p" + z1, q" + z2),

Q(2)
p,q(z

′)
.
=
(

U(2,p)(q" + z2) − U(2,p)(q") −(2,p)(q") ∧ z2e2
)

+
(

(2,p)(q" + z2) −(2,p)(q")
)

∧ z1e1 + u(2,p)(p" + z1, q" + z2).

We want now to prove (110) and due to the symmetrical behavior, we will just estimate Q(1)
p,q . We first have that

∑

(p,q)∈"

‖Q(1)
p,q‖

2
L2(!r)

=
∑

(p,q)∈"

(

∫
!r

|

|

|

z1

∫
0

)1U(1,q)(p" + t) −(1,q)(p") ∧ e1dt
|

|

|

2
dz′

+ ∫
!r

z22
|

|

|

z1

∫
0

)1(1,q)(p" + t)dt||
|

2
dz′

)

+
∑

(p,q)∈"

‖u(1,q)‖2L2(!r).

Using Jensen’s inequality on each term in the parenthesis, we get

∑

(p,q)∈"
∫
!r

z22
|

|

|

z1

∫
0

)1(1,q)(p" + t)dt||
|

2
dz′ ≤ C"5

2N"−1
∑

q=0
‖)1(1,q)

‖

2
L2(0,L),

∑

(p,q)∈"
∫
!r

|

|

|

z1

∫
0

)1U(1,q)(p" + t) −(1,q)
2 (p") ∧ e1dt

|

|

|

2
dz′

≤
∑

(p,q)∈"
∫
!r

z1

z1

∫
0

(

|

|

|

)1U(1,q)(p" + t) −(1,q)(p" + t) ∧ e1
|

|

|

2
+ t

t

∫
0

|

|

|

)1
(1,q)
2 (p" + s)||

|

2
ds
)

dtdz′

≤ C
2N"−1
∑

q=0

(

"3‖)1U(1,q) −(1,q) ∧ e1‖2L2(0,L) + "
5
‖)1

(1,q)
2 ‖

2
L2(0,L)

)

.

By estimates (9)1,3 and Lemma 5, we get (110).
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Step 2. By the non penetration condition (21) in the contact parts of the cell (p", q") + "Y , for a.e. z′ = (z1, z2) in !r we show
that we have

0 ≤ (−1)p+q
[(

u(1,q)3 (p" + z1, q" + z2) − u(2,p)3 (p" + z1, q" + z2)
)

+
(

u(2,p+1)3 (p" + " + z1, q" + z2) − u(1,q)3 (p" + " + z1, q" + z2)
)

+
(

u(1,q+1)3 (p" + " + z1, q" + " + z2) − u(2,p+1)3 (p" + " + z1, q" + " + z2)
)

+
(

u(2,p)3 (p" + z1, q" + " + z2) − u(1,q+1)3 (p" + z1, q" + " + z2)
)]

= (−1)p+q
[

"(1)
2 (p", q") − "

(2)
1 (p" + ", q") − "

(1)
2 (p", q" + ") + "

(2)
1 (p", q")

]

+ (−1)p+q
[

R(1)p,q(z
′) + R(2)p+1,q(z

′) + R(1)p,q+1(z
′) + R(2)p,q(z

′)
]

,

(111)

where the reminder terms R(�)p,q , R
(1)
p,q+1 and R

(2)
p+1,q are estimated by

∑

(p,q)∈"

‖R(�)p,q‖
2
L2(!r)

+ ‖R(1)p,q+1‖
2
L2(!r)

+ ‖R(2)p+1,q‖
2
L2(!r)

≤ C"‖u‖2" . (112)

Indeed, by the non penetration condition (21) on the vertexes of the cell (p", q") + "Y and pairing the involved terms in a
different way, we get a.e. z′ = (z1, z2) in !r that

0 ≤ (−1)p+q
[(

u(1,q)3 (p" + z1, q" + z2) − u(2,p)3 (p" + z1, q" + z2)
)

+
(

u(2,p+1)3 (p" + " + z1, q" + z2) − u(1,q)3 (p" + " + z1, q" + z2)
)

+
(

u(1,q+1)3 (p" + " + z1, q" + " + z2) − u(2,p+1)3 (p" + " + z1, q" + " + z2)
)

+
(

u(2,p)3 (p" + z1, q" + " + z2) − u(1,q+1)3 (p" + z1, q" + " + z2)
)]

= (−1)p+q
[(

u(1,q)3 (p" + z1, q" + z2) − u(1,q)3 (p" + " + z1, q" + z2)
)

+
(

u(2,p+1)3 (p" + " + z1, q" + z2) − u(2,p+1)3 (p" + " + z1, q" + " + z2)
)

+
(

u(1,q+1)3 (p" + " + z1, q" + " + z2) − u(1,q+1)3 (p" + z1, q" + " + z2)
)

+
(

u(2,p)3 (p" + z1, q" + " + z2) − u(2,p)3 (p" + z1, q" + z2)
)]

.

