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Abstract

In this paper, the nonlinear Schrédinger-type equation
. 42 2 I (L) .
(V+iA)Y u+u+ A Iy * (Kul’)] Ku=a ] u in R
u
is considered in the presence of magnetic field, where A € C'(R3,R?), a € (0,3), I,
denotes the Riesz potential, K € LP(R3,(0,00)) for some p € (6/(1 + a),00], a €
LY(R3,[0,00)) \ {0} for some ¢ € (3/2,00], and f € C(R,[0,00)) is assumed to be
asymptotically linear at infinity. Under suitable assumptions regarding A, K, a, and
f, variational methods are used to establish the existence of ground-state solutions of
the above equation for sufficiently small values of the parameter A.
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1 Introduction

The aim of this paper is to study the existence of ground-state solutions of the nolinear
Schrodinger-type equation

—(V+iA)u+u+ A [I * (K|u?)] Ku:a%u in R?, (1.1)
u
where A € C'(R3,R?), \ is a positive parameter, o € (0,3), and I, is the Riesz potential

given by

I'((83—a)/2)
fa(w) = 2073/20 (v /2) | [3—”

where I" denotes the Gamma function. Here, the operator (V +iA4)?, known in the literature

z € R3,

as the magnetic Schrodinger operator, is defined by

—(V+id)u = —Au — 2iA - Vu — iudivA + | A u.

*Partially supported by the National Natural Science Foundation of China (Grant Nos. 11671239,

11701346, and 11801338), and Natural Science Foundation of Shanxi Province (Grant no. 2016106).
fCorresponding author. E-mail address: lzp@sxu.edu.cn



The main reason for studying Eq. (1.1) is the fact that if u is a solution of it with A = 0,

then W(z,t) = u(z)e *P¥" is a solution of the time-dependent Schrodinger equation:

m%—f = —(V +iA(2)20 + ¥ — g(z, [U2)T (1.2)

with g(x,t) = a(x)f(v/t)/Vt, where h is Planck’s constant and i is the imaginary unit.
Equation (1.2) appears in quantum mechanics to describe the dynamics of a particle in a
nonrelativistic setting and also arises in different physical theories, e.g., the description of
Bose-Einstein condensates and nonlinear optics.

In recent years, the nonlinear Schrédinger equation
~Au+u = h(r,u) in R? (1.3)

with no magnetic field has attracted increasing attention, and many results have been es-
tablished regarding the existence, multiplicity, and qualitative properties of its solutions;
for examples, see [3, 9, 10] and the references therein. Equation (1.1) with A = 0, = 2,
and K € L*(R3,[0,00))\{0} is analogous to the nonautonomous Schrodinger-Poisson sys-
tem. Recently asymptotically linear problems in the whole space were studied under various
assumptions and potentials. Using results from critical-point theory, van Heerden in [13]
proved the existence of multiple solutions of a Schrodinger equation with an asymptotically
linear term. Using variational techniques, Wang et al. in [14] proved the existence of a
positive solution of a nonlinear Schrodinger-type equation with asymptotically linear nonlin-
earity. For other interesting results related to problems with an asymptotically linear term,
see [6, 7, 11, 12, 17].

Herein, we investigate the case of A # 0. To date, much consideration has been given
to magnetic Schrodinger-type equation (for examples, see [1, 2, 4, 5, 16]), but to the best
of our knowledge, scant consideration has been given to Schrodinger-type equations with a
magnetic field and an asymptotically linear term. Inspired by the studies mentioned above,
we focus on the existence of ground-state solutions for a magnetic Schrodinger equation with
an asymptotically linear term and with K, a, f satisfying the following assumptions.

Assumpation (K): K € LP(R?, (0, 00)) for some p € (6/(1 4+ a),00]. If p = oo, then also
assume that

Ko = lim Ko pe = 0,
r—00

where B, = {z € R?: |z| < r} for r > 0.
Assumpation (a): a € LY(R3 R, ) and a # 0 for some ¢ € (3/2, 0], where R, = [0, c0).
If ¢ = 00, then also assume that

Uoo = lim |a|oo ge = 0.
r—00
Let

Sa = inf {||u||124 Tu € H}l(ﬂ@,@),/ alul* = 1} :
R3
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where H}(R?, C), defined in Section 2, is a Hilbert space and can be imbedded into L(R?, C)
for each ¢ € [2,6]. By the imbedding, we know that S, S, > 0.

Assumpation (f;): f € C(R,Ry), f(t) = 0 for ¢t < 0, and lim; o+ f(t)/t = fo € R4
satisfying fo < S,.

