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Summary

In this paper, we are concerned with the non-relativistic limit of a class of com-
putable approximation models for radiation hydrodynamics. The models consist of
the compressible Euler equations coupled with moment closure approximations to
the radiative transfer equation. They are first-order partial differential equations with
source terms. As hyperbolic relaxation systems, they are showed to satisfy the struc-
tural stability condition proposed by W.-A. Yong (1999). Base on this, we verify
the non-relativistic limit by combining an energy method with a formal asymptotic
analysis.
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1 INTRODUCTION

Radiation hydrodynamics1 studies interactions of radiation and matters through momentum and energy exchanges. It is modeled
with the compressible Euler equations coupled with a radiation transport equation via an integral-type source2,3,4:

)t� + div(�v) = 0,
)t(�v) + div(�v⊗ v) + ∇p = −SF ,
)t(�E) + div(�vE + pv) = −cSE ,
)tI + c� ⋅ ∇I = S.

(1)

Here the unknowns �, v andE denote the density, velocity and energy of the fluid, respectively; I = I(x, t,�) ≥ 0 is the radiative
intensity depending on the direction variable � ∈ D−1 as well; the thermodynamics pressure p = p(�, �) is a smooth function
of � and temperature �; S = S(�, �, I ; c) is the source of radiation; c is the speed of light; the source term in (1) is taken to be2

S = c��a(�)
(

|SD−1|b(�) − I
)

+ 1
c
��s(�)

(

|SD−1| ∫
SD−1

Id� − I
)

, (2)

where �a = �a(�) > 0 is the absorption coefficient, �s = �s(�) > 0 is the scattering coefficient, and the Planck function b = b(�)
is smooth and satisfies

b(�) > 0, b′(�) > 0;
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SF (SE) characterizes the energy (resp. impulse) exchange between the radiation and matter5:

SF = ∫
SD−1

�Sd�, SE = ∫
SD−1

Sd�.

The theory of radiation hydrodynamics has a wide range of applications, including nonlinear pulsation, supernova explosions,
stellar winds, and laser fusion1,4,6. However, the full set of radiation hydrodynamics equations are computationally expensive and
numerically difficult to solve since the radiative equation is a high-dimensional integro-differential equation. Various solution
methods have been developed. Among them, the moment method is quite attractive due to its numerous advantages such as clear
physical interpretation and high efficiency in transitional regimes. It has been regarded as a successful tool to solve radiative
equation7,8,9.
Recently, a new moment method was proposed by Fan et al10,11 for the radiative transfer equation, which is basically the last

equation in equations (1). The resultant model (called the HMPN model) is globally hyperbolic, and some important physical
properties are preserved. In this paper, we focus on the equation (1) with the last equation replaced by its HMPN approximation
(and the source terms are treated accordingly). The resultant coupling system will be called the Euler-HMPN approximation of
equations (1). See Section 3.2 for the Euler-HMPN approximation.
The goal of this paper is to investigate the non-relativistic limit of Euler-HMPN approximation, i.e., the limit as the light

speed tends to infinity. We restrict ourself to the mono-dimensional geometry. Under quite general assumptions, we prove that
as the light speed goes to infinity, the Euler-HMPN approximation of equations (1) converges to

)t� + )x(�v) = 0,

)t(�v) + )x

(

�v2 + p + 1
3
b(�)

)

= 0,

)t
(

�E + b(�)
)

+ )x
(

�Ev + pv
)

= )x

(

1
3��a(�)

)xb(�)
)

with corresponding initial data. See details in Section 4.1.
Note that the non-relativistic limit is a singular perturbation problem. Such singular limit problems have attracted much

attention for many years. For instance, Marcati andMilani12,13 firstly analyzed the singular limit for weak solutions of hyperbolic
balance laws with particular source terms. Bardos et al14,15 studied the limit problem for non-smooth solutions of the closely
related nonlinear radiative transfer equations. With the well-known compensated compactness theory, Marcati16 studied general
2 × 2 systems with applications to multi-dimensional problems and a class of one-dimensional semilinear systems. Recently,
for a class of first-order symmetrizable hyperbolic systems, Peng, Wasiolek and Yong17,18 studied the diffusion relaxation limit
and derived parabolic type equations.
For the above works, the structural stability condition proposed by Yong19,20 is the key. It is a proper counterpart of the H-

theorem for the kinetic equation. Indeed, this condition has been tacitly respected by many well-developed physical theories21.
Recently, it was shown by Di et al22 to be satisfied by the hyperbolic regularization models9,23, which provides a basis for the
first author to prove that the models well approximate the Navier-Stokes equations24. In contrast, the Biot/squirt (BISQ) model
for wave propagation in saturated porous media violates this condition and thus allows exponentially exploding asymptotic
solutions25. On the other hand, this condition also implies that the resultant moment system is compatible with the classical
theories26,24.
In this paper, we verify the structural stability condition for the Euler-HMPN system and construct formal asymptotic solutions

thereof. On the basis of the stability condition, we use the energy method to prove the validity of the asymptotic approximations.
Moreover, we conclude the existence of the solution to the Euler-HMPN systems in the time interval where the approximations
are well-defined.
Here, we mention some related works for the equations of radiation hydrodynamics. The system (1) was introduced by

Pomraning and Mihalas4 in the framework of special relativity. For the radiation hydrodynamics system with the radiation
transfer equation replaced by its discrete-ordinate approximations, Rohde and Yong27 showed the existence of entropy solu-
tions to the Cauchy problems in the framework of functions of bounded variation and investigated the non-relativistic limit of
the entropy solutions. Fan, Li, and Nakamura28 studied the non-relativistic and low Mach number limits for the Navier-Stokes-
Fourier-P1 approximation radiation model. Jiang, Li and Xie5 studied non-relativistic limit problem of the compressible NSF-P1
approximation radiation hydrodynamics model arising in radiation hydrodynamics. We refer to29,30,31,32 for more references.
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The paper is organized as follows. Section 2 presents a brief introduction of MPN and HMPN moment methods for the
radiative transfer equation. In Section 3, we verify the structural stability condition for the Euler-HMPN systems. Section 4 is
devoted to the non-relativistic limit. In particular, the formal asymptotic expansion is constructed in Subsection 4.1 and justified
in Subsection 4.2. Finally, we conclude our paper in Section 5.

2 HMPN MODEL

In this section, we present the HMPN model proposed by Fan et.10 for the radiative transfer equation (RTE) for a gray medium
in the slab geometry:

1
c
)I
)t
+ �)I

)x
= S(I). (3)

Here I = I(x, t, �) ≥ 0 is the specific intensity of radiation, the variable � ∈ [−1, 1] is the cosine of the angle between the
photon velocity and the positive x-axis, the time variable t ∈ R+ and space variable x ∈ Ω with Ω a closed interval, and the
right-hand side S(I) is defined in (2).
Define the kth moment of the specific intensity as

Ek = ⟨I⟩k=̇

1

∫
−1

�kId�, k ∈ N.

Multiplying (3) by �k and integrating it with respect to � over [−1, 1] yield the moment equations
1
c
)Ek
)t

+
)Ek+1
)x

= ⟨S(I)⟩k. (4)

Notice that the governing equation of Ek depends on the (k + 1)th moment Ek+1, which indicates that the full system contains
an infinite number of equations, so we need to provide a so-called moment closure for the model. A common strategy is to
construct an Ansatz: Î = Î(E0, E1,⋯ , EN ;�) with a prescribed integerN such that

⟨Î(E0, E1,⋯ , EN ;�)⟩k = Ek, k = 0, 1,⋯ , N.

Then the moment closure is given by
EN+1 = ⟨Î(E0, E1,⋯ , EN ;�)⟩N+1.

Based on this strategy, many moment systems have been developed, such as the PN model33, theMN model8,34, the positive
PN model35, the MPN model11, the HMPN model10 and so on.
In this paper, we focus on the HMPN model which is based on the MPN model11. The latter takes the ansatz of theM1 model

(the first order of theMN model) as a weight function and then constructs the ansatz by expanding the specific intensity around
the weight function in terms of orthogonal polynomials in the velocity direction. Therefore, we briefly describe the MPN model.

2.1 MPN model
The construction of the MPN model starts with the following weight function

![�](�) = 1
(1 + ��)4

, � ∈ (−1, 1). (5)

Here � is related to the low-ordermoment of radiation intensity and its expressionwill be given later. Having this weight function,
we use the Gram-Schmidt orthogonalization to define a series of orthogonal polynomials on the interval [−1, 1]:

�[�]0 (�) = 1, �[�]j (�) = �
j −

j−1
∑

k=0

�j,k
�k,k

�[�]k (�), j ≥ 1,

where the coefficients are

�j,k =

1

∫
−1

�j�[�]k (�)!
[�](�)d�. (6)
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From the orthogonality, it is easy to see that

�j,k = 0, if j < k, �k,k =

1

∫
−1

(�[�]k (�))
2![�](�)d� > 0. (7)

Set Φ[�]i (�) = �
[�]
i (�)!

[�](�) for i = 0, 1,⋯ , N . The Ansatz for the MPN model is

Î(E0, E1,⋯ , EN ;�)=̇
N
∑

i=0
fiΦ

[�]
i (�),

where fi are the expansion coefficients. Thanks to the orthogonality, the coefficients can be expressed as

fi =
1
�i,i

(

Ei −
i−1
∑

j=0
�i,jfj

)

, 0 ≤ i ≤ N. (8)

The moment closure form is given by

EN+1 =
N
∑

k=0
�N+1,kfk.

For the MPN systems, the parameter � is taken to be

� = −
3E1∕E0

2 +
√

4 − 3(E1∕E0)2
.

A simple calculation shows that f1 = 0.
Define the Hilbert space ℍ[�]N as

ℍ[�]N ∶= span
{

Φ[�]i (�), i = 0,⋯ , N
}

with the inner product

⟨Φ,Ψ⟩ℍ[�]N =

1

∫
−1

Φ(�)Ψ(�)∕![�](�)d�.

Let ℍ be the space of all the admissible specific intensities for the RTE. Consider the map from ℍ to ℍ[�]N :

P ∶ I → Î =
N
∑

i=0
fiΦ

[�]
i (�), fi =

⟨I,Φ[�]i ⟩ℍ[�]N

⟨Φ[�]i ,Φ
[�]
i ⟩ℍ[�]N

=
∫ 1
−1 I�

[�]
i d�

�i,i
,

where �ii is defined in (7). Clearly, this map is an orthogonal projection.
Similar to the reduction framework in the literature9, the MPN moment equation can be obtained as

1
c
P)PI
)t

+ P�)PI
)x

= PS(PI).

Note that the unknown variables are coefficients

w = (f0, �, f2,⋯ , fN )T

of PI in the basis space ℍ[�]N .
The MP2 moment model was showed11 to be globally hyperbolic and perform well in numerical experiments. But it allows a

non-physical characteristic velocity exceeding the speed of light. WhenN ≥ 3, the global hyperbolicity fails. For these reasons,
the HMPN moment closure model as a novel hyperbolic regularization was proposed10.

2.2 HMPN model
This class of models uses

!̃[�](�) = 1
(1 + ��)5

, � ∈ (−1, 1) (9)
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as the weight function which is different from that of MPN models. As before, we introduce the orthogonal polynomials with
respect to this new weight function:

�̃[�]0 (�) = 1, �̃[�]j (�) = �
j −

j−1
∑

k=0

�̃j,k
�̃k,k

�̃[�]k (�), j ≥ 1. (10)

The coefficients are

�̃j,k =

1

∫
−1

�j�̃[�]k (�)!̃
[�](�)d�. (11)

and the analogue of (7) also holds:

�̃j,k = 0, if j < k, �̃k,k =

1

∫
−1

(�̃[�]k (�))
2!̃[�](�)d� > 0. (12)

Similarly, we have a new Hilbert space

ℍ̃[�]N ∶= span
{

Φ̃[�]i (�) = �̃
[�]
i (�)!̃

[�](�), i = 0,⋯ , N
}

with the inner product

⟨Φ,Ψ⟩ℍ̃[�]N =

1

∫
−1

Φ(�)Ψ(�)∕!̃[�](�)d� (13)

and the orthogonal projection from ℍ to ℍ̃[�]N :

P̃ ∶ I → Î =
N
∑

i=0
giΦ̃

[�]
i (�), gi =

⟨I, Φ̃[�]i (�)⟩ℍ̃[�]N
⟨Φ̃[�]i , Φ̃

[�]
i ⟩ℍ̃[�]N

=
∫ 1
−1 I�̃

[�]
i d�

�̃i,i
.

Having these preparations, the HMPN models were constructed in10 as
1
c
P̃)PI
)t

+ P̃�P̃)PI
)x

= P̃S(PI).

They can be rewritten as the equations for w = (f0, �, f2,⋯ , fN )T :
1
c
)w
)t

+ D̃−1M̃D̃)w
)x

= D̃−1S̃. (14)

Here the matrix D̃ is denoted as
P̃)PI
)t

= (Φ̃[�]i )
T D̃ )w

)t
and

M̃ = Λ̃−1⟨�Φ̃[�], (Φ̃[�])T ⟩H̃[�]N , Λ̃ = diag(�̃0,0, �̃1,1,⋯ , �̃N,N ),

S̃ = (⟨Φ̃[�]i ,S(PI)⟩H̃[�]N ∕�̃i,i)i=0,⋯,N .
(15)

The details can be found in the literature10.

3 STABILITY ANALYSIS

3.1 Structural stability condition
In36, Yong proposed a structural stability condition for systems of first-order partial differential equations with source terms:

Ut +
D
∑

j=1
Aj(U )Uxj = Q(U ),

where Aj(U ) and Q(U ) are n × n-matrix and n-vector smooth functions of U ∈ G ⊂ Rn with state space G open and convex.
The subscripts t and xj refer to the partial derivatives with respect to t and xj .
Set QU =

)Q
)U

and define the equilibrium manifold

E ∶= {U ∈ G ∶ Q(U ) = 0}.
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The structural stability condition consists of the following three items:

(i) There are an invertible n × n matrix P (U ) and an invertible r × r matrix S(U ), defined on the equilibrium manifold E,
such that

P (U )QU (U ) =
[

0 0
0 S(U )

]

P (U ), for U ∈ E.

(ii) There is a symmetric positive definite matrix A0(U ) such that

A0(U )Aj(U ) = Aj(U )TA0(U ), for U ∈ G.

(iii) The left-hand side and the source term are coupled in the following way:

A0(U )QU (U ) +QT
U (U )A0(U ) ≤ −P

T (U )
[

0 0
0 I

]

P (U ), for U ∈ E.

Here I is the unit matrix of order r.
As shown in37, this set of conditions has been tacitly respected by many well-developed physical theories. Condition (i) is

classical for initial value problems of the system of ordinary differential equations (ODE, spatially homogeneous systems), while
(ii) means the symmetrizable hyperbolicity of the PDE system. Condition (iii) characterizes a kind of coupling between the
ODE and PDE parts. Recently, this structural stability condition was shown22 to be proper for certain moment closure systems.
Furthermore, this condition also implies the existence and stability of the zero relaxation limit of the corresponding initial value
problems36.