Then, the right hand side of the above equality is rewritten in the following way:

u(1,q)3 (p" + z1, q" + z2) − u(1,q)3 (p" + " + z1, q" + z2) = "
(1)
2 (p", q") + R

(1)
p,q(z

′),

u(2,p+1)3 (p" + " + z1, q" + z2) − u(2,p+1)3 (p" + " + z1, q" + " + z2) = −"
(2)
1 (p" + ", q") + R

(2)
p+1,q(z

′)

u(1,q+1)3 (p" + " + z1, q" + " + z2) − u(1,q+1)3 (p" + z1, q" + " + z2) = −"
(1)
2 (p", q" + ") + R

(1)
p,q+1(z

′)

u(2,p)3 (p" + z1, q" + " + z2) − u(2,p)3 (p" + z1, q" + z2) = "
(2)
1 (p", q") + R

(2)
p,q(z

′),

where R(1)p,q(z
′), R(2)p,q(z

′) are defined by (z′ = (z1, z2))

R(1)p,q
.
=
(

U(1,q)3 (p") − U(1,q)3 (p" + ") − "(1,q)
2 (p")

)

+
(

(1,q)
1 (p") −(1,q)

1 (p" + ")
)

z2
−
(

(1,q)
2 (p") −(1,q)

2 (p" + ")
)

z1 +Q(1)
p,q −Q

(1)
p+1,q ,

R(2)p,q
.
=
(

U(2,p)3 (q") − U(2,p)3 (q" + ") + "(2,p)
1 (q")

)

+
(

(2,p)
1 (q") −(2,p)

1 (q" + ")
)

z2
−
(

(2,p)
2 (q") −(2,p)

2 (q" + ")
)

z1 +Q(2)
p,q −Q

(2)
p,q+1

and R(2)p+1,q , R
(1)
p,q+1 are referred from the above defined. we have now to prove (112) and due to the symmetrical behavior, we

will just estimate R(1)p,q . We first have

∑

(p,q)∈"

‖R(1)p,q‖
2
L2(!r)

=
∑

(p,q)∈"

(

∫
!r

|

|

|

"

∫
0

)1U
(1,q)
3 (p" + t) −(1,q)

2 (p")dt||
|

2
dz′ + ∫

!r

z22
|

|

|

"

∫
0

)1
(1,q)
1 (p" + t)dt||

|

2
dz′

+ ∫
!r

z21
|

|

|

"

∫
0

)1
(1,q)
2 (p" + t)dt||

|

2
dz′

)

+
∑

(p,q)∈"

‖Q(1)
p,q‖

2
L2(!r)

+
∑

(p,q)∈"

‖Q(1)
p+1,q‖

2
L2(!r)

.
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Using Jensen’s inequality on each term in the parenthesis, we get

∑

(p,q)∈"
∫
!r

z22
|

|

|

"

∫
0

)1
(1,q)
1 (p" + t)dt||

|

2
dz′ ≤ C"5

2N"−1
∑

q=0
‖)1

(1,q)
1 ‖

2
L2(0,L),

∑

(p,q)∈"
∫
!r

z21
|

|

|

"

∫
0

)1
(1,q)
2 (p" + t)dt||

|

2
dz′ ≤ C"5

2N"−1
∑

q=0
‖)1

(1,q)
2 ‖

2
L2(0,L),

∑

(p,q)∈"
∫
!r

|

|

|

"

∫
0

)1U
(1,q)
3 (p" + t) −(1,q)

2 (p")dt||
|

2
dz′

≤ Cr2
∑

(p,q)∈"

(

|

|

|

"

∫
0

)1U(1,q)(p" + t) −(1,q)(p" + t) ∧ e1dt
|

|

|

2
+ |

|

|

"

∫
0

"

∫
0

)1
(1,q)
2 (p" + s)dsdt||

|

2)

≤ C"2
2N"−1
∑

q=0

(

"‖)1U(1,q) −(1,q) ∧ e1‖2L2(0,L) + "
3
‖)1

(1,q)
2 ‖

2
L2(0,L)

)

.