Assumpation (f2): limy, f(t)/t = foo € (0, 00) satisfies foo > S,.

Under the above assumptions, we have the following results.

Theorem 1.1. If assumptions (K), (a), (fi), and (fz) hold, then for sufficient small X\ > 0,
Eq. (1.1) has a ground-state solution in HY(R3,C).

Remark 1.2. In Theorem 1.1, we say that u is a solution of Eq. (1.1) if

/3 (VAU-V—AeruE)Jr)\/ [Ia*(K|u|2)} Kuv — amuﬁzo

R3 rs |ul
for any v € H;(R*,C).

Remark 1.3. It is easy to find some functions K, a, and f that satisfy the above assumpations.

wt? t>0
t: 1+t7 b
n {O,

Letting p > 0 and

assumpations (f;) and (fy) hold for sufficiently large . Letting

K(z) =a(z) = e z € R?,

it is easy to see that K, = ao, = 0.

The outline of this paper is as follows. In Section 2, we introduce some notations and
preliminary ideas. In Section 3, we establish the mountain-pass geometry structure and

prove some useful lemmas and Theorem 1.1.

2 Variational setting and preliminaries

This section is devoted mainly to establishing some preliminary ideas. Let us denote V qu :=

Vu + iAu and consider the real Hilbert space
H}(R? C) :={u e L*(R?C): Vu e L*(R*,C*)}
with the inner product and the corresponding norm defined by
(u,v) 4 = Re/R3 (Vau-Vav+uwv), |ulli = /RS (IVaul® + ul), u,v e HyR?C).
If u e HY(R3 C), then |u| € H'(R?) and
\Vul(z)] < |Vu(z) +iA(z)u(z)|, ae. xcR® (2.1)
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Inequality (2.1) is known as the diamagnetic inequality; see [8, Theorem 7.21]. The main

idea behind proving Eq. (2.1) is given by
Re <£Vu) ‘ = ‘Re {(Vu + zAu)i} ‘ :
|ul Jul

The diamagnetic inequality leads to the continuous imbedding

|V]ul| =

HY(R? C) — LI(R? C)
for any given ¢ € [2,6]. Hence, for each ¢ € [2, 6], there exists v, > 0 such that
July < gllulla, u € Hy(R?,C),

where | - |, denotes the norm on L?(R3, C).

Herein, we use the following notations:

e terms C; for i € N := {1,2,...} denote various positive constants, which may vary
from line to line;

e B, = {z € R®: |z| < r} denotes an open ball in R? with its center at the origin and

radius r > 0.

Lemma 2.1. Suppose that assumpations (K), (a), (fi), and (f;) hold. The energy functional
I4: HY(R3 C) — R associated with Eq. (1.1), namely

1 A
Ia(w) = glluly + 5 [ T (KP)] Kl = [ aP(u), we HY®,0),  (@2)
R3 R3
is of class C, where F(t) = fot f(s)ds fort € R and its derivative is given by

(I'y(u),v) = (u,v) 4+ )\Re/ (1o * (K|ul?)] Kuv — Re aMuﬁ u,v € HY(R?, C),

)
R3 R3 |U’

where we define zf(|z])/|z| =0 as z = 0.

Proof. By the definition of H}(R3 C) and assumpations (K), (a), (f;), and (f2), it is easy to
show that I, is well defined in H}(R3, C).
Let ¢(u) = [gs aF(|u]) for u € H}(R? C). Then for u,v € Hj(R? C),t € R\ {0}, we
have that ) ]
o+ t0) = 6] = [ LalP(lu-+ t]) = F(ul)]

Using the mean-value theorem, there exists 6 € (0, 1) such that

1 1
FE(uttv]) = Flu)] = 2[f(jul +60(ju+ to] = Jul)](ju +to] = |u]).
For t € R with |t| € (0,1), it thus follows from assumpations (f;) and (f;) that

SF(u+ o) = F(ul)]| < COul +oDlol



By Lebesgue’s dominated convergence theorem, we have that

ing 716G+ ) - o) = Re [ oL

ul

Similarly, let ¢(u) = [os [Lo * (K|ul?)] K|u|? for u € HA(RP’,C). Then it follows that for
u,v € HY(R3 C),t € R with || € (0,1),

[W(u+ tv) — ¢(u)]
% Ly (Klu+to]?)] Klu+ to]* — [, * (K[u?)] K|u*}
_ /R% (Lo * (Ku -+ to] )}K(|u+tv|2—|u|2)+/m%[Ia*(K(|u+tv|2—|u|2))} Kuf?