3.2 Stability of the Euler-HMPN system
In this subsection, we verify the structural stability condition for the following one-dimensional Euler-HMPN system

)t� + )x(�v) = 0,

)t(�v) + )x(�v2 + p) = �
(

c�a(�) +
1
c
�s(�)

)

�1,0(�)f0,

)t(�E) + )x(�Ev + pv) = c2��a(�)
(

�0,0(�)f0 − b(�)
)

,

)tw + cD̃−1M̃D̃)xw = cD̃−1S̃,

(16)

which is the equations (1) with its last equation replaced by the HMPN approximation (14). Here the following relations have
been used:

SF =

1

∫
−1

�Sd� = −�(c�a(�) +
1
c
�s(�))E1, SE =

1

∫
−1

Sd� = −c��a(�)(b(�) − E0)

with E0 = �0,0(�)f0 and E1 = �1,0(�)f0 due to the formula (8).
Let u = (�, �v, �E)T ∈ R3 be the hydrodynamical variables and w = (f0, �, f2,⋯ , fN )T ∈ RN+1 be radiation variables.

Denoting F (u) = (�v, �v2 + p, �Ev + pv)T and " = 1∕c, we can rewrite (16) as

)tU + 1
"
A(U ; "))xU = 1

"2
Q(U ; "), (17)

with
U =

(

u
w

)

, A(U ; ") =
(

"Fu(u) 0
0 D̃−1M̃D̃

)

, Q(U ; ") =
(

q(1)(U ; ")
q(2)(U ; ")

)

,

q(1)(U ; ") ≜
(

0, �("�a(�) + "3�s(�))�1,0(�)f0, ��a(�)(�0,0(�)f0 − b(�))
)T

,

q(2)(U ; ") ≜ "D̃−1S̃(U ; ").
Note that D̃ = D̃(U ) and M̃ = M̃(U ) are independent of ". The state space is

G = {U = (u,w)|� > 0, � > 0, � ∈ (−1, 1)}.
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Next, we write down the explicit expression of S̃ = S̃(U ; "). Recall that PI =
∑N
i=0 fiΦ

[�]
i (�). Then by its definition (2) we

have

S(PI) = �
(

1
2
c�ab(�) +

1
2c
�s

1

∫
−1

Id� − (c�a +
1
c
�s)

N
∑

j=0
fjΦ

[�]
j

)

.

From10 we know that Φ[�]j = �Φ̃[�]j+1 + �jΦ̃
[�]
j with �i =

�i,i
�̃i,i
. Thus, we compute the ith component of S̃ in equation (15) :

S̃i(U ; ") =
< Φ̃[�]i , S(PI) >H̃ [�]

N

�̃i,i

= 1
�̃i,i

1

∫
−1

�̃[�]i �
(

1
2
c�ab(�) +

1
2c
�s

1

∫
−1

Id� − (c�a +
1
c
�s)

N
∑

j=0
fjΦ

[�]
j

)

d�

=
�( 1

"
�ab(�) + "�sE0)

2�̃i,i

1

∫
−1

�̃[�]i d� −
�( 1

"
�a + "�s)

�̃i,i

N
∑

j=0
fj

1

∫
−1

�̃[�]i Φ
[�]
j d�

=
�( 1

"
�ab(�) + "�sE0)

2�̃i,i

1

∫
−1

�̃[�]i d� −
�( 1

"
�a + "�s)

�̃i,i

N
∑

j=0
fj

1

∫
−1

�̃[�]i

(

�Φ̃[�]j+1 + �jΦ̃
[�]
j

)

d�

=
�( 1

"
�ab(�) + "�sE0)

2�̃i,i

1

∫
−1

�̃[�]i d� −
�( 1

"
�a + "�s)

�̃i,i

N
∑

j=0
fj

(

��i,j+1�̃i,i + �j�i,j �̃i,i

)

=1
"
�(�ab(�) + "2�s�0,0f0)

2�̃i,i

1

∫
−1

�̃[�]i d� −
1
"
�(�a + "2�s)(�fi−1 + �ifi).

Here we have used E0 = ∫ 1
−1 Id� = �0,0f0 and ∫ 1

−1 �̃
[�]
i Φ̃

[�]
j d� = �i,j �̃i,i. Set Ŝ(U ; ") = "S̃(U ; "). We have q(2)(U ; ") =

D̃−1Ŝ(U ; ") and

Ŝi(U ; ") =
�(�ab + "2�s�0,0f0)Ri

2�̃i,i
− �(�a + "2�s)(�fi−1 + �ifi) (18)

with Ri ≜ ∫ 1
−1 �̃

[�]
i d�. Note that �0,0, �̃i,i, Ri and �i depend on � and Ŝi(U ; ") is a polynomial of ". Since f−1 = f1 = 0, Ŝ(U ; 0)

can be rewritten as

Ŝ0(U ; 0) =
��a
�̃0,0

(b − �0,0f0), Ŝ1(U ; 0) =
��ab
2�̃1,1

R1 − ��a�f0, Ŝ2(U ; 0) =
��ab
2�̃2,2

R2 − ��a�2f2,

Ŝi(U ; 0) =
��ab
2�̃i,i

Ri − ��a(�fi−1 + �ifi), for i = 3,⋯ , N.
(19)

Here �, �a, b, �i,i, �̃i,i > 0.
For �i,j and �̃i,j , we have the following explicit expressions.

�0,0 =

1

∫
−1

w[�](�)d� =
2(3 + �2)
3(1 − �2)3

, �̃0,0 =

1

∫
−1

w̃[�](�)d� =
2
(

�2 + 1
)

(

�2 − 1
)4
,

�1,0 =

1

∫
−1

�w[�](�)d� = 8�

3
(

�2 − 1
)3
, �̃1,0 = ∫ �w̃[�](�)d� = −

2�
(

�2 + 5
)

3
(

�2 − 1
)4
,

�̃1,1(0) =

1

∫
−1

(�̃[0]1 )
2(�)w̃[0](�)d� = 2

3
.

(20)

Here �̃[�]1 = �̃[�]1 (�) = � − �̃1,0(�)∕�̃0,0(�) according to equations (10). These can be easily checked by using the expressions of
w[�](�) and w̃[�](�) given in (5) and (9).
For Ri = Ri(�) in (18), we have
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Lemma 1. R0(�) = 2, R1(�) =
2�(�2+5)
3(�2+1)

, Ri(0) = 0 and R′i(0) = 0 for i ≥ 2.

Proof. According to equations (10), we know that �̃[�]0 = 1 and �̃[�]1 (�) = � − �̃1,0(�)∕�̃0,0(�). Thereby

R0(�) =

1

∫
−1

�̃[�]0 (�)d� = 2, R1(�) =

1

∫
−1

�̃[�]1 (�)d� =

1

∫
−1

�d� − 2
�̃1,0(�)
�̃0,0(�)

=
2�(�2 + 5)
3(�2 + 1)

.

Since w̃[0](�) = 1 in (9), we have

Ri(0) =

1

∫
−1

�̃[0]i (�)d� =

1

∫
−1

�0�̃[0]i (�)w̃
[0](�)d� = �̃0,i(0) = 0, for i ≥ 2.

Here we have used the orthogonality of �̃i,j in (12) i.e., �̃i,j(�) = 0 for i < j. Based on the expression of �̃i,j in (11), we have

�̃′0,i(�) =

1

∫
−1

)�̃[�]i (�)
)�

w̃[�](�)d� +

1

∫
−1

�̃[�]i (�)
)w̃[�](�)
)�

d�.

Note that )w̃
[�](�)
)�

= −5�
(1+��)6

, thus )w̃[0](�)
)�

= −5�. Taking � → 0, we can obtain

R′i(0) =

1

∫
−1

)�̃[0]i (�)
)�

w̃[0](�)d� = �̃′0,i(0) −

1

∫
−1

�̃[0]i (�)
)w̃[0](�)
)�

d�

= �̃′0,i(0) + 5

1

∫
−1

��̃[0]i (�)d�

= �̃′0,i(0) + 5

1

∫
−1

��̃[0]i (�)w̃
[0](�)d�

= �̃′0,i(0) + 5�̃1,i(0).

Similarly, it follows from the orthogonality of �̃i,j that

R′i(0) = 0, for i ≥ 2.

The equilibrium manifold Geq is defined as following

Geq = {U ∈ G ∶ Q(U ; 0) = 0}.

Due to equation (17) and the expression of Ŝ in (19), we know that U ∈ Geq if and only if Ŝ(U ; 0) = 0. We denote the
equilibrium state as Ueq . Using formulas (20) and Lemma 1, one can obtain the equilibrium state Ueq as

f0 =
b(�)
�0,0(0)

= 1
2
b(�), � = 0, fi = 0, for i = 2,⋯ , N. (21)

It can be seen from system (17) that the source term of the fluid variable is also zero on the above-mentioned equilibrium
manifold. It is worth noting that for any Ueq ∈ Geq and any ", there are

Q(Ueq; ") = 0.

Next, we verify that the Euler-HMPN system (17) satisfies the structural stability condition. Throughout this paper, we make
the standard thermodynamical assumptions38:

p�(�, �), p�(�, �), e�(�, �) > 0, for � > 0, � > 0.

Assume the existence of a specific entropy function s = s(�, e) satisfying the classical Gibbs relationship

�ds = de + pd�, � ∶= 1∕�.
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We take �(u) = −�s(�, e) as the classical entropy function of Euler equations. This means that �uu is symmetrizer of Euler
equations39. According to equation (15), Λ̃M̃ = ⟨�Φ̃[�], (Φ̃[�])T ⟩H̃[�]N is symmetric. Therefore, it can be seen that the Euler-HMPN
system (17) has the following symmetrizer

A0(U ) =
(

�uu 0
0 D̃T Λ̃D̃

)

. (22)

That is, A0(U )A(U ; ") = A(U ; ")TA0(U ). Note that the symmetrizer A0 = A0(U ) is independent with ".
In order to verify the first and third requirement in the structural stability condition, we need to computeQU (Ueq; 0). Therefore,

we now write down the source term of system (17) as:

Q(U ; 0) =
(

q(1)(U ; 0)
q(2)(U ; 0)

)

,

q(1)(U ; 0) =
(

0, 0, ��a(�)(�0,0(�)f0 − b(�))
)T ,

q(2)(U ; 0) = D̃−1(U )Ŝ(U ; 0).
Set S�E=̇��a(�)(�0,0(�)f0 − b(�)). Resorting to formulas (20) and (21), we note that, on the equilibrium manifold Geq ,

)S�E
)�

(Ueq; 0) = −��ab′��,
)S�E
)(�v)

(Ueq; 0) = −��ab′��v,

)S�E
)(�E)

(Ueq; 0) = −��ab′��E ,
)S�E
)f0

(Ueq; 0) = 2��a,

)S�E
)w

(Ueq; 0) = 0, for w ≠ f0.

For q(2)(U ; 0), we know that
)(D̃−1Ŝ)
)U

(Ueq; 0) = D̃−1 )Ŝ
)U

(Ueq; 0) +
)D̃−1

)U
Ŝ(Ueq; 0) = D̃−1 )Ŝ

)U
(Ueq; 0).

Thus we need to compute )Ŝ
)U
(Ueq; 0). Noted that Ŝ0 =

��a(�)
�̃0,0(�)

(b(�)−�0,0(�)f0) according to equations (19). Using formulas (20),
we can obtain

)Ŝ0
)�

(Ueq; 0) =
1
2
��ab

′��,
)Ŝ0
)(�v)

(Ueq; 0) =
1
2
��ab

′��v,

)Ŝ0
)(�E)

(Ueq; 0) =
1
2
��ab

′��E ,
)Ŝ0
)f0

(Ueq; 0) = −��a,

)Ŝ0
)w

(Ueq; 0) = 0, for w ≠ f0.

Similarly, for Ŝ1 =
��a(�)b(�)
2�̃1,1(�)

R1(�) − ���a(�)f0, we have

)Ŝ1
)u

(Ueq; 0) =0,

)Ŝ1
)w

(Ueq; 0) =0, for w ≠ �,

)Ŝ1
)�

(Ueq; 0) =
��ab(R′1(0)�̃1,1(0) − R1(0)�̃

′
1,1(0))

2�̃21,1(0)
− 1
2
��ab = 2��ab.

When i ≥ 2, we know that Ŝi(U ; 0) =
��a(�)b(�)
2�̃i,i(�)

Ri(�) − ��a(�)(�fi−1 + �i(�)fi). Analogously, it is easy to show that

)Ŝi
)u
(Ueq; 0) = 0,

)Ŝi
)fi

(Ueq; 0) = −��a�i(0),
)Ŝi
)w

(Ueq; 0) = 0, for w ≠ fi.

Resorting to the explicit expression of D̃ in literature10 and equation (15), we can obtain

D̃−1(Ueq) = diag
(

�−10 (0), (−2b(�))
−1, �−12 (0), ⋯ , �−1N (0)

)

,

D̃T Λ̃D̃(Ueq) = diag
(

�20 (0)�̃0,0(0), (−2b(�))
2�̃1,1(0), �22 (0)�̃2,2(0),⋯ , �2N (0)�̃N,N (0)

)

.
(23)



10 All ET AL

Here D̃−1(Ueq) and D̃T Λ̃D̃(Ueq) are matrices belonging in R(N+1)×(N+1). In summary, the Jacobian matrix QU (Ueq; 0) is

QU (Ueq; 0) =
(

Q1(Ueq; 0) 0
0 −��aIN×N

)

, (24)

where

Q1(Ueq; 0) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0
0 0 0 0

−��ab′�� −��ab′��v −��ab′��E 2��a
1
2
��ab′��

1
2
��ab′��v

1
2
��ab′��E −��a

⎞

⎟

⎟

⎟

⎟

⎠

. (25)

Obviously the rank of Q1(Ueq; 0) is 1, so the rank of QU (Ueq; 0) isN + 1.
Using equation (23), we can rewrite A0(Ueq) in the same block form as

A0(Ueq) =
(

�uu 0
0 D̃T Λ̃D̃(Ueq)

)

=
⎛

⎜

⎜

⎝

(

�uu 0
0 2

)

0

0 Â0(Ueq)N×N

⎞

⎟

⎟

⎠

,

Â0(Ueq)N×N = diag
(

(−2b(�))2�̃1,1(0), �22 (0)�̃2,2(0), ⋯ , �2N (0)�̃N,N (0)
)

.