By estimates (9)1,3 and (110) we get (112) for R(1)p,q .
Step 3. In this step we prove that

p+1
∑

k=p

q+1
∑

l=q

|

|

|

(

U(1)3 − U(2)3
)

(k",l") − z1
(

(1)
2 −(2)

2

)

(k",l") + z2
(

(1)
1 −(1)

1

)

(k",l")|

≤ (−1)p+q
[

"(1)
2 (p", q") − "

(2)
1 (p" + ", q") − "

(1)
2 (p", q" + ") + "

(2)
1 (p", q")

]

+ Sp,q(z′),

(113)

where the reminder term Sp,q is estimated by
∑

(p,q)∈"

‖Sp,q‖
2
L2(!r)

≤ C"‖u‖2" . (114)

We first note that in equality (111) the left hand side is positive. Hence, we replace the left-hand side by (109) and take the
modulus. Applying Step 1 on the left hand side and Step 2 on the right hand side, we get a.e z′ ∈ !r that

p+1
∑

k=p

q+1
∑

l=q

|

|

|

(

U(1)3 − U(2)3
)

(k",l") − z1
(

(1)
2 −(2)

2

)

(k",l") + z2
(

(1)
1 −(1)

1

)

(k",l") + (Q(1)
k,l,3 −Q

(2)
k,l,3)(z

′)||
|

= (−1)p+q
[

"(1)
2 (p", q") − "

(2)
1 (p" + ", q") − "

(1)
2 (p", q" + ") + "

(2)
1 (p", q")

]

+ (−1)p+q
[

R(1)p,q(z
′) + R(2)p+1,q(z

′) − R(1)p,q+1(z
′) − R(2)p,q(z

′)
]

.

In particular, the above equality is rewritten in the form (113) with Sp,q defined by

Sp,q
.
= (−1)p+q

(

R(1)p,q + R
(2)
p+1,q − R

(1)
p,q+1 − R

(2)
p,q

)

+
p+1
∑

k=p

q+1
∑

l=q

|

|

|

(Q(1)
k,l,3 −Q

(2)
k,l,3)

|

|

|

.

Estimate (114) is a direct consequence of estimates (110) and (112) since
∑

(p,q)∈"

‖Sp,q‖
2
L2(!r)

≤
∑

(p,q)∈"

(

‖R(�)p,q‖
2
L2(!r)

+ ‖R(1)p,q+1‖
2
L2(!r)

+ ‖R(2)p+1,q‖
2
L2(!r)

+ ‖Q(�)
p,q‖

2
L2(!r)

)

≤ C"‖u‖2" .

Step 4. In this step we prove the thesis of the lemma.
Starting from inequality (113) of Step 3, we replace (p, q) by (2p, 2q), (2p + 1, 2q), (2p, 2q + 1) and (2p + 1, 2q + 1). For a.e
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z′ ∈ !r, we obtain
2p+1
∑

k=2p

2q+1
∑

l=2q

|

|

|

(

U(1)3 − U(2)3
)

(k",l") − z1
(

(1)
2 −(2)

2

)

(k",l") + z2
(

(1)
1 −(1)

1

)

(k",l")||
|

+
2p+1
∑

k=2p

2q+2
∑

l=2q+1

|

|

|

(

U(1)3 − U(2)3
)

(k",l") − z1
(

(1)
2 −(2)

2

)

(k",l") + z2
(

(1)
1 −(1)

1

)

(k",l")||
|

+
2p+2
∑

k=2p+1

2q+1
∑

l=2q

|

|

|

(

U(1)3 − U(2)3
)

(k",l") − z1
(

(1)
2 −(2)

2

)

(k",l") + z2
(

(1)
1 −(1)

1

)

(k",l")||
|

+
2p+2
∑

k=2p+1

2q+2
∑

l=2q+1

|

|

|

(

U(1)3 − U(2)3
)

(k",l") − z1
(

(1)
2 −(2)

2

)

(k",l") + z2
(

(1)
1 −(1)

1

)

(k",l")||
|

≤
2p+1
∑

k=2p

2q+1
∑

l=2q
(−1)k+l

[

"(1)
2 (k",l") − "

(2)
1 (k" + ",l") − "

(1)
2 (k",l" + ") + "

(2)
1 (k",l")

]

+ S2p,2q(z′) + S2p+1,2q(z′) + S2p,2q+1(z′) + S2p+1,2q+1(z′).

(115)

We set

Tp,q(z′)
.
=

2p+1
∑

k=2p

2q+1
∑

l=2q
(−1)k+l

[

"(1)
2 (k",l") − "

(2)
1 (k" + ",l") − "

(1)
2 (k",l" + ") + "

(2)
1 (k",l")

]

and we want to prove that this term has a sufficient good estimate:
∑

(p,q)∈"

‖Tp,q‖
2
L2(!r)

≤ C"‖u‖2" . (116)

Indeed, writing down the sum and pairing the terms, we get that

Tp,q(z′)
.
="

[

(1)
2 (2p", 2q") −(1)

2 (2p" + ", 2q")
]

+ "
[

(1)
2 (2p" + ", 2q" + ") −(1)

2 (2p", 2q" + ")
]

+ "
[

(1)
2 (2p" + ", 2q" + ") −(1)

2 (2p", 2q" + ")
]

+ "
[

(1)
2 (2p", 2q" + 2") −(1)