= [Io % (K|u+ tv]*)] K (2Re(uv) + tjv]*) + /]1@3 [Io = (K (2Re(uv) + t|v]*))] K|ul?

=
@

< 2 (Lo s (KQuP + P)] K @lullel+ o) + [ [ (Klullo] + )] Kl

P_E% {[Lo * (K|u+tv]*)] K (2Re(up) + t|v]*) + [Lo * (K (2Re(ud) + t[v]*))] K|u|*}
= 4Re [I, * (K|ul*)] Kuv,

by the Hardy-Littlewood-Sobolev (HLS) inequality, and Lebesgue’s dominated convergence
theorem, we have that

lim%[z/;(u +tv) —P(u)] = 4Re/ [Io % (Kul]*)] Kuw.

t—0 R3
Assuming u,, — u in H}(R3,C), since

(Ly(un) — Iy(u), v)
= (u, —u,v)a + ARe /RS {[Ia * (K|un|*)] Kugv — [Lo * (K|ul?)] Kuv}

—Re /RS a {f(’u"’)un — f<|u|)u} 7, ve HYy(R? C),

|un| Jul

and given the HLS inequality, the Holder inequality and the continuity of Nemytskii operator,
we have that ||I(u,) — Ia(u)|| = 0,(1), and the proof is complete. O

Lemma 2.2. Suppose that assumpations (K), (a), (fi), and (f») hold. Then u is a solution
of Eq. (1.1) if and only if u is a critical point of 4.

Proof. On one hand, if u is a weak solution of Eq. (1.1), then we have that

/ (VAu-V_AU—i-uﬂ) + )\/ [Ia * (K|u|2)} Kuv — f(| |)uv =0, ve HyR?*C).
R3 R3 |ul
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Therefore,

Re {/R?)(VAU.V_AQNLW)JM/ L+ (K[uf?)] Kuo— [ a ““%} 0, ve HY(®,C),

R3 R3 |u|

that is, u is a critical point of 4. On the other hand, if w is a critical point of 14, then we
have that (I’;(u),v) = 0 for v € H4(R3, C). Hence

<1;(u),w>:Re[—z(/Rg (VAu.V_AUJruU)Jr/\/ L (Ku?) [ Kuo— [ a ﬂuDuﬁ)}:O.

R3 R3 |U|

Therefore, it follows that

/ (Vau-Vav+uv) + )\/ (Lo (K|ul®)] Kwv — [ a (‘UDUE: 0, ve H{(R?C).
R3

R3 r Ul
Combining the above results, we see that the critical points of 14 are solutions of Eq. (1.1),

and the proof is complete. O]

Before concluding this section, we recall the celebrated mountain-pass theorem [15], which

we use herein.

Theorem 2.3. (Mountain-pass theorem) Let E be a real Banach space. Suppose that I €
CY(E,R) satisfies
max{/(0),I(e)} < inf I(u)

llull=p

for some p >0 and e € E with ||e|| > p. Let

¢ = inf max I(y(t)), (2.3)

v€T tel0,1]

where I' = {y € C([0,1], E) : 7v(0) = 0,~v(1) = e} is the set of paths joining 0 and e. Then

there exists a sequence {u,} C E such that as n — oo,

I(u,) = ¢, I'(u,) — 0.

3 Proofs for Theorem 1.1

We begin this section by presenting Lemmas 3.1 and 3.2 that ensure that the functional 4
has the mountain-pass geometry.

Lemma 3.1. Suppose that assumptions (K), (a), (fi), and (f) hold. Then there exists p > 0
such that inf{l4(u) : v € H(R3 C), ||ul]la = p} > 0.

Proof. Since fy < S, from assumpation (f;), there exists ¢ € (0, 1) such that fo < (1 —¢)S,.
It follows from assumpations (f;) and (fy) that there exists C. > 0 such that

() < (1—e)Su|t| + C|t|®7!, teR, (3.1)
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and then )

1 /
F(t) < 2(1 —&)Sat* + éq’C€|t]6/q , teR,

where ¢ = q/(qg—1) if ¢ € (3/2,00); and ¢’ = 1 if ¢ = co. Furthermore, assumpation (a)
gives |al, < co. Hence, from the Sobolev inequality, for all u € H}(R?, C),

1 1 , 1 /
l/ame<—u—fwg/amﬁ+ﬂﬂz/(mWM<—u—fmm&+cmwmﬂ%
]R3 2 ]R3 6 R:s

[\]

where C; = %q’|a|q7§/q/. It then follows from Eq. (2.2) that for all u € H4(R3, C),

1 1 6/q € 6/q
Ta) = gl = 50— ollully — GCally” = Shully Gl (32)

Thus, choosing sufficiently small |ul|a = p > 0, we get the conclusion from the fact that

6/q € (2,6], and the proof is complete. O

Lemma 3.2. Suppose that assumpations (K), (a), (fi), and (fz) hold. Then for sufficiently
small A > 0, there exists e € Hy(R?, C) with ||e||4 > p such that I4(e) < 0, where p is given
by Lemma 35.1.