Noted that ��E = −
1
�
39, we can obtain

A0(Ueq)QU (Ueq; 0) =
(

H 0
0 −��aÂ0(Ueq)N×N

)

, (26)

where

H =
(

�uu 0
0 2

)

Q1(Ueq; 0) =

⎛

⎜

⎜

⎜

⎜

⎝

−��ab′
��
�2
�� −��ab′

��
�2
��v −��ab′

��
�2
��E 2��a

��
�2

−��ab′
��v
�2
�� −��ab′

��v
�2
��v −��ab′

��v
�2
��E 2��a

��v
�2

−��ab′
��E
�2
�� −��ab′

��E
�2
��v −��ab′

��E
�2
��E 2��a

��E
�2

��ab′�� ��ab′��v ��ab′��E −2��a

⎞

⎟

⎟

⎟

⎟

⎠

. (27)

Take P ∈ R(N+4)×(N+4) as following

P = a
(

P1 0
0 IN×N

)

, P1 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 2

−b′�� −b′��v −b′��E 2

⎞

⎟

⎟

⎟

⎟

⎠

, (28)

Here a is an undetermined non-zero constant. Obviously, P is an invertible matrix since det(P ) = 2a(1 + b′��E) ≠ 0. In fact,
we have

PQU = a
(

P1 0
0 IN×N

)(

Q1 0
0 −��aIN×N

)

= a
(

P1Q1 0
0 −��aIN×N

)

.

Simple calculation shows that

P1Q1 =
(

0 0
0 −��a(1 + b′��E)

)

P1,

Thus the first requirement of structural stability condition is met. Moreover, the third requirement of stability condition need P
holds the following inequality.

A0(Ueq)QU (Ueq; 0) +QT
U (Ueq; 0)A0(Ueq) + P

T
(

diag(0, 0, 0, 1) 0
0 IN×N

)

P ≤ 0.

Due to the expression (26), the above inequality is equivalent to
H +HT + a2P T

1 diag(0, 0, 0, 1)P1 ≤ 0
− 2��aÂ0(Ueq)N×N + a2IN×N ≤ 0

(29)

Set
K = (−��ab′��, − ��ab′��v, − ��ab′��E , 2��a),

L = (
��
�2
,
��v
�2
,
��E
�2
, − 1).
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Then, we have
H = LTK, P T

1 diag(0, 0, 0, 1)P1 =
1

�2�2a
KTK.

Hence, the first inequality can be rewritten as
H +HT + a2P T

1 diag(0, 0, 0, 1)P1

= LTK +KTL + a2

�2�2a
KTK

= (LT + a2

2�2�2a
KT )K +KT (L + a2

2�2�2a
K).

The above matrix is semi-negative definite is equivalent to (L + a2

2�2�2a
K)KT ≤ 0, which means that

a2 ≤ ��a
4 + 2b′(�2� + �

2
�v + �

2
�E)∕�

2

4 + b′2(�2� + �2�v + �
2
�E)

. (30)

According to inequalities (29) and (30), if the non-zero constant a satisfies the following constraints

a2 ≤ min
2≤k≤N

{

2��a�k(0)�̃k,k(0),
16
3
��ab

2, ��a
4 + 2b′(�2� + �

2
�v + �

2
�E)∕�

2

4 + b′2(�2� + �2�v + �
2
�E)

}

,

the P matrix defined in (28) satisfies the structural stability condition. And

� > 0, �a > 0, b > 0, b′ > 0, �k(0)�̃k,k(0) > 0.

The value space of a is obviously not empty.
Consequently, we conclude the following theorem.

Theorem 1. The Euler-HMPN system (17) admits Yong’s structural stability condition, which’s symmetrizer A0 and P are
defined in (22) and (28).

4 NON-RELATIVISTIC LIMIT

In this section, we analyze the non-relativistic limit of the radiation hydrodynamics system (16). In other word, we focus on
singular limits "→ 0 of the following system

)tU + 1
"
A(U ; "))xU = 1

"2
Q(U ; "). (31)

Here U , A(U ; ") and Q(U ; ") are demonstrated in (17).
As we mentioned before, Lattanzio and Yong17, Peng and Wasiolek18 studied the singular limits of initial-value problems

for first-order quasilinear hyperbolic systems with stiff source terms. Under appropriate stability conditions and the existence of
approximate solutions, they justified rigorously the validity of the asymptotic expansion on a time interval independent of the
parameter. However, the system (31) that the coefficient matrix and the source terms both depending on " are not considered,
which introduce some additional terms.
For convenience, we rewrite the equations of hydrodynamical variables (the fist three equations in (16)) as following

conservative form
)t� + )x(�v) = 0,
)t(�v + "E1) + )x(�v2 + p + E2) = 0,

)t(�E + E0) + )x(�Ev + pv) +
1
"
)xE1 = 0.

(32)

Here we use the first two moment equations of radiative transfer equation (4):
")tE0 + )xE1 = SE ,
")tE1 + )xE2 = SF .

(33)

Owing to the relation (8), we know that

E0 = �0,0f0, E1 = �1,0f0, E2 = �2,2f2 + �2,0f0.
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We introduce Ũ = (ũ, w̃)T with
ũ = (�, �v + "�1,0f0, �E + �0,0(�)f0)T ,
w̃ = (�0,0(�)f0 − b(�), �, f2, ⋯ , fN )T

(34)

and set Ũeq = Ũ (Ueq). Then, the systems (17) can be rewritten as

)tŨ + 1
"
Ã(Ũ ; "))xŨ = 1

"2
Q̃(Ũ ; ") (35)

with
Ã(Ũ ; ") = DU Ũ

(

"Fu(u) 0
0 D̃−1M̃D̃

)

(DU Ũ )−1,

Q̃(Ũ ; ") = DU ŨQ(U (Ũ )) =
(

0
q(Ũ ; ")

)

.
(36)

Here, the transformation matrix of U → Ũ is

DU Ũ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 1 0 "�1,0 "�′1,0f0
0 0 1 �0,0 �′0,0f0

−b′�� −b′��v −b′��E �0,0 �′0,0f0
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

05×(N−1)

0(N−1)×5 I(N−1)×(N−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (37)

Using formulas (20), a routine computation gives rise to the determination of DU Ũ is

det(DU Ũ ) = �0,0 + b′��E�0,0 + "b′��v�1,0

=
(

(3 + �2)(1 + b′��E) − "4�b′��v

)

2
3(1 − �2)3

.

Note that � ∈ (−1, 1) and ��E > 039. Then when " = 0, we have

det(DU Ũ ) =
2(3 + �2)
3(1 − �2)3

(1 + b′��E) > 0.

Thus, there exits "0 > 0 such that det(DU Ũ ) ≠ 0 for " ∈ [0, "0]. Therefore, we assume " ∈ [0, "0] for the system (35).
The system (35) also satisfiesYong’s structural stability condition. It is apparent from (21) that w̃ = 0 on equilibriummanifold.

On the equilibrium manifold, we have

)Ũ Q̃ = )Ũ

(

DU ŨQ
)

= )U (DU Ũ )DU ŨQ +DU ŨQU (DU Ũ )−1 = DU ŨQU (DU Ũ )−1.

Here we use Q(Ueq) = 0. Set P̃ = P (DU Ũ )−1(Ũeq; 0), in which P expressed in (28). On the equilibrium manifold, we see that

�0,0(0) = 2, �′0,0(0) = 0.

A straightforward calculation gives rise to P = aDU Ũ (Ũeq; 0), which a is the constant in (28). Thus P̃ is a scalar matrix.
Moreover,

P̃ Q̃Ũ P̃
−1 = P (DU Ũ )−1DU ŨQU (DU Ũ )−1DU ŨP

−1 = PQUP
−1.

This means that system (35) satisfies the first requirement of structural stability condition. For the second requirement, the
symmetrizer of system (35) is Ã0 = Ã0(Ũ ; ") = (DU Ũ )−TA0(DU Ũ )−1. A simple computation shows that the system also
satisfies third requirement of structural stability condition.
For further discussions, we analyze Ã(Ũ ; 0). In Appendix 6, we show that

Ã11(Ũeq; 0) = 0, )ũÃ
11(Ũeq; 0) = 0,

and Ã21(Ũeq; 0) is not full–rank matrix. See details in Appendix 6.
For the convenience of writing, we omit the superscript below. Then the system (35) have the following form

)tU + 1
"
A(U ; "))xU = 1

"2
Q(U ; "), (38)

with initial conditions
U (x, 0) = Ū (x, "). (39)
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Here U = (u,w)T ∈ G ⊂ RN+4, and

u = (�, �v + "�1,0f0, �E + �0,0f0)T ∈ R3, w = (�0,0f0 − b(�), �, f2, ⋯ , fN )T ∈ RN+1. (40)

Here A = A(U ; ") and Q = Q(U ; ") are the respective n × n–matrix function and n–vector functions of (U ; ") ∈ G × [0, "0].
The parameter " ∈ [0, "0]. The state space G is a open convex set, which defined as

G =
{

U = (u,w) ∶ � > 0, � > 0, � ∈ (−1, 1)
}

.

The equilibrium manifold is

Geq =
{

U ∈ G ∶ w = 0
}

.

Lemma 2. The system (38) satisfies following properties.

(i) The source term has the following form:

Q(U ; ") =
(

0
q(U ; ")

)

, q(U ; ") ∈ R(N+1),

and
q(U ; ") = 0⇔ w = 0,

for all u
)uq(Ueq; 0) = 0, )wq(Ueq; 0) invertible

(ii) The system (38) satisfies Yong’s structural stability condition and P is a scalar matrix;

(iii) A11(Ueq; 0) = 0 and )uA11(Ueq; 0) = 0 for all Ueq ∈ Geq;

(iv) A0(Ueq; 0) = diag(A110 (Ueq; 0), A
22
0 (Ueq; 0)) is a block diagonal matrix.

Proof. Obviously, the first two terms are clearly established. The proof of the third term is exhibited in Appendix 6. As shown
in Theorem 2.2 by Yong36, the structural stability condition imply that P −TA0(Ueq; 0)P −1 is a block diagonal matrix. Moreover,
P is a scalar matrix, so A0(Ueq; 0) is a block diagonal matrix.

Through the previous discussion, we can see that the coefficient matrix A(U ; ") and the source term Q(U ; ") are smoothly
dependent on U and ". The symmetrizer A0 is also a smooth function of U and ".
Assuming that the initial value of the equation is periodic and smooth, according to Kato40, for all integer s > 3

2
, there exists

a maximal time T" > 0 such that problem (38)–(39) admits a unique local-in-time smooth solution U " satisfying

U " ∈ C([0, T"),Hs) ∩ C1([0, T"),Hs−1).

The central problem of the study is to show that U " converges as " → 0 and inf T" > 0. To do this, we study the approximate
solution of (38).
We end this section with stating several calculus inequalities in Sobolev spaces41, two elementary facts36 related to ordinary

differential equations and the notation involved in this paper. Their proofs can be found in36 and references cited therein.

Lemma 3 (Calculus inequalities). Let s, s1, and s2 be three nonnegative integers, and s0 = [D∕2] + 1.

1. If s3 = min{s1, s2, s1 + s2 − s0} ≥ 0, then Hs1Hs2 ⊂ Hs3 . Here the inclusion symbol ⊂ implies the continuity of the
embedding.

2. Suppose s > s0 + 1, A ∈ Hs, and Q ∈ Hs−1, Then for all multi-indices � with � ≤ s, [A, )�]Q ≡ A)�Q − )�(AQ) ∈ L2

and
‖A)�Q − )�(AQ)‖ ≤ Cs‖A‖s‖Q‖|�|−1;

3. Suppose s > s0, A ∈ Cs
b (G) and V ∈ Hs(Rd , G). Then A(V (⋅)) ∈ Hs and

‖A(V (⋅))‖s ≤ Cs|A|s(1 + ‖V ‖ss).

Here and below Cs denotes a generic constant depending only on s, n and D, and |A|s stand for supu∈G0,|�|≤s |)
�
uA(u)|.
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Lemma 4. 36 Suppose A(x, �) ∈ C([0,∞),Hs) with s > 3
2
, f (x, �) ∈ C([0,∞), L2), ∥ f (�) ∥ decays exponentially to zero as

� goes to infinity, and E(x), S(x) ∈ L∞ are uniformly positive definite symmetric matrices such that for all sufficiently large �
and fo all x,

E(x)A(x, �) + AT (x, �)E(x) ≤ −S(x).
If V (x, �) ∈ C1([0,∞), L2) satisfies

dV
d�

= A(x, �)V + f (x, �),

then ∥ V ∥ decays exponentially to zero as � goes to infinity. Moreover, if V (x, �), f (x, �) ∈ C([0,∞),Hs) and ∥ f (�) ∥s
decays exponentially to zero as � goes to infinity, then ∥ V ∥s decays exponentially to zero as � goes to infinity.
Lemma 5. 36 Suppose  (t) is a positive C1–function of t ∈ [0, T )with T ≤∞,m > 1 and b1(t), b2(t) are integrable on [0, T ). If

 ′(t) ≤ b1(t) m(t) + b2(t) (t),

then there exists � > 0, depending only on m, C1b and C2b, such that

sup
t∈[0,T )

 (t) ≤ eC1b ,

whenever  (0) ∈ (0, �]. Here

C1b = sup
t∈[0,T )

t

∫
0

b1(s)ds, C2b =

T

∫
0

max{b2(t), 0}dt.

Notation 1. The superscript ′T ′ denotes the transpose of a vector or matrix. |U | denotes some norm of a vector or matrix.
L2 = L2(Ω) is the space of square integrable (vector- ormatrix-valued) functions onΩ. For a non-negative integer s,Hs = Hs(Ω)
is defined as the space of functions whose distribution derivatives of order ≤ s are all in L2. We use ∥ U ∥s to denote the
standard norm of U ∈ Hs, and ∥ U ∥=∥ U ∥0. When A is a function of another variable t as well as x, we write ∥ A(⋅, t) ∥s to
recall that the norm is taken with respect to s while t is viewed as a parameter. In addition, we denote by C([0, T ], X) the space
of continuous functions on [0, T ] with values in a Banach space X.

4.1 Formal asymptotic expansions
We construct such an approximate solution for the equation (38) by an asymptotic expansion with initial layer corrections of the
form

Um
" =

m
∑

k=0
"k
(

Uk(x, t) + Ik(x, �)
)

, m ∈ N, (41)

where � = t∕"2 is a fast time. Here
∑m
k=0 "

kUk(x, t) is the outer expansion and
∑m
k=0 "

kIk(x, �) is the initial-layer correction. As
a correction, Ik(x, �) will be significant only near t = 0. Thus the Ik(x, �) are required to decay to zero as � goes to infinity, since
the latter happens as " tends to zero whenever t ≥ � > 0 with � arbitrary but fixed. This natural requirement is similar to the
traditional matching principle in42. Once the outer expansion and the initial-layer correction are found, the formal asymptotic
approximation is defined as the above truncation (41). We assume there exists an approximate solution Um

" to (38)–(39) defined
on a time interval [0, Tm], with Tm > 0 independent of ".
The properties of the approximate solution strongly depend on its leading profile (u0, w0), which is a formal limit ofUm

" . From
the eqautions (41) and (38), we can obtain

"−2 ∶q(u0, w0; 0) = 0,

"−1 ∶
(

A11(u0, w0; 0) A12(u0, w0; 0)
A21(u0, w0; 0) A22(u0, w0; 0)

)

)x

(

u0
w0

)

=
(

0
qw(u0, w0; 0)w1

)

,

"0 ∶)tu0 + A11(u0, w0; 0))xu1 + A12(u0, w0; 0))xw1

+
(

A11u (u0, w0; 0)u1 + A11w (u0, w0; 0)w1 + A11" (u0, w0; 0)
)

)xu0 = 0.