2 (2p" + ", 2q" + 2")
]

− "
[

(2)
1 (2p" + ", 2q") −(2)

1 (2p" + ", 2q" + ")
]

− "
[

(2)
1 (2p" + 2", 2q" + ") −(2)

1 (2p" + 2", 2q")
]

− "
[

(2)
1 (2p", 2q" + ") −(2)

1 (2p", 2q")
]

− "
[

(2)
1 (2p" + ", 2q") −(2)

1 (2p" + ", 2q" + ")
]

.
By estimate (9)1 we prove (116) since

∑

(p,q)∈"

‖Tp,q‖
2
L2(!r)

= "2
∑

(p,q)∈"

(

∫
!r

|

|

|

"

∫
0

−)1
(1,2q)
2 (2p" + t) + 2)1

(1,2q+1)
2 (2p" + t) − )1

(1,2q+2)
2 (2p" + t)dt||

|

2
dz′

+ ∫
!r

|

|

|

"

∫
0

−)2
(2,2p)
1 (2q" + t) + 2)2

(2,2p+1)
1 (2q" + t) − )2

(2,2p+2)
1 (2q" + t)dt||

|

2
dz′

)

≤ C"5
(

2N"−1
∑

q=0
‖)1

(1,q)
2 ‖

2
L2(0,L) +

2N"−1
∑

p=0
‖)2

(2,p)
1 ‖

2
L2(0,L)

)

≤ C"‖u‖2" .

Taking the L2 norm in the left-hand side of (115) and applying (114)-(116) on the right hand side, we have that
∑

(p,q)∈"

(

"2||
|

(

U(1)3 − U(2)3
)

(p", q")||
|

2
+ "4||

|

(

(1)
� −(2)

�

)

(p", q")||
|

2)
≤ C"‖u‖2"

and thus dividing by r2 and applying the Q1 interpolation properties in subsection 5.1 we prove (36).

10.2 Asymptotic behavior of the reference frame
We will only consider direction e1, since the second follows a symmetric argumentation.

First, for every z2 ∈ (q" − �", q" + �"), one has q =
[z2
"
+ 1
2

]

= 2
[ z2
2"

]

+ b where b = 0 if q is even and b = 1 if q is odd.
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Then, by definition of Π(1,b)" (see (2)) we have Π(1,b)"

(

(−1)q
)

= (−1)b.
We are now ready to unfold the mobile reference frame. The unfolding of the oscillating function (−1)(q+1)Φ" is

1
"
Π(1,b)

(

(−1)(q+1)Φ"
)

= (−1)1+bΦ a.e. in Ω × Cyl(1)

where Φ is given in (1).
Moreover, we have 
 =

√

1 +
(

)X1
Φ
)2 a.e. in Ω × Cyl(1) and

Π(1,b)" (t(1,q)" ) = t(1,b) = 1


(

e1 + )X1
Φ(1,b)e3

)

, Π(1,b)" (n(1,q)" ) = n(1,b) = 1


(

− )X1
Φ(1,b)e1 + e3

)

,

"Π(1,b)" (c(1,q)" ) = c(1,b) =
)2X1
Φ(1,b)


3
, Π(1,b)" (�(1,q)" ) = �(1,b) = 


(

1 −X3c(1,b)
)

,

Π(1,b)" (∇ (1,q)" ) =
(

�(1,b)t(1,b) ||
|

e2
|

|

|

n(1,b)
)

,

Lemma 23. One has the following values for the integrals:

∫
Cyl(1)

�(1,b)dX = 4�2
2

∫
0


 dX1,

∫
Cyl(1)

(

(−1)b+1Φ(1,b)e3 +X2e2 +X3n(1,b)
)

�(1,b)dX = 4�2
(

2

∫
0


Φ dX1

)

e3.

(117)

Proof. First, due to the definition of � and the symmetries of the cross-sections with respect to the lines X2 = 0 and X3 = 0,
we immediately get (117)1.
Regarding (117)2, again by symmetry (the symmetries of the cross-sections with respect to the lines X2 = 0 and X3 = 0), we
first get that

∫
Cyl(1)

(

(−1)b+1Φ(1,b)e3 +X2e2 +X3n(1,b)
)

�(1,b)dX

= 4�2
(

2

∫
0

(−1)b+1Φ(1,b)
dX1

)

e3 +
4�4
3

(

2

∫
0

)X1
Φ(1,b)c(1,b)dX1

)

e1 −
4�4
3

(

2

∫
0

c(1,b)dX1

)

e3

By the fact that Φ(1,b) = (−1)1+bΦ, the first parenthesis gives the RHS of (117)2, while the second and third parenthesis can be
integrated and are equal to zero since Φ is 2-periodic and satisfies )X1

Φ(0) = )X1
Φ(1) = )X1

Φ(2) = 0.
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