Proof. Tt follows from assumpation (f5) that there exists ¢y € H4(R3, C) with [[1)g]la = 1
such that fo [s altho|* > 1. Using assumpations (a), (f;), and (f,), we obtain

. 1 1
lim , t_QaF(tWoD = /R3 §fooa|¢0|2-

t—o00 R

Then there exists ¢y > p such that

1 1
—aF(t > —,
Aﬂy<d%w -
Finally, choosing sufficiently small Aqg > 0 such that
1 1. 5 9 9 1
—+ =Xty [ [Lax (K[to|*)] Klibo> = | ZaF (to|thol) <O,
2 4 RB R3 to
it follows from Eq. (2.2) that for A € (0, Ag],
o1 1, 2 2 1
]A<t01/)0) = tO — 4 —)\to [Ia * (K|¢0| )] K|1/}0| — —ZCLF(t0|¢0’) < 0.
2 4 RS RS to
Let e = ty1)y, and the proof is complete. O]

By Lemma 3.1, 3.2, and Theorem 2.3, there is a sequence {u,} C H}(R? C) such that
as n — 0o,
Ta(uy) — ¢, Ih(u,) — 0, (3.3)

where ¢ is defined in Eq. (2.3) and ¢ > 0.



For r > 0, we define

Sur = inf {HuHi Tu € HA(RB,C%/ alul* = 1}
B¢

= it {Jul3/ [ oo e yE.0), [
Be B

Particularly, for the case of a € LY(R?* R, )\{0} and a(x) = 0,z € B¢, we say that S, , = cc.

Since S, is nondecreasing for r € (0, 00), it makes sense that

alul® # 0} .

c
r

Saco = lim Sg .
r—00

Remark 3.3. If ¢ € (3/2,00), then we can show that S, . = oo. Indeed, for each u €
H}(R?, C)\{0}, by a € LYR?* R,) and a # 0 for ¢ € (3/2,00), we have that [, alu* <
ul|} for r > 0. It follows that S,, > 72_q3|a];]19$ for |algpe # 0, or S,, = co. Thus

'ng/’a|q7B$
lim, 00 Sar = 00, that is, S, = 00. Here, ¢ = q/(q¢ — 1), 724 is the imbedding constant
from H}(R? C) to L?(R3 C). Moreover, if a € L®(R3 R,) and as = 0, then for any
u € H}(R? C)\{0}, we have that fB;;‘ alul®* < |aloo,Be73 ||ul|%- Hence S, o = 0.

Lemma 3.4. Suppose that assumpations (K), (a), (fi), and (f2) hold. Let {u,} C (0, 00)
with {i,} having a positive lower bound, v, — v in HY(R3 C), and liminf, . ||v,]|4 > 0.
If (I'y(ptnvy), vn) — 0, then the weak limit v of {v,} is nonzero.

Proof. Since v, — v in H}(R?, C), there exists a subsequence of {v,}, still denoted by {v,},
such that

v, —v in H(R? C),
v, = v in L2 (R, C),

loc

v, — v a.e. on R®.

By contradiction, suppose that v = 0. It follows from assumpations (f;) and (fy) that f(¢)/t
is bounded on (0, 00). Let

[ :=sup{f(t)/t:t>0}.
So there exist 6 € (0, 1) and sufficiently large r > 0 such that
[/ < S

This yields that for all n,

1
/B Lt (nval)loa] <1 /B alval? < Olloall’ (3.4)

[&
r n

According to the compactness of the embedding H(B,,C) < L*(B,,C), it holds that
v, — 01in L?7 (B,,C). It follows from assumpations (f;) and (f) that for all n,

1
0< / Lt lnval)loa] <1 / aloal? < UalyJoal2y 5.
B

T n B,



which implies that
_ 1
lim [ —af(|pnvn])|vn| = 0. (3.5)

n—oo Jp  lUn

Thus, we obtain from (3.4) and (3.5) that

n—oo n—oo

1
lim sup / L (nval) o] < Olim sup [o, . (3.6)
R3 Hn

On the other hand, it follows that

<[,/4(,Unvn)a vn>/,un = 0(1)7
that is,

1
o(1) = [luall + A / (L (K tval)] Kol - / L o (rtval)on]
R3 RS,LL

1
> ot - / L it (nvalenl,
R3 M

n

where here and in what follows o(1) denotes a quantity that goes to zero as n — oo.
Therefore,