According to the Lemma 2, we have
w0 = 0, w1 = q−1w (u0, 0; 0)A

21(u0, 0; 0))xu0,
)tu0 + A12(u0, 0; 0))xw1 + A11w (u0, 0; 0)w1)xu0 + A11" (u0, 0; 0))xu0 = 0.
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Here we use the properties that A11(Ueq; 0) = 0 and )uA11(Ueq; 0) = 0 for all Ueq ∈ Geq . Applying the relation of w1 to the
equation of u0, we obtain

)tu0 + A12(U0; 0))x

(

q−1w (U0; 0)A
21(U0; 0))xu0

)

+
(

A11w (U0; 0)q
−1
w (U0; 0)A

21(U0; 0))xu0 + A11" (U0; 0)
)

)xu0 = 0.
(42)

The equation (42) can be rewritten as
)tu0 + A12(U0; 0)q−1w (U0; 0)A

21(U0; 0))2xxu0

+ A12(U0; 0))u

(

q−1w (U0; 0)A
21(U0; 0)

)

)xu0

+
(

A11w (U0; 0)q
−1
w (U0; 0)A

21(U0; 0))xu0 + A11" (U0; 0)
)

)xu0 = 0.

Since A21(U0; 0) is not full-rank matrix according to Appendix 6, we know that the equation of u0 (42) is not strictly parabolic.
Its proof is quite similar to those proved in17,18.
Here we derive the specific form of the equation which u0 satisfies. Expanding the variables into a power series of " which

involved in the equation (32) yields
� = �0 + "�1 +⋯ , v = v0 + "v1 +⋯ ,
E = E0 + "E1 +⋯ , � = �0 + "�1 +⋯ ,
p = p0 + "p1 +⋯ , f0 = f 00 + "f

1
0 +⋯ ,

� = �0 + "�1 +⋯ , f2 = f 02 + "f
1
2 +⋯ ,

(43)

where � = �(�, v, E), p = p(�, �). According to the definition of equilibrium state in (21), we know that f 00 =
1
2
b(�0), �0 = 0,

f 02 = 0.
Using the equation (32), we arrive at

)t�
0 + )x(�0v0) = 0,

)t(�0v0) + )x

(

�0(v0)2 + p0 + �2,2(0)f 02 + �2,0(0)f
0
0

)

= 0,

)t

(

�0E0 + �0,0(0)f 00

)

+ )x

(

�0E0v0 + p0v0 + �′1,0(0)�
1f 00 + �1,0(0)f

1
0

)

= 0.

(44)

Here �2,0(0) =
2
3
, �0,0(0) = 2, �′1,0(0) = − 8

3
, �1,0(0) = 0 due to the formulas (20). To get a closed system, we also need the

expression of �1.
In order to obtain the expression of �1, we analyze equation of E1 in (33):

)t(�1,0f0) +
1
"
)x(�2,2f2 + �2,0f0) = −�

(

1
"2
�a(�) + �s(�)

)

�1,0(�)f0.

Putting the expansion (43) into above equation, the identification of O("−1) yields

)x(�2,0(0)f 00 ) = − �
0�a(�0)

(

�′1,0(0)�
1f 00

)

.

Here we used f 02 = 0 and �1,0(0) = 0. Combining �2,0(0) =
2
3
and f 00 =

1
2
b(�0), we see that

�′1,0(0)�
1f 00 = −

1
3�0�a(�0)

)x(b(�0)).

Omit the superscript in above equation, the non-relativistic limit equation can be obtained as
)t� + )x(�v) = 0,

)t(�v) + )x

(

�v2 + p + 1
3
b(�)

)

= 0,

)t
(

�E + b(�)
)

+ )x
(

�Ev + pv
)

= )x

(

1
3��a(�)

)xb(�)
)

.
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Buet et al2,3,43 also obtain the zero-order approximation of the radiation hydrodynamics system and the system is also hyperbolic-
parabolic form which is similar to above equation. However, there is no rigorous proof of the singular limit.
Below we derive the equations satisfied by the other coefficients in the asymptotic solution (41). To do this, we consider the

residual
R(Um

" ) = )tU
m
" +

1
"
A(Um

" ; "))xU
m
" −

1
"
Q(Um

" ; "). (45)
Using Tayler expansion, we have

A(Um
" ; ") = A(U

m
" ; 0) +

+∞
∑

l=1
"l)l"A(U

m
" ; 0),

Q(Um
" ; ") = Q(U

m
" ; 0) +

+∞
∑

l=1
"l)l"Q(U

m
" ; 0).

Remark that forW =
∑+∞
k=0 "

kWk and a sufficiently smooth functionH , we have formally17

H(W ) = H(
+∞
∑

k=0
"kWk) = H(W0) +

+∞
∑

k=1
"k[)WH(W0)Wk + C(H, k,W )],

where coefficients C(H, k,W ) are completely determined by the given function H and the first k components W =
(W0,W1,W2,⋯ ,Wk−1). Moreover, C(H, 1,W ) = 0 and C(H, k,W ) is linear with respect toWk−1 for k ≥ 3.

4.1.1 Outer Expansions
As a formal solution, the outer expansion

∑∞
k=0 "

kUk(x, t) asymptotically satisfies the system (38). Thus, we have

R(
∞
∑

k=0
"kUk)

= −"−2Q(U0; 0) + "−1
[

A(U0; 0))xU0 − )"Q(U0; 0) −QU (U0; 0)U1

]

+
∞
∑

k=0
"k)tUk +

∞
∑

k=0
"k

k+1
∑

l=0

1
l!
)l"A(U0; 0))xUk+1−l

+
∞
∑

k=0
"k

k
∑

l=0

k−l
∑

j=0

1
l!

[

)U ()l"A(U0; 0))Uk+1−l−j + C()
l
"A(⋅ ; 0), k + 1 − l − j, U )

]

)xUj

−
∞
∑

k=0
"k

k+1
∑

l=0

1
l!
[)U ()l"Q(U0; 0))Uk+2−l + C()

l
"Q(⋅ ; 0); k + 2 − l, U )]

−
∞
∑

k=0
"k 1
(k + 2)!

)k+2" Q(U0; 0)

(46)

vanishes. This happens when each term of the last expansion is zero, i.e.,
"−2 ∶Q(U0; 0) = 0,
"−1 ∶A(U0; 0))xU0 − )"Q(U0; 0) −QU (U0; 0)U1 = 0,

"k ∶)tUk +
k+1
∑

l=0

1
l!
)l"A(U0; 0))xUk+1−l

+
k
∑

l=0

k−l
∑

j=0

1
l!

[

)U ()l"A(U0; 0))Uk+1−l−j + C()
l
"A(⋅ ; 0), k + 1 − l − j, U )

]

)xUj

=
k+1
∑

l=0

1
l!
[)U ()l"Q(U0; 0))Uk+2−l + C()

l
"Q(⋅ ; 0); k + 2 − l, U )]

+ 1
(k + 2)!

)k+2" Q(U0; 0).

(47)
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According to Lemma (2), u0, w0 and w1 satisfy

Q(u0, w0; 0) = 0 ⇒ w0 = 0, )"Q(u0, 0; 0) = 0,
w1 = q−1w (u0, 0; 0)A

21(u0, 0; 0))xu0,
)tu0 + A12(u0, 0; 0))xw1 + A11w (u0, 0; 0)w1)xu0 + A11" (u0, 0; 0))xu0 = 0.

(48)

The above equations can be rewritten with the u–, w–components as

)tuk +
k+1
∑

l=0

1
l!
)l"(A

11(U0; 0))xuk+1−l + A12(U0; 0))xwk+1−l)

+
k
∑

l=0

k−l
∑

j=0

1
l!

[

)u()l"A
11(U0; 0))uk+1−l−j)xuj + )w()l"A

11(U0; 0))wk+1−l−j)xuj

+ )u()l"A
12(U0; 0))uk+1−l−j)xwj + )w()l"A

12(U0; 0))wk+1−l−j)xwj

+ C()l"A
11(⋅ ; 0), k + 1 − l − j, U ))xuj + C()l"A

12(⋅ ; 0), k + 1 − l − j, U ))xwj

]

= 0.

(49)

and

)twk +
k+1
∑

l=0

1
l!
)l"(A

21(U0; 0))xuk+1−l + A22(U0; 0))xwk+1−l)

+
k
∑

l=0

k−l
∑

j=0

1
l!

[

)u()l"A
21(U0; 0))uk+1−l−j)xuj + )w()l"A

21(U0; 0))wk+1−l−j)xuj

+ )u()l"A
22(U0; 0))uk+1−l−j)xwj + )w()l"A

22(U0; 0))wk+1−l−j)xwj

+ C()l"A
21(⋅ ; 0), k + 1 − l − j, U ))xuj + C()l"A

22(⋅ ; 0), k + 1 − l − j, U ))xwj

]

−
k+1
∑

l=0

1
l!
[)u()l"q(U0; 0))uk+2−l + )w()

l
"q(U0; 0))wk+2−l + C()l"q(⋅ ; 0); k + 2 − l, U )]

− 1
(k + 2)!

)k+2" q(U0; 0) = 0.

(50)

Obviously, the equations in (47) need to be rewritten to determine Uk inductively. Equation (48) shows that U0 lies on the
equilibrium manifold Geq . According to equations (48), we have found the equations for u0, w0 and w1. From the Lemma (2),
we know A11(U0; 0) = 0 and w0 = 0. Hence the equations of uk (49) may depend on U0,⋯ , Uk, wk+1 and their first-order
derivatives, but are independent of uk+1. From the equations (50), we can seewk depend onU0,⋯ , Uk+1 andwk+2. The equations
of wk are independent of uk+2 due to the fact: since q(U0; 0) = 0, we know )u()l"q(U0; 0))uk+2−l = 0 when l = 0. Moreover,
)w()l"q(U0; 0))wk+2−l = )wq(U0; 0)wk+2 when l = 0. Therefore, (50) give an expression of wk+2 as a function of U0,⋯ , Uk+1
and of the known quantities and their derivatives.
Up to now, we have found the equations for u0,w0 and w1. Assume inductively that we have equations for ui, wi and wi+1 for

i = 0,⋯ , k. The equations (50) gives an expression of wi+2 of function of uk+1, )xuk+1 and of the known quantities and their
derivatives. With this expression, the equation for uk+1 can be derived from the relation (49).
Assume U0,⋯ , Uk−1 are known. From equation (49), we know that the equations of uk can be rewritten as

)tuk + A12(U0; 0))xwk+1 +⋯ = 0.

What is omitted here and in the following equations is the derivative term of the known quantity and the known quantity
U0,⋯ , Uk−1. (50) allows to express wk+1 as

wk+1 = qw(U0; 0)−1A21(U0; 0) +⋯ .

Hence, the coefficient of the second derivative in the equation of uk is still A12(U0; 0)qw(U0; 0)−1A21(U0; 0), which is the same
as u0, so the equation of uk is not strictly parabolic.
From previous discussions, it remains to find initial data for the coefficients Uk. For this purpose, we turn to consider the

composite expansion.
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4.1.2 Composite Expansions
Since t = "2�, we have formally

∞
∑

k=0
"kUk(x, t) =

∞
∑

k=0
"kUk(x, "2�) =

∞
∑

k=0
"kPk(x, �),

where

Pk(x, �) =
[k∕2]
∑

ℎ=0

�ℎ

ℎ!
)ℎUk−2ℎ
)tℎ

(x, 0)

is a polynomial of degree [k∕2] in �. Particularly, P0(x, �) = U0(x, 0).
The composite expansion Um

" in (41) becomes
m
∑

k=0
"k(Uk(x, t) + Ik(x, �)) =

m
∑

k=0
"k(Pk(x, �) + Ik(x, �)), (51)

which is just the traditional inner expansion42. Now write (38) in variables (x, �) as follows
1
"2
)�U + 1

"
A(U ; "))xU = 1

"2
Q(U ; ").

The corrected formal solution should asymptotically satisfy the equations (38). Namely, the formal asymptotic expansion

R(
∞
∑

k=0
"k(Pk(x, �) + Ik(x, �)))

= −"−2Q(P0 + I0; 0) + "−1
[

A(P0 + I0; 0))x(P0 + I0) − )"Q(P0 + I0; 0)

−QU (P0 + I0; 0)(P1 + I1)
]

+
∞
∑

k=0
"k)t(Pk+2 + Ik+2) −

∞
∑

k=0
"k 1
(k + 2)!

)k+2" Q(P0 + I0; 0)

+
∞
∑

k=0
"k

k+1
∑

l=0

1
l!
)l"A(P0 + I0; 0))x(Pk+1−l + Ik+1−l)

+
∞
∑

k=0
"k

k
∑

l=0

k−l
∑

j=0

1
l!

[

)U ()l"A(P0 + I0; 0))(Pk+1−l−j + Ik+1−l−j)

+ C()l"A(⋅ ; 0), k + 1 − l − j, I + P)
]

)x(Pj + Ij)

−
∞
∑

k=0
"k

k+1
∑

l=0

1
l!
[)U ()l"Q(P0 + I0; 0))(Pk+2−l + Ik+2−l)

+ C()l"Q(⋅ ; 0); k + 2 − l, I + P)]

(52)

vanishes. This happens when each term of the last expansion is zero, i.e.,
)�(P0 + I0) =Q(P0 + I0; 0),
)�(P1 + I1) = − A(P0 + I0; 0))x(P0 + I0) + )UQ(P0 + I0; 0)(P1 + I1)

+ )"Q(P0 + I0; 0)(P0 + I0),
)�(Pk + Ik) =)UQ(P0 + I0; 0)(Pk + Ik) + F(k, I + P), k ≥ 2,

(53)
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where
F(k, I + P)

= 1
k!
)k"Q(P0 + I0; 0) −

k−1
∑

l=0

1
l!
)l"A(P0 + I0; 0))x(Pk−1−l + Ik−1−l)

−
k−2
∑

l=0

k−2−l
∑

j=0

1
l!

[

)U ()l"A(P0 + I0; 0))(Pk−1−l−j + Ik−1−l−j)

+ C()l"A(⋅ ; 0), k − 1 − l − j, I + P)
]

)x(Pj + Ij)

+
k−1
∑

l=1

1
l!
[)U ()l"Q(P0 + I0; 0))(Pk−l + Ik−l) + C()

l
"Q(⋅ ; 0); k − l, I + P)].

(54)

Here F(k, I + P) depend only on the first k terms of the inner expansion, which is U0, I0,⋯,Uk−1 and Ik−1.
According to the definition of Pk,

∑∞
k=0 "

kPk(x, �) is also a solution of (38). Hence, we obtain as above

)�P0 = Q(P0; 0),
)�P1 = −A(P0; 0))xP0 + )UQ(P0; 0)P1 + )"Q(P0; 0)P0,
)�Pk = )UQ(P0; 0)Pk + F(k, I).

(55)

Note that
P0(x, �) = U0(x; 0), Q(P0; 0) = 0.

We find from (53) and (55) that
)�I0 = Q(P0 + I0; 0),
)�Ik = )UQ(P0 + I0; 0)Ik + [)UQ(P0 + I0; 0) − )UQ(P0; 0)]Pk + Gk,

(56)

where
Gk = F(k,P + I) − F(k,P)

with
F(1,P + I) = )"Q(P0 + I0; 0)(P0 + I0) − A(P0 + I0; 0))x(P0 + I0).

According to the expression of F(k, I + P) (54), Gk depend only on U0, I0,⋯, Uk−1, Ik−1.

4.1.3 Initial Data for the Outer Expansion
Now we determine the initial conditions for Uk. Assuming Ū (x; ") has a formal asymptotic expansion as follows

Ū (x; ") =
∞
∑

k=0
"kŪk(x), Ūk(x) = (ūk(x), w̄k(x))T .

If the composite expansion (41) is a solution of (38) and (39), we should have

Uk(x, 0) + I(x, 0) = Ūk(x),

or equivalently
uk(x, 0) + IIk(x, 0) = ūk(x),

wk(x, 0) + IIIk (x, 0) = w̄k(x).
(57)

FromQI = 0 and the first equation of (56), we have )�II0 = 0. Meanwhile, since I0 satisfies I0(x,+∞) = 0, we know II0(x, �) = 0,
which means that there is no zero-th order initial layer for u. Together with w0 = 0, we obtain

u0(x, 0) = ū0(x), III0 (x, 0) = w̄0(x).

According to (56), III0 satisfies
)�III0 = q(ū0(x), III0 ; 0)

III0 (x, 0) = w̄0(x).
(58)

Here and below the superscript ’I’(or ’II’) stands for the first 3 (or last n+1) components of a vector inn+4.
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Lemma 6. Let w̄0 be sufficiently small. Then there exists a unique global smooth solution I0 satisfying

∥ I0 ∥s+m→ 0, exponentially as � → +∞. (59)

Proof. By Lemma 2, the system (38) satisfies the structural stability condition and P is a scalar matrix. Then qw satisfies

A220 (u, 0; 0)qw(u, 0; 0) + qw(u, 0; 0)
TA220 (u, 0; 0) ≤ −I.

Therefore, for sufficiently small data w̄0, there is a unique global solution III0 (x, �) (see
44). Thanks to Lemma 2, 0 ∈ n+1 is a

fixed point for (59). Moreover, qw(u, 0; 0) is stable due to above equation. Hence 0 ∈ n+1 is locally asymptotically stable for
(59). By induction, for all � with � ≤ s + m, )�xI

II
0 (x, �) satisfies a linear ordinary differential equation of the form

)tY = )wq(ū0(x), III0 ; 0)Y + g�(x, �).

Meanwhile, g�(x, �) decays to zero as � → +∞. Thanks to Lemma 4, we see the exponential decay of ∥ I0 ∥s+m→ 0.

Assume that, for k ≥ 1 and for any i ≤ k − 1, Ii exists globally in time and ∥ Ii(⋅, �) ∥s+m−i decays exponentially fast to zero
as � → +∞. Then so does ∥ Gk ∥s+m−k since Gk = F(k,P + I)−F(k,P) is a function of Ii,Pi(0 ≤ i ≤ k−1) and their first-order
derivatives with respect to x. Because the u–component of Q is 0 for k ≥ 1, the first 3 equations in (56) are

)�IIk = G
I
k, (60)

Hence,

IIk(x, �) = I
I
k(x, 0) +

�

∫
0

GIk(x, �
′)d�′,

which admits a limit 0 as � goes to infinity. Therefore

IIk(x, �) = −

+∞

∫
�

GI (k, x, �′)d�′.

and

IIk(x, �) = −

+∞

∫
�

GI (k, x, �′)d�′, exponentially as � → +∞.

In particular,

IIk(x, 0) = −

+∞

∫
0

GIk(x, �
′)d�′, (61)

Together with (57) it determines the initial value of uk:

uk(x, 0) = ū(x) +

+∞

∫
�

GI (k, x, �′)d�′. (62)

Furthermore, we can rewrite the remaining equation in (56) as
)�IIIk =)wq(P0 + I0; 0)IIIk + )uq(P0 + I0; 0)IIk + [)uq(P0 + I0; 0) − )uq(P0; 0)]P

I
k

+ [)wq(P0 + I0; 0) − )wq(P0; 0)]PIIk + GII (k)
≡)wq(P0 + I0; 0)IIIk + G′.

(63)

We know that ∥ G′ ∥s+m−k decays exponentially fast to zero as � → +∞ from the definition of G and Lemma 6. Thanks to
Lemma 4, we see the exponential decay of ∥ IIIk (x, �) ∥s+m−k→ 0. Hence, the inductive process is complete.
Now we describe a procedure to determine the coefficients of the expansion (41) using equations (46) and (53). Based on

previous analysis, I0, U0 and w1 are known. Then we can solve (63) with the initial value providing in (57) to obtained III1 .
The value of II1 can be determined by the equation (60) and initial value (61). Hence, we can determine U0, U1, I0, I1 since the
equation and initial value of u1 are known. Assume inductively that Ui, Ii, wi+1 with i ≤ k have been obtained. Then we can
solve (63) with the initial value providing in (57) to obtained IIIk+1. And the equation (60) and the initial value (61) give the value
of IIk+1. Thus, Ik+1 are completely determined. Moreover, (50) gives an expression of wi+2 as a function of uk+1, )xuk+1 and of
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the known quantities and their derivatives. With this expression, the equation for uk+1 can be derived from (49) together the
initial value (62).
Therefore, we obtain Uk+1, Ik+1 and wk+2. Hence, the inductive process is complete. In conclusion, we have determined all

coefficients in expansions (41) and ∥ Ik ∥s+m−k decays exponentially to zero as � → +∞.

4.1.4 Residual estimation
The next lemma is concerning the residual of the formal approximation R(Um

" ).

Theorem 2. Let R(Um
" ) be defined by (45). Then

R(Um
" ) = "

m−1QU (U0; 0)Um+1 + "m−1Fm,

where QU (U0; 0)Um+1 is completely determined by the first m terms of the outer expansion. And Fm satisfies

∥ Fm ∥s≤ C" + Ce−�� , (64)

with � ≥ 0 and C constants independent of " .

Proof. The proof of this theorem mainly refers to the literature36 and17. From the relation in (46), we have

R(
m
∑

k=0
"kUk) = "m−1QU (U0; 0)Um+1 + O("m),

where
QU (U0; 0)Um+1

=)tUm−1 +
m−1
∑

l=0

1
l!
)l"A(U0; 0))xUm−l

+
m
∑

l=0

m−1−l
∑

j=0

1
l!

[

)U ()l"A(U0; 0))Um−l−j + C()
l
"A(⋅ ; 0), m − l − j, U )

]

)xUj

−
m
∑

l=1

1
l!
[)U ()l"Q(U0; 0))Um+1−l + C()

l
"Q(⋅ ; 0);m + 1 − l, U )]

− 1
(m + 1)!

)m+1" Q(U0; 0).

Then QU (U0; 0)Um+1 depend only on U0,⋯ , Um. Define Fm as

"m−1Fm = R(Um
" ) − "

m−1QU (U0; 0)Um+1.

With this definition, we only need to prove (64).
To this end, consider the Taylor expansion with respect to " at " = 0:

m
∑

k=0
"kUk(x, t) =

m
∑

k=0
"kUk(x, "2�) =

m
∑

k=0
"kPk(x, �) + "m+1P̃(x, t, �, "),

where P̃(x, t, �, ") = O(1)�1+[m∕2]. Thus, we can write

Um
" =

m
∑

k=0
"k(Uk(x, t) + I(x, �))

=
m
∑

k=0
"k(Pk(x, �) + Ik(x, �)) + "m+1P̃(x, t, �, "),

In the spirit of the relation (52) for the inner expansion, we deduce from the definition of R(Um
" ) that

R(Um
" ) = "

m−1[P̃� + C(", P̃; I0 + P0,⋯ , Im + Pm)]

R(
m
∑

k=0
Uk) = "m−1[P̃� + C(", P̃; P0,⋯ ,Pm)].

Here C(", P̃; P0,⋯ ,Pm) depends smoothly on the ", P̃; P0,⋯ ,Pm and their first-order derivatives with respect to.
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Furthermore, it follows from the definition of Fm that

Fm = "−(m−1)R(Um
" ) − "

−(m−1)R(
m
∑

k=0
Uk) + O(")

= CU (", P̃; ⋅)I + O("),

where CU (", P̃; ⋅) denotes the Fréchet derivative of the operator C(", P̃; ⋅). Finally, the estimate in (64) follows from the decay
property of the I when � tends to infinity.

4.2 Justification of formal expansions
Having constructed formal asymptotic approximationsUm

" for the initial-value problem (38) and (39), we prove here the validity
of the approximations under Lemma (2) and under some regularity assumptions on the given data. For the sake of exactness,
we refer to next remark and make the following assumption.

Assumption 1. Let s > 3
2
.

1. There exists a convex open set G0 ⊂⊂ G satisfying G0 ⊂⊂ G such that Ū (x; ") ∈ G0 for all " > 0 and all x ∈ Ω, and
Ū (⋅; ") ∈ Hs is periodic on Ω;

2. A(U ; "), Q(U ; "), P (U ; "), A0(U ; ") are smooth function of U ∈ G, " ∈ [0, "0];

3. QU (U0; 0)Um+1 ∈ C([0, Tm],Hs);

4. Um
" takes value in Ḡ0 and satisfies Um

" ∈ C([0, Tm],H
s+1)

⋂

C1([0, Tm],Hs). For sufficiently small " > 0,

∥ Um
" (0, ⋅) − Ū (⋅, ") ∥s≤ c"m, (65)

and
sup
0≤t≤Tm

∥ Um
" − U0 ∥s≤ C" + C"2B"(t), ∥ )tUm

" ∥s≤ c + cB"(t), (66)

where B"(t) = "−2e
− �t
"2 and � > 0 is a constant independent of ".

Remark 1. The first assumption is necessary to apply the existence theorem, see40. The second assumption is obviously. The
next can be verified by using the existence theory for parabolic system in45. (65) is a natural condition on the initial data. It
stands for initial errors. In the above subsection, we have constructed Uk and Ik. Now we show that, for any fixed m ∈  , the
approximate solution Um

" defined by (41) satisfies (66). Indeed, since II0 = 0 and III0 (⋅, �) decays exponentially fast to zero as
� → +∞ with � = t∕"2, thus ‖

‖

I0‖‖s ≤ Ce−
�t
"2 with � > 0 a constant independent of ". Meanwhile

)tIII0 (⋅, �) = "
−2)�III0 (⋅, �) = "

−2q(ū0(x), III0 ; 0).

Therefore
‖

‖

Um
" − U0‖‖s =

‖

‖

‖

‖

‖

m
∑

k=1
"kUk(⋅, t) +

m
∑

k=0
"kIk(⋅, t∕"2)

‖

‖

‖

‖

‖s

≤ C" + C"2B"(t),

‖

‖

)tU
m
"
‖

‖s =
‖

‖

‖

‖

‖

)tI0(⋅, �) +
m
∑

k=0
"kUk(⋅, t) +

m
∑

k=1
"kIk(⋅, t∕"2)

‖

‖

‖

‖

‖s

≤ c + cB"(t).

Fix " > 0 and recall assumption 1. According to Theorem 2.1 in41, for any convex open set G1 satisfying G0 ⊂⊂ G1 ⊂⊂ G,
there exist T" > 0 such that that initial value problem (38) and (39) for the symmetrizable hyperbolic system has a uniqueHs–
solution U " satisfying U " ∈ C([0, T"],Hs) and U " ∈ Ḡ1. Without loss of generality, we assume that T" is the maximal time
interval where theHs–solution U " take value in Ḡ1. Note that T" may shrink to zero as so does ".
In order to show T" ≥ Tm, we state our main result.

Theorem 3. Under the assumption 1 with m > 2, suppose s > 3
2
is a integer, [0, T"] is the maximal time interval where (38) has

a solution U " ∈ C([0, T"],Hs) with values in a convex set Ḡ1, and [0, Tm] a time interval where the asymptotic approximation
Um
" of the form (41).
Then there exists a constant K , independent of " but dependent on Tm, such that

∥ U "(t) − Um
" (t) ∥s≤ K"m,
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for sufficiently small " and t ∈ [0,min{Tm, T"}).

Before proving this theorem, we remark that m > 2 is required by the following proof (see (78)) below). However, since

Um
" (x, t) = U

m0
" (x, t) +

m
∑

k=m0+1
"k
(

Uk(x, t) + I(x, t∕"2)
)

,

we have

∥ U "(t) − Um0
" (t) ∥s≤∥ U "(t) − Um

" (t) ∥s +
m
∑

k=m0+1
"k ∥ Uk(x, t) + I(x, t∕"2) ∥s .

and thus
∥ U "(t) − Um0

" (t) ∥s= O("m0+1)
for any m0 ≤ m provided that the coefficients of "k in the sum are bounded.
In addition, on the basis of Theorem 3, we use exactly the same argument in36 to obtain

Theorem 4. The hypotheses of Theorem 3 imply T" ≥ Tm.

Proof. If T" ≤ Tm, then Theorem 3 gives
∥ U "(T") − Um

" (T") ∥s≤ K"m.
Thus, it follows from the embedding inequality that U "(T") ∈ G0 if if " is small enough. Now we could apply Theorem 2.1 in41,
beginning at the time T", to continue this solution beyond T". This is a contradiction. Therefore T" ≥ Tm.

Now we prove the Theorem 3.
The Proof of Theorem 3 ∶ Let T∗ = min{T", Tm}, then both the exact solution U " and the approximate solution Um

" are
defined on time interval [0, T∗), satisfy equation (38) and

)tU
m
" +

1
"
A(Um

" ; "))xU
m
" =

1
"2
Q(Um

" ; ") + R
m
" .

On [0, T∗), we define
V = U " − Um

" ,
then

)tV +
1
"
A(U "; "))xV =1

"
(

A(Um
" ; ") − A(U

"; ")
)

)xU
m
" +

1
"2
(

Q(U "; ") −Q(Um
" ; ")

)

− Rm" . (67)

Applying )�x to the last equation for multi-index � satisfying |�| ≤ s, and setting V� = )�V , we get

)tV� +
1
"
A(U "; "))xV�

=1
"

{

(

A(Um
" ; ") − A(U

"; ")
)

)xU
m
"

}

�
+ 1
"2

{

(

Q(U "; ") −Q(Um
" ; ")

)

}

�

+ 1
"

{

A(U "; "))xV� − [A(U "; "))xV ]�

}

− (Rm" )� .

We consider the energy norm e(V�(x, t)) = V T
� A0(U

"; ")V� . Multiplying the last equation by 2V T
� A0(U

"; ") and integrating over
x ∈ Ω yields

d
dt ∫

e(V�)dx =
2
" ∫

V T
� A0(U

"; ")
{(

A(Um
" ; ") − A(U

"; ")
)

)xU
m
"

}

�
dx

+ 2
"2 ∫

V T
� A0(U

"; ")
{(

Q(U "; ") −Q(Um
" ; ")

)}

�
dx

+ 2
" ∫

V T
� A0(U

"; ")
(

A(U "; "))xV� − [A(U "; "))xV ]�

)

dx

− 2∫ V T
� A0(U

"; "))�(Rm" )dx

+ ∫ V T
�

(

)t(A0(U "; ")) + 1
"
)x(A0(U "; ")A(U "; "))

)

V�dx

≜I�1 + I
�
2 + I

�
3 + I

�
4 + I

�
5 .

(68)
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Next we estimate each term in the right-hand side of (68). Firstly,

I�1 =
2
" ∫

V T
� A0(U

"; ")
{(

A(Um
" ; ") − A(U

"; ")
)

)xU
m
"

}

�
dx

=2
" ∫

V T
�

(

A0(U "; ") − A0(U0; 0)
){(

A(Um
" ; ") − A(U

"; ")
)

)xU
m
"

}

�
dx

+ 2
" ∫

V T
� A0(U0; 0)

{(

A(Um
" ; ") − A(U

"; ")
)

)xU
m
"

}

�
dx.

Recall that U " and U0 takes values in a compact subset G1. By using Assumption 1, we can obtain

A0(U "; ") − A0(U0; 0)
= A0(U "; ") − A0(U "; 0) + A0(U "; 0) − A0(U0; 0)

= −"

1

∫
0

A0"(U "; �")d� − |U " − U0|

1

∫
0

A0U (U " + �(U0 − U "); 0)d�

≤ C" + C|U " − U0|
≤ C(" + |U " − Um

" | + |Um
" − U0|)

≤ C" + C"2△ +C"2B"(t),

(69)

where△=̇ ∥ Um
" − U

" ∥s ∕"2. Here and below, C is a generic constant which may change from line to line. Since

A(U "; ") − A(Um
" ; ") = −

1

∫
0

AU (Um
" + �(U

" − Um
" ); ")V d�.

Using the calculus inequalities in Sobolev spaces (3), we get

∥
{(

A(Um
" ; ") − A(U

"; ")
)

)xU
m
"

}

�
∥≤ C ∥ V ∥� ,

For the first term of I�1 , we have

∫
2
"
V T
�

(

A0(U "; ") − A0(U0; 0)
){(

A(Um
" ; ") − A(U

"; ")
)

)xU
m
"

}

�
dx

≤ C(1 + "△ +"B"(t)) ∥ V ∥2s .
According to Lemma 2, we know that A0(U0; 0) is a block diagonal matrix, then the second term of I�1 can be rewritten as

2
" ∫

V T
� A0(U0; 0)

{(

A(Um
" ; ") − A(U

"; ")
)

)xU
m
"

}

�
dx

=2
" ∫

V IT
� A110 (U0; 0)

{(

A11(Um
" ; ") − A

11(U "; ")
)

)xu
m
"

}

�
dx

+ 2
" ∫

V IT
� A110 (U0; 0)

{(

A12(Um
" ; ") − A

12(U "; ")
)

)xw
m
"

}

�
dx

+ 2
" ∫

V IIT
� A220 (U0; 0)

{(

A21(Um
" ; ") − A

21(U "; ")
)

)xu
m
"

}

�
dx

+ 2
" ∫

V IIT
� A220 (U0; 0)

{(

A22(Um
" ; ") − A

22(U "; ")
)

)xw
m
"

}

�
dx.

(70)

The last two terms on the right-hand side are bounded by
C
"
∥ V ∥s∥ V II

� ∥≤ �
"2
∥ V II

� ∥2 +C ∥ V ∥2s .

Since w0 = 0, the Assumption 1 yields ∥ wm
" ∥s≤ C(" + "2B"(t)). Therefore

∫ V IT
� A110 (U0; 0)

{(

A12(Um
" ; ") − A

12(U "; ")
)

)xw
m
"

}

�
dx

≤ C(" + "2B"(t)) ∥ V ∥2s .
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For the first term in (70), we have
A11(Um

" ; ") − A
11(U "; ")

=A11(um" , w
m
" ; ") − A

11(u", wm
" ; ") + A

11(u", wm
" ; ") − A

11(u", w"; ")

= −

1

∫
0

)uA
11(um" + �(u

" − um" ), w
m
" ; ")V

Id�

−

1

∫
0

)wA
11(u";wm

" + �(w
" −wm

" ); ")V
IId�.

(71)

The second integral above is easily estimated due to the appearance of ∥ V II ∥. The first one can be treated due to condition
)uA11(U0; 0) = 0 in Lemma 2. Precisely, we write

)uA
11(um" + �(u

" − um" ), w
m
" ; ")

=)uA11(um" + �(u
" − um" ), w

m
" ; ") − )uA

11(u0, wm
" ; ")

+ )uA11(u0, wm
" ; ") − )uA

11(u0, 0; ") + )uA11(u0, 0; ") − )uA11(u0, 0; 0)

=

1

∫
0

)2uuA
11(u(�, �′), wm

" ; ")(u
m
" − u0 + �(u

" − um" ))d�
′

+

1

∫
0

)2uwA
11(u0; �′wm

" ; ")w
m
" d�

′ +

1

∫
0

)2u"A
11(u0, 0; �′")"d�′.

Here u(�, �′) = (1 − �′)u0 + �′um" + �(u
" − um" ). The integral in (71) can be rewritten as

1

∫
0

)uA
11(um" + �(u

" − um" ), w
m
" ; ")V

Id�

=

1

∫
0

1

∫
0

)2uuA
11(u(�, �′), wm

" ; ")((u
m
" − u0 + �(u

" − um" )), V
I )d�d�′

+

1

∫
0

1

∫
0

)2uwA
11(u0, �′wm

" ; ")(V
I , wm

" )d�d�
′ +

1

∫
0

1

∫
0

)2u"A
11(u0, 0; �′")(", V I )d�d�′.

Since ∥ wm
" ∥ and " both can be bounded by C(" + "

2B"(t)), and
‖

‖

um" − u0‖‖s ≤ C" + C"2B"(t), ‖

‖

u" − um" ‖‖s ≤ C"2△,

then

∫ V IT
� A110 (U0; 0)

{(

A11(Um
" ; ") − A

11(U "; ")
)

)xu
m
"

}

�
dx

≤ �
"
∥ V II

� ∥ +C(" + "2△ +"2B"(t)) ∥ V ∥2s .

Therefore
I�1 ≤ �

"2
∥ V II

� ∥2 +C(1 + "△ +"B"(t)) ∥ V ∥2s . (72)

The second item is
I�2 =

2
"2 ∫

V T
� A0(U

"; ")
{(

Q(U "; ") −Q(Um
" ; ")

)}

�
dx.
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We first rewrite Q(U "; ") −Q(Um
" ; ") as

Q(U "; ") −Q(Um
" ; ")

=QU (U0; 0)V + ")"QU (U0; 0)V
+ [Q(U "; 0) −Q(Um

" ; 0) −QU (U0; 0)V ]
+ "[)"Q(U "; 0) − )"Q(Um

" ; 0) − )"Qu(U0; 0)V ]
+ [Q(U "; ") −Q(U "; 0) − ")"Q(U "; 0) −

(

Q(Um
" ; ") −Q(U

m
" ; 0) − ")"Q(U

m
" ; 0)

)

]
which implies that

I�2 = I
�
21 + I

�
22 + I

�
23 + I

�
24 + I

�
25

with the natural correspondence for I�21,⋯, I�25. Now we estimate each of these terms. For I�21 we write

I�21 =
2
"2 ∫

V T
� A0(U

"; "){QU (U0; 0)V }�dx

= 2
"2 ∫

V T
� A0(U0; 0)QU (U0; 0)V�dx

+ 2
"2 ∫

V T
� A0(U0; 0)[)

�(QU (U0; 0)V ) −QU (U0; 0)V�]dx

+ 2
"2 ∫

V T
� [A0(U

"; ") − A0(U0; 0)]{QU (U0; 0)V }�dx.

From the structural stability conditions in Lemma 2, we can see

2∫ V T
� A0(U0; 0)QU (U0; 0)V� = V T

�

(

A0(U0; 0)QU (U0; 0) +QT
U (U0; 0)A0(U0; 0)

)

V�dx

≤ −c0 ∥ V II
� ∥2

with c0 a positive constant. Since QU (U0; 0) = diag(0, qw(U0, 0)), we have

∫ V T
� A0(U0; 0)[)

�(QU (U0; 0)V ) −QU (U0; 0)V�]dx

= ∫ V IIT
� A220 (U0; 0)[)

�(qw(U0; 0)V II ) − qw(U0; 0)V II
� ]dx

≤ C ∥ V II
� ∥∥ )�(qw(U0; 0)V II ) − qw(U0; 0)V II

� ∥
≤ C ∥ V II

� ∥∥ qw(U0; 0) ∥s∥ V II ∥
|�|−1

≤ �
4
∥ V II

� ∥2 +C ∥ V II ∥2
|�|−1 .

Note that the above term vanishes when � = 0. Here we use the calculus inequalities (Lemma (3)). And for the remaining terms,
we will use the calculus inequalities in Sobolev spaces repeatedly. For the third item in I�21, we have

V T
� [A0(U

"; ") − A0(U0; 0)])�(QU (U0; 0)V )
=V IT

� [A120 (U
"; ") − A120 (U0; 0)])

�(qw(U0; 0)V II )
+ V IIT

� [A220 (U
"; ") − A220 (U0; 0)])

�(qw(U0; 0)V II )
Using (69), we have

∫ V T
� [A0(U

"; ") − A0(U0; 0)])�(QU (U0; 0)V )dx

≤ C(" + "2△ +"2B"(t)) ∥ V II
� ∥∥ V ∥s

≤ �
4
∥ V II

� ∥2 +C(" + "2△ +"2B"(t))2 ∥ V ∥2s .

Therefore
I�21 ≤

� − c0
"2

‖

‖

‖

V II
�

‖

‖

‖

2
+ C
"2

‖

‖

‖

V II‖
‖

‖

2

|�|−1
+ C(1 + "△ +"B"(t))2 ‖V ‖

2
s .
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Now, we consider I�22,

I�22 =
2
"2 ∫

V T
� A0(U

"; ")
{

")"QU (U0; 0)V
}

�
dx

=2
" ∫

V IT
�

(

A120 (U
"; ") − A120 (U0; 0)

)

{)"qu(U0; 0)V I}�dx

+ 2
" ∫

V IT
� A120 (U

"; "){)"qw(U0; 0)V II}�dx

+ 2
" ∫

V IIT
� A220 (U

"; ")
{

)"qu(U0; 0)V I + )"qw(U0; 0)V II
}

�
dx.

The first term is bounded by C(1 + "△ +"B"(t)) ‖V ‖
2
s and the remaining terms are dominated by C

"
‖V ‖s ‖‖V

II
�

‖

‖

. Hence

I�22 ≤
�
"2
∥ V II

� ∥2 +C(1 + "△ +"B"(t)) ‖V ‖
2
s

Moreover, I�23 can be rewritten as

I�23 =
2
"2 ∫

V T
� A0(U

"; ")
{

[Q(U "; 0) −Q(Um
" ; 0) −QU (U0; 0)V ]

}

�
dx

= 2
"2 ∫

V T
� (A0(U

"; ") − A0(U0; 0))
{

[Q(U "; 0) −Q(Um
" ; 0) −QU (U0; 0)V ]

}

�
dx

+ 2
"2 ∫

V IIT
� A220 (U0; 0)

{

[q(U "; 0) − q(Um
" ; 0) − qU (U0; 0)V ]

}

�
dx.

According to Lemma 2, we know
Q(U "; 0) −Q(Um

" ; 0) −QU (U0; 0)V

=
(

0
q(U "; 0) − q(Um

" ; 0) − qU (U
m
" ; 0)V

)

+
(

0
qU (Um

" ; 0)V − qU (U0; 0)V

)

,

By the Taylor formula, it is clear that

∥ )�(q(U "; 0) − q(Um
" ; 0) − qU (U

m
" ; 0)V ) ∥≤ C ∥ V ∥2s= C"

2△ ∥ V ∥s,

∥ )�(qU (Um
" ; 0)V − qU (U0; 0)V ) ∥≤ C(" + "2B"(t)) ∥ V ∥s .

Using (69), we obtain
2
"2 ∫

V T
� (A0(U

"; ") − A0(U0; 0))
{

[Q(U "; 0) −Q(Um
" ; 0) −QU (U0; 0)V ]

}

�
dx

≤ C
"2
|A0(U "; ") − A0(U0; 0)| ‖V ‖s ∥

{

[Q(U "; 0) −Q(Um
" ; 0) −QU (U0; 0)V ]

}

�
∥

≤ C(1 + "△ +"B"(t))2 ∥ V ∥2s ,
and

2
"2 ∫

V IIT
� A220 (U0; 0)

{

[q(U "; 0) − q(Um
" ; 0) − qU (U0; 0)V ]

}

�
dx

≤ C
"2
(" + "2△ +"2B"(t)) ∥ V II

� ∥∥ V ∥s

≤ �
"2
∥ V II

� ∥ +C(1 + "△ +"B"(t))2 ∥ V ∥2s .

Therefore
I�23 ≤

�
"2
∥ V II

� ∥ +C(1 + "△ +B"(t))2 ∥ V ∥2s .

Similarly, I�24 can be bounded by

I�24 =
2
"2 ∫

V T
� A0(U

"; ")
{

"
[

)"Q(U "; 0) − )"Q(Um
" ; 0) − )"Qu(U0; 0)V

]}

�
dx

≤ �
"2
∥ V II

� ∥ +C(1 + "△ +"B"(t))2 ∥ V ∥2s .
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For the last term in I�2 , since

Q(U "; ") −Q(U "; 0) − ")"Q(U "; 0) − (Q(Um
" ; ") −Q(U

m
" ; 0) − ")"Q(U

m
" ; 0))

= "2
1

∫
0

1

∫
0

)2""QU (�U " + (1 − �)Um
" ; �")V d�d�.

We have
I�25 ≤

2
"2
C"2 ∥ V ∥2s≤ C ∥ V ∥2s .

Note that (1 + "△ +"B"(t))2 ≤ C(1 +△2 + B"(t)). Therefore

I�2 ≤
4� − c0
"2

∥ V II
� ∥2 +C

"2
∥ V II ∥2

|�|−1 +C(1 +△
2 + B"(t)) ∥ V ∥2s . (73)

Next we estimate I�3 . To this end, we observe

I�3 =
2
" ∫

V T
� A0(U

"; ")
(

A(U "; "))xV� − [A(U "; "))xV ]�

)

dx

=2
" ∫

V T
� (A0(U

"; ") − A0(U0; 0))
(

A(U0; 0))xV� − [A(U0; 0))xV ]�

)

dx

+ 2
" ∫

V T
� A0(U

"; ")
(

(A(U "; ") − A(U0; 0)))xV� − [(A(U "; ") − A(U0; 0)))xV ]�

)

dx

+ 2
" ∫

V T
� A0(U0; 0)

(

A(U0; 0))xV� − [A(U0; 0))xV ]�

)

dx.

Using the calculus inequalities and (69), the first two term in above equation can be bounded by

C(1 + "△ +"B"(t)) ∥ V ∥2s ,

According to Lemma 2 we know that A11(U0; 0) ≡ 0. Thus, the last term of I�3 can be rewritten as

2
" ∫

V T
� A0(U0; 0)(A(U0; 0))xV� − [A(U0; 0))xV ]�)dx

=2
" ∫

V IT
� A110 (U0; 0)(A

12(U0; 0))xV II
� − [A12(U0; 0))xV II ]�)dx

+ 2
" ∫

V IIT
� A220 (U0; 0)(A

21(U0; 0))xV I
� − [A

21(U0; 0))xV I ]�)dx

+ 2
" ∫

V IIT
� A220 (U0; 0)(A

22(U0; 0))xV II
� − [A22(U0; 0))xV II ]�)dx,

in which each term on the right-hand side contains V II . By the calculus inequalities, it is easy to see that
2
" ∫

V T
� A0(U0; 0)(A(U0; 0))xV� − [A(U0; 0))xV ]�)dx

≤ C
"
∥ V II ∥

|�|∥ V ∥s

≤ �
"2
∥ V II ∥2� +C ∥ V ∥2s .

This implies
I�3 ≤ �

"2
∥ V II ∥2� +C(1 + "△ +"B"(t)) ∥ V ∥2s . (74)

For I�4 , we have

I�4 = −2∫ V T
� A0(U

"; "))�(Rm" )dx

= −2∫ V T
� (A0(U

"; ") − A0(U0; 0)))�(Rm" )dx − 2∫ V T
� A0(U0; 0))�(R

m
" )dx.
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Using the ∥ Fm ∥s≤ C" + Ce−�� = C(" + "2B"(t)) in Theorem 2 and Assumption 1, we obtain

− 2∫ V T
� (A0(U

"; ") − A0(U0; 0)))�(Rm" )dx

≤ C ∥ U " − U0 ∥s∥ Rm" ∥s ‖V ‖s
≤ "m(1 + "△ +"B"(t))(∥ QU (U0; 0)Um+1 ∥s + ∥ Fm ∥s) ‖V ‖s
≤ C(1 + "△ +"B"(t))2 ‖V ‖

2
s + C"

2m.
The remaining term can be bounded by

− 2∫ V T
� A0(U0; 0))�(R

m
" )dx

= −∫ "m−1V IIT
� A220 (U0; 0))�(qw(U0; 0)wm+1)dx + ∫ "m−1V T

� A0(U0; 0))�Fmdx

≤ �
"2
∥ V II

� ∥2 +C(1 + "B"(t))2 ∥ V� ∥2 +C"2m.

Therefore
I�4 ≤ �

"2
∥ V II

� ∥ +C(1 +△2 + B"(t)) ‖V ‖
2
s + C"

2m. (75)

The last term is
I�5 = ∫ V T

�

(

)t(A0(U "; ")) + 1
"
)x(A0(U "; ")A(U "; "))

)

V�dx.

And we have
V T
� )tA0(U

"; "))V� ≤ C|)tV + )tUm
" | ∥ V ∥2s .

The equation of V implies

)tV = − 1
"
A(U "; "))xV +

1
"

(

A(Um
" ; ") − A(U

"; ")
)

)xU
m
"

+ 1
"2

(

Q(U "; ") −Q(Um
" ; ")

)

− Rm" .

Since ∥ V ∥s= "2△, we have
| − 1

"
A(U "; "))xV | ≤ C 1

"
∥ V ∥s= "△,

|

1
"

(

A(Um
" ; ") − A(U

"; ")
)

)xU
m
" | ≤ C 1

"
∥ V ∥s= "△,

|Rm" | ≤ C"m−1 ≤ C.
Moreover,

Q(U "; ") −Q(Um
" ; ")

=Q(U "; ") −Q(Um
" ; ") − )UQ(U

m
" ; ")V

+ ()UQ(Um
" ; ") − )UQ(U0; "))V

+ ()UQ(U0; ") − )UQ(U0; 0))V + )UQ(U0; 0)V .
From the Lemma 2, we obtain that

)UQ(U0; 0) =
(

0 0
0 qw(U0; 0)

)

, )UQ(U0; 0)V =
(

0
qw(U0; 0)V II

)

.

Then
|Q(U "; ") −Q(Um

" ; ")|
≤ C(∥ V ∥2s + ‖

‖

Um
" − U0‖‖∞ ∥ V ∥s +" ∥ V ∥s + ∥ V II ∥s)

≤ C(‖
‖

Um
" − U0‖‖

2
s + ∥ V ∥2s + ∥ V

II ∥s +"2)
≤ C"2(1 + "B"(t))2 + "4△2 +C ∥ V II ∥s .

Thus
|)tV ∥≤ C(1 +△2 + B"(t)) +

C
"2

‖

‖

‖

V II‖
‖

‖s
.
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Noting ∥ )tUm
" ∥s≤ C + CB"(t) from Assumption 1, we obtain

∫ V T
� )tA0(U

"; "))V�dx

≤ C(1 +△2 + B"(t)) ‖V ‖
2
s +

C
"2
∥ V II ∥s∥ V ∥2s .

Setting Â(U "; ") = A0(U "; ")A(U "; "), the second term of I�5 can be treated as

1
" ∫

V T
� )x(A0(U

"; ")A(U "; "))V�dx

=1
" ∫

V IT
� )xÂ

11(U "; ")V I
� dx +

2
" ∫

V IT
� )xÂ

12(U "; ")V II
� dx

+ 1
" ∫

V IIT
� )xÂ

22(U "; ")V II
� dx.

Obviously, the last two terms are bounded by
C
"
∥ V ∥s∥ V II

� ∥≤ �
"2
∥ V II

� ∥2 +C ∥ V ∥2s .

Since A11(U0; 0) = 0 and A0(U0; 0) is a block-diagonal matrix, we have Â11(U0; 0) = 0. The first term can be bounded by
1
" ∫

V IT
� )xÂ

11(U "; ")V I
� dx =

1
" ∫

V IT
� )x(Â11(U "; ") − Â11(U0; 0))V I

� dx

≤ C 1
"
∥ )x(U " − U0) ∥∞∥ V ∥2s

≤ C(1 + "△ +"B"(t)) ∥ V ∥2s .
Therefore

I�5 ≤ �
"2
∥ V II

� ∥2 +C(1 +△2 + B"(t)) ‖V ‖
2
s +

C
"2
∥ V II ∥s∥ V ∥2s . (76)

substituting (72)–(76) into the inequality (68) yields
d
dt ∫

e(V�)dx +
c0 − 8�
"2

∥ V II
� ∥2

≤ C
"2
∥ V II ∥2

|�|−1 +C(1 +△
2 + B"(t)) ∥ V ∥2s +

C
"2
∥ V II ∥s∥ V ∥2s +C"

2m.

Let � to be sufficiently small such that c1 = c0 − 8� ∈ (0, c0). then we have
d
dt ∫

Ω

e(V�)dx +
c1
"2
∥ V II

� ∥2

≤ C
"2
∥ V II ∥2

|�|−1 +C(1 +△
2 + B"(t)) ∥ V ∥2s +

C
"2
∥ V II ∥s∥ V ∥2s +C"

2m.

(77)

Recall ∥ V II ∥2−1= 0. when |�| = 1, we see that
C
"2
∥ V II ∥2

|�|−1 on the right-hand side of(77) can be controlled by
c1
"2
∥ V II

� ∥2.
More generally, let � ∈ (0, 1], Multiplying (77) by �|�| and summing up the equalities for all index � with |�| ≤ s yields

d
dt

∑

|�|≤s
�|�| ∫

Ω

e(V�)dx +
c1
"2

∑

|�|≤s
�|�| ∥ V II

� ∥2

≤C
"2

∑

|�|≤s−1
�|�|+1 ∥ V II ∥2

|�| +C(1 +△
2 + B"(t)) ∥ V ∥2s

+ C
"2
∥ V II ∥s∥ V ∥2s +C"

2m,

in which C is independent of �. Let � be suitably small. Then
C
"2

∑

|�|≤s−1
�|�| ∥ V II ∥2

|�|+1≤
c1
2"2

∑

|�|≤s
�|�| ∥ V II

� ∥2

and
c1�s

2"2
∥ V II ∥2s≤

c1
2"2

∑

|�|≤s
�|�| ∥ V II

� ∥2 .



All ET AL 31

Therefore
d
dt

∑

|�|≤s
�|�| ∫

Ω

e(V�)dx +
c1�s

2"2
∥ V II ∥2s

≤ C(1 +△2 + B"(t)) ∥ V ∥2s +
C
"2
∥ V II ∥s∥ V ∥2s +C"

2m.

By the Young inequality, we have

C ∥ V II ∥s∥ V ∥2s ≤
c1�s

4
∥ V II ∥2s +

c2

c1�s
∥ V ∥4s

≤
c1�s

4
∥ V II ∥2s +

c2

c1�s
"2△ ∥ V ∥2s .

Thus,
d
dt

∑

|�|≤s
�|�| ∫

Ω

e(V�)dx +
c1�s

4"2
∥ V II ∥2s

≤ C(1 +△2 + B"(t) +
1
�2s
) ∥ V ∥2s +C"

2m.

Note that
C−1|V�|

2 ≤ e(V�) ≤ C|V�|
2.

Now we fix � > 0. Integrating this inequality over [0, Tm] and noting that
∑

|�|≤s �|�| ∫Ω e(V�)dx is equivalent to ∥ V�(T ) ∥2, we
use ∥ V (0) ∥s= O("m) to obtain

∥ V�(T ) ∥2 +
1
"2

T

∫
0

∥ V II (t) ∥2s dt ≤ CT"2m +

T

∫
0

C(1 +△2 + B"(t)) ∥ V (t) ∥2s dt.

Then

∥ V (T ) ∥2s≤ CT"2m +

T

∫
0

C(1 +△2 + B"(t)) ∥ V (t) ∥2s dt.

We apply Gronwall’s lemma to above equation to get

∥ V (T ) ∥2s≤ CTm"
2m exp

[

T

∫
0

C(1 +△2 + B"(t))dt
]

. (78)

Since ∥ V ∥s= "2△, it follows from above equation that

△(T )2 ≤ CTm"
2m−4 exp

[

T

∫
0

C(1 +△2 + B"(t))dt
]

≡ Φ(T ).

Thus,
Φ′(T ) = C(1 +△2 + B"(t))Φ(T ) ≤ C(1 + B"(t))Φ(T ) + CΦ2(T ).

because of ∫ T
0 B"(t) ≤

1
2�
. Applying the nonlinear Gronwall-type inequality in Lemma 5 to the last inequality yields

△(T )2 ≤ sup
[0,Tm]

Φ(T ) ≤ C exp
[

T

∫
0

C(1 + B"(t))dt
]

.

if we assumem > 2 and choose " so small thatΦ(0) = CTm"2m−4 < �. Then there exists a constantC , independent of ", such that

△(T ) ≤ C.

for any T ∈ [0,min{T", Tm}). Because of (78), there exists a constant K > 0, independent of ", such that

∥ V ∥s≤ K"m.

This completes the proof of Theorem 3.
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5 CONCLUSIONS

In this work, we study the structural stability condition for the radiation hydrodynamics system, which is governed by Euler
equation coupled with the HMPN moment model10 of radiation transport equation. The resultant coupling system is a first-order
partial differential equations with stiff source. The stability theory for hyperbolic relaxation systems36,46 has been verified for
numerous well-known systems of PDEs in physics, and it can also be used to analyze the compatibility of hyperbolic relaxation
systems24. This work further demonstrates the universality and the significance of the stability theory for hyperbolic relaxation
systems36,46. On the basis of the structural stability condition, we verify the non-relativistic limit by combining an energymethod
with a formal asymptotic analysis.

6 APPENDIX

In this Appendix, we prove Ã11(Ũeq; 0) = 0 and Ã11ũ (Ũeq; 0) = 0 which established in Lemma 2.
Take value on the equilibrium state and set " = 0 in (36). We can obtain

Ã(Ũeq; 0) = DU Ũ (Ũeq; 0)
(

03×3 03×(N+1)
0(N+1)×3 D̃−1M̃D̃(Ũeq)

)

(DU Ũ )−1(Ũeq; 0), (79)

where D̃−1M̃D̃(Ũeq) ∈ R(N+1)×(N+1). From the above discussion in Section 4, we know that

DU Ũ (Ũeq; 0) =
(

P1 0
0 IN×N

)

,

in which P1 ∈ R4×4 defined in (28). Then Ã(Ũeq; 0) can be rewritten as

Ã(Ũeq; 0) =
(

P1 0
0 IN×N

)

⎛

⎜

⎜

⎝

03×3 03×1 03×N
01×3 g1 g2
0N×3 g3 g4

⎞

⎟

⎟

⎠

(

P −11 0
0 IN×N

)

,

where g1 is the first element in the upper left corner of D̃−1M̃D̃(Ũeq), g2 ∈ R1×N , g3 ∈ RN×1, g4 ∈ RN×N are corresponding
block of matrix D̃−1M̃D̃(Ũeq).
Next, we calculate g1 and the first component of vector g3. Note that D̃(Ũeq) is diagonal matrix which showed in (23),

M̃(�) = Λ̃−1⟨�Φ̃[�], (Φ̃[�])T ⟩H̃[�]N and Λ̃(�) = diag(�̃0,0, �̃1,1,⋯ , �̃N,N ) due to (15). It follows from the definition of the inner
product of H̃[�]N (13) that

M̃11(�) = �̃−10,0(�)

1

∫
−1

�Φ̃[�]0 (�)Φ̃
[�]
0 (�)∕w̃

[�](�)d�

= �̃−10,0(�)

1

∫
−1

�w̃[�](�)d� = �̃−10,0(�)�̃1,0(�),

M̃21(�) = �̃−11,1(�)

1

∫
−1

�Φ̃[�]1 (�)Φ̃
[�]
0 (�)∕w̃

[�](�)d�

= �̃−11,1(�)

1

∫
−1

��̃[�]1 (�)w̃
[�](�)d� = �̃−11,1(�)�̃1,1(�) = 1.

Hence, g1 = M̃11(0) = �̃−10,0(0)�̃1,0(0) = 0. The first components of g3 is (−2b(�)M̃21�−10 ≠ 0. Thus g3 is not zero. Therefore

Ã(Ũeq; 0) =
(

P1 0
0 IN×N

)

⎛

⎜

⎜

⎝

(

03×3 03×1
01×3 0

) (

03×N
g2

)

(

0N×3 g3
)

g4

⎞

⎟

⎟

⎠

(

P −11 0
0 IN×N

)

=
⎛

⎜

⎜

⎝

04×4 P1

(

03×N
g2

)

(

0N×3 g3
)

P −11 g4

⎞

⎟

⎟

⎠

.

(80)
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Since g3 is not zero and the matrix P1 is invertible, the rank of the matrix
(

0N×3 g3
)

P −11 is 1 . Divided the matrix Ã as follows

Ã(U ; ") ≜
(

Ã11(Ũ ; ") Ã12(Ũ ; ")
Ã21(Ũ ; ") Ã22(Ũ ; ")

)

,

where Ã11(Ũ ; ") ∈ R3×3, Ã12(Ũ ; ") ∈ R3×(N+1), Ã21(Ũ ; ") ∈ R(N+1)×(3, Ã22(Ũ ; ") ∈ R(N+1)×(N+1). Then it follows from (80)
that Ã11(Ũeq; 0) = 0 for all Ũeq ∈ G̃eq . Meanwhile, Ã21(Ũeq; 0) is the matrix formed by the first three columns of the following
(N + 1) × 4 matrix

(

01×4
(

0N×3 g3
)

P −11

)

Thus, Ã21(Ũeq; 0) is not full-rank matrix.
Furthermore, we analyze Ã11ũ (Ũeq; 0). Firstly, we show that Ã11u (Ũeq; 0) = 0. For any u = (�, �v, �E), we have

Ãu(Ũeq; 0) = )u(DU Ũ )
(

0 0
0 D̃−1M̃D̃

)

(DU Ũ )−1

+DU Ũ
(

0 0
0 )u(D̃−1M̃D̃)

)

(DU Ũ )−1 +DU Ũ
(

0 0
0 D̃−1M̃D̃

)

)u(DU Ũ )−1.
(81)

From the expression of DU Ũ in (37) and � = �(u), we know that

)u(DU Ũ )(Ũeq; 0) =
(

03×3 0
Y1 0(N+1)×(N+1)

)

with Y1 is a non-zero matrix in R(N+1)×3. Therefore, we have

)u(DU Ũ )(Ũeq; 0)
(

0 0
0 D̃−1M̃D̃(Ũeq; 0)

)

=
(

03×3 0
Y1 0(N+1)×(N+1)

)(

0 0
0 D̃−1M̃D̃(Ũeq; 0)

)

= 0

In the second term in (81), since D̃−1M̃D̃ is only depend onw, so )u(D̃−1M̃D̃) = 0, which yields the second term vanish. From
above discussion, we know that

DU Ũ (Ũeq; 0)
(

0 0
0 D̃−1M̃D̃(Ũeq; 0)

)

=
⎛

⎜

⎜

⎝

04×4 P1

(

03×N
g2

)

(

0N×3 g3
)

g4

⎞

⎟

⎟

⎠

.

A tedious calculation shows that the matrix of inverse transformation is
(DU Ũ )−1(Ũ ; 0)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 1 0 0 0

− b′��
1+b′��E

− b′��v
1+b′��E

1
1+b′��E

− 1
1+b′��E

0

− b′��
(1+b′��E )�0,0

− b′��v
(1+b′��E )�0,0

− b′��E
(1+b′��E )�0,0

1
(1+b′��E )�0,0

−
�′0,0f0
�0,0

0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

05×(N−1)

0(N−1)×5 I(N−1)×(N−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
(82)

Thus we can obtain
)u(DU Ũ )−1(Ũeq; 0) =

(

Y2 04×N
0N×4 0N×N

)

with Y2 ∈ R4×4. So the third term of (81) can be rewritten as

DU Ũ (Ũeq; 0)
(

0 0
0 D̃−1M̃D̃(Ũeq; 0)

)

)u(DU Ũ )−1(Ũeq; 0)

=
⎛

⎜

⎜

⎝

04×4 P1

(

03×N
g2

)

(

0N×3 g3
)

g4

⎞

⎟

⎟

⎠

(

Y2 04×N
0N×4 0N×N

)

=
(

04×4 04×N
Y3 0N×N

)

with Y3 is corresponding matrix. Thus that the 3 × 3 block in the upper left corner of matrix Ãu(Ũeq; 0) is zero. This means
Ã11u (Ũeq; 0) = 0 for any u = (�, �v, �E).



34 All ET AL

Since ũ = ũ(u,w), we have
)ũÃ

11(Ũeq; 0) = )uÃ11(Ũeq; 0)
)u
)ũ
+ )wÃ11(Ũeq; 0)

)w
)ũ

= )wÃ11(Ũeq; 0)
)w
)ũ
.

According to expression of (DU Ũ )−1 in (82), we know
)w
)ũ

are zero except for )f0
)ũ
. Thus

)ũÃ
11(Ũeq; 0) = )wÃ11(Ũeq; 0)

)w
)ũ

= )f0Ã
11(Ũeq; 0)

)f0
)ũ

.

Thanks to the equations of hydrodynamical variables (32), we set

F̃ (Ũ ; ") =
(

"�v, "(�v2 + p + �2,2f2 + �2,0f0), "(�Ev + pv) + �1,0f0

)T

,

with �2,2, �2,0, �1,0 are function of � such that Ã11(Ũ ; ") = )ũF̃ (Ũ ; "). Thus

)f0Ã
11(Ũ ; ") = )f0

(

)ũF̃ (Ũ ; ")
)

= )ũ)f0 F̃ (Ũ ; ") = )ũ
(

0, "�2,0(�), �1,0(�)
)T .

And since )w
)ũ

are zero except for )f0
)ũ
, we have

)ũ�1,0(�) = )u�1,0(�)
)u
)ũ
+ )w�1,0(�)

)w
)ũ

= )f0�1,0(�)
)f0
)ũ

= 0

Similarly )ũ�2,0(�) = 0. Therefore )ũÃ11(Ũeq; 0) = 0.
In conclude, on all equilibrium state Ũeq , we see that

Ã11(Ũeq; 0) = 0, )ũÃ
11(Ũeq; 0) = 0.

Moreover, Ã21(Ũeq; 0) is not full–rank matrix.

References

1. Mihalas Dimitri, Mihalas Barbara Weibel. Foundations of radiation hydrodynamics. Courier Corporation; 2013.

2. Buet Christophe, Despres Bruno. Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics.
Journal of Quantitative Spectroscopy and Radiative Transfer. 2004;85(3-4):385–418.

3. Lowrie RB, Morel JE, Hittinger JA. The coupling of radiation and hydrodynamics. The astrophysical journal.
1999;521(1):432-450.

4. Pomraning Gerald C. The equations of radiation hydrodynamics. Courier Corporation; 2005.

5. Jiang Song, Li Fucai, Xie Feng. Nonrelativistic limit of the compressible Navier-Stokes-Fourier-P1 approximation model
arising in radiation hydrodynamics. SIAM J. Math. Anal.. 2015;47(5):3726–3746.

6. Zel’Dovich Ya B, Raizer Yu P. Physics of shock waves and high-temperature hydrodynamic phenomena. Courier
Corporation; 2002.

7. Minerbo Gerald N. Maximum entropy Eddington factors. Journal of Quantitative Spectroscopy and Radiative Transfer.
1978;20(6):541–545.

8. Levermore C. David. Moment closure hierarchies for kinetic theories. Journal of Statistical Physics. 1996;83(5-6):1021–
1065.

9. Cai Zhenning, Fan Yuwei, Li Ruo. A framework on moment model reduction for kinetic equation. SIAM Journal on Applied
Mathematics. 2015;75(5):2001–2023.

10. Fan Yuwei, Li Ruo, Zheng Lingchao. A Nonlinear Hyperbolic Model for Radiative Transfer Equation in Slab Geometry.
SIAM Journal on Applied Mathematics. 2020;80(6):2388-2419.



All ET AL 35

11. Fan Yuwei, Li Ruo, Zheng Lingchao. A nonlinear moment model for radiative transfer equation in slab geometry. Journal
of Computational Physics. 2020;404:1–23.

12. Marcati Pierangelo, Milani Albert J., Secchi Paolo. Singular convergence of weak solutions for a quasilinear nonhomoge-
neous hyperbolic system. Manuscripta Math.. 1988;60(1):49–69.

13. Marcati Pierangelo,Milani Albert. The one-dimensional Darcy’s law as the limit of a compressible Euler flow. J. Differential
Equations. 1990;84(1):129–147.

14. Bardos C., Golse F., Perthame B., Sentis R.. The nonaccretive radiative transfer equations: existence of solutions and
Rosseland approximation. J. Funct. Anal.. 1988;77(2):434–460.

15. Bardos C., Golse F., Perthame B.. The Rosseland approximation for the radiative transfer equations. Comm. Pure Appl.
Math.. 1987;40(6):691–721.

16. Marcati Pierangelo, Rubino Bruno. Hyperbolic to parabolic relaxation theory for quasilinear first order systems. J.
Differential Equations. 2000;162(2):359–399.

17. Lattanzio Corrado, Yong Wen-An. Hyperbolic-parabolic singular limits for first-order nonlinear systems. Communications
in Partial Differential Equations. 2001;26(5-6):939–964.

18. Peng Yue-Jun, Wasiolek Victor. Parabolic limit with differential constraints of first-order quasilinear hyperbolic systems.
In: :1103–1130; 2016.

19. Yong Wen-An. Singular perturbations of first-order hyperbolic systems. In: Friedr. Vieweg, Braunschweig 1993 (pp. 597–
604).

20. Yong Wen-An. Entropy and global existence for hyperbolic balance laws. Archive for Rational Mechanics and Analysis.
2004;172(2):247–266.

21. Yong Wen-An. An interesting class of partial differential equations. Journal of Mathematical Physics. 2008;49(3):1–21.

22. Di Yana, Fan Yuwei, Li Ruo, Zheng Lingchao. Linear stability of hyperbolic moment models for Boltzmann equation.
Numerical Mathematics. Theory, Methods and Applications. 2017;10(2):255–277.

23. Cai Zhenning, Fan Yuwei, Li Ruo. Globally hyperbolic regularization of Grad’s moment system. Communications on Pure
and Applied Mathematics. 2014;67(3):464–518.

24. Ma Zhiting. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic and Related Models. 2021;14(1):175–
197.

25. Liu Jiawei, Yong Wen-An. Stability analysis of the Biot/squirt models for wave propagation in saturated porous media.
Geophysical Journal International. 2016;204(1):535–543.

26. Zhao Weifeng, Yong Wen-An, Luo Li-Shi. Stability analysis of a class of globally hyperbolic moment system. Communi-
cations in Mathematical Sciences. 2017;15(3):609–633.

27. Rohde Christian, YongWen-An. The nonrelativistic limit in radiation hydrodynamics. I. Weak entropy solutions for a model
problem. J. Differential Equations. 2007;234(1):91–109.

28. Fan Jishan, Li Fucai, Nakamura Gen. Non-relativistic and low Mach number limits of two P1 approximation model arising
in radiation hydrodynamics. Commun. Math. Sci.. 2016;14(7):2023–2036.

29. Nečasová Šárka, Ducomet Bernard. Non-relativistic limit in a model of radiative flow. Analysis (Berlin). 2015;35(2):117–
137.

30. Yang Jianwei, Wang Shu, Li Yong. Local smooth solution and non-relativistic limit of radiation hydrodynamics equations.
Bound. Value Probl.. 2010;:Art. ID 716451, 15.



36 All ET AL

31. Teleaga Ioan, Seaïd Mohammed. Simplified radiative models for low-Mach number reactive flows. Appl. Math. Model..
2008;32(6):971–991.

32. Danchin Raphaël, Ducomet Bernard. The low Mach number limit for a barotropic model of radiative flow. SIAM J. Math.
Anal.. 2016;48(2):1025–1053.

33. Jeans J. H.. The Equations of Radiative Transfer of Energy. Monthly Notices of the Royal Astronomical Society.
1917;78(1):28-36.

34. Dubroca Bruno, Feugeas Jean-Luc. Theoretical and numerical study on a moment closure hierarchy for the radiative transfer
equation. Comptes Rendus de l’Academie des Sciences Series I Mathematics. 1999;329(10):915–920.

35. Hauck Cory, McClarren Ryan. Positive PN closures. SIAM Journal on Scientific Computing. 2010;32(5):2603–2626.

36. Yong Wen-An. Singular perturbations of first-order hyperbolic systems with stiff source terms. Journal of Differential
Equations. 1999;155(1):89–132.

37. Yong Wen-An. An interesting class of partial differential equations. Journal of Mathematical Physics. 2008;49(3):033503,
21.

38. Godlewski Edwige, Raviart Pierre-Arnaud. Hyperbolic systems of conservation laws. Ellipses, Paris; 1991.

39. Rohde Christian, Yong Wen-An. Dissipative entropy and global smooth solutions in radiation hydrodynamics and
magnetohydrodynamics. Mathematical Models and Methods in Applied Sciences. 2008;18(12):2151–2174.

40. Kato Tosio. The Cauchy problem for quasi-linear symmetric hyperbolic systems. Archive for Rational Mechanics and
Analysis. 1975;58(3):181–205.

41. Majda A.. Compressible fluid flow and systems of conservation laws in several space variables. Springer-Verlag, New York;
1984.

42. Eckhaus Wiktor. Matching principles and composite expansions. In: 1977 (pp. 146–177).

43. Ferguson JimMichael,Morel Jim Emanuel, Lowrie R. The equilibrium-diffusion limit for radiation hydrodynamics. Journal
of Quantitative Spectroscopy and Radiative Transfer. 2017;202:176–186.

44. Arnold Vladimir. Equations différentielles ordinaires. MIR,Moscow; fourth ed.1988. Translated from the Russian by Djilali
Embarek.

45. Taylor Michael E.. Partial differential equations III. Nonlinear equations Applied Mathematical Sciences, vol. 117: .
Springer, New York; second ed.2011.

46. Yong Wen-An. Basic aspects of hyperbolic relaxation systems. In: Progr. Nonlinear Differential Equations Appl., vol. 47:
Birkhäuser Boston, Boston, MA 2001 (pp. 259–305).


	Non-relativistic limit of the Euler-HMPN approximation model arising in radiation hydrodynamics 
	Abstract
	Introduction
	HMPN model
	MPN model
	HMPN model

	Stability Analysis
	Structural stability condition
	Stability of the Euler-HMPN system

	Non-relativistic limit
	Formal asymptotic expansions
	Outer Expansions
	Composite Expansions
	Initial Data for the Outer Expansion
	Residual estimation

	Justification of formal expansions

	Conclusions
	Appendix
	References