. 1
lim sup / L0 ()] = lim sup [[oa 2,
R3 Hn

n—oo n—oo

which contradicts Eq. (3.6). Thus, v # 0, and the proof is complete. O

w/llulla, w#0,

In the following, for u € H}(R3 C), let 4 = { 0
) u = )

Lemma 3.5. Suppose that assumpations (K), (a), (f), and (f) hold. If {u,} C H3(R3 C)\
{0} satisfies (I'y(uy,), t,) — 0, then {u,} is bounded in H4(R? C).

Proof. By contradiction, suppose that |lu,||la — oo as n — oo. Let us denote v, = 4, for
all n. Then {v,} is bounded in H}(R?, C) and there exists v € H}(R3 C) such that, up to

a subsequence,
v, —=v in Hy(R? C),
v, = v in Li?c (R?,C),
v, — v a.e. on R

Applying Lemma 3.4 with p,, = ||u,||4, we obtain that v # 0.

Since ||uy||la — 0o as n — oo, it follows that

(L (un), wn) /a4 = o(1),
that is,
1

(A

o(1) = +A/}RS [T # (K |vn]?)] Kva|* - ” n”A/ A CANLDA IS

||
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Hence,
/ [Ia * (K|vn|2)] Klv,|? = o(1).
R3

From Fatou’s lemma, we obtain that [y, [I, * (K|v|*)] K|v|* = 0, which implies from assump-

tion (K) that v = 0. That is a contradiction, and the proof is complete. [

Lemma 3.6. Suppose that assumptions (K), (a), (fi), and () hold. If u, — u in H(R3 C)

with u # 0, and I'y(u,) — 0, then u is a nonzero critical point of I and u, — u.

Proof. 1t is sufficient to prove that ||u,||4 — ||u||a as n — co. From I’y(u,) — 0 and u,, — u,

we have that

(Eatan)vin) = [ (190 4 )42 [ [ (o)) Bl = [ o QuaDlun] = o(0)

(L (), )
— Re/ (Vau, - Vau+ uyu) + )\Re/ [Io * (K|un|*)] Ku,u — Re aMunﬂ
R3 R3 RS |Un]
= o(1),
and
Re/ (Vauy - Vau+ u,u) = / (IVaul® + ul?) + o(1).
R3 R3
It thus follows that showing that ||u,||a — ||u||4 is equivalent to proving that
/ Lo # (K Jun ) K ] — Re/ (Lo # (K Junl?)] Kt = o(1), (3.7)
R3 R3
/ af () un] — Re [ a8 Dy 7 o1y, (3.8)
R3 r |unl

First, we prove equality (3.8). In fact, by assumpations (f;) and (f2), we have that for » > 0,
Fllual)

/B af (Jun))n| — Re [ a

fllun])
< | af ()] — oL 0%,
B¢
— [ af(ualu, —u
B¢
l/ aluy||u, — ul
B¢

< lSa_IHURHA”un —ulla < Osa_,i'

,T

N

This and the compactness of embedding H*(R?®, C) < L

loc

(R3,C) imply Eq. (3.8).
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Now we verify that equality (3.7) holds. First, consider the case that p € (6/(1+ «), 00).
Since u, — u in HL(R3,C), it follows that u, — u in Li*/PET)=(R3 C) and then for any

loc

given € > 0, there exist r > 0 and ng such that for all n > ny,
|Klp.5e <&, |un — ulizp/p+a)-6),5, <€

Hence, by the HLS inequality, we have that for all n > ny,
‘ [ e ()] Kl = Re [ [ (K10a)] Ko
R3 R3
= ‘Re/ (Lo * (K|un?)] K (Jun]? — uat)
R3

< / (Lo (KJwnl?)] Klunlln —
R3

(3+a)/6
< Cr|Klunf? ‘6/ 3+a) (/ (K |up||@, — )% 3+ —l—/ (K up|[@, — )%/ 3+O‘)>
B, o

(3+0)/6
< CilKplunltap pata)-6 (/B (Kun|[@, —a])®/ ) Jr/B(K|Un||un — )%t 3+a))

6/ (340 6/(3+a) 6/(3+a)
< 02 (‘K‘p/( )’un’12p/[p(3+a)f6] |Un - ’12p/[p (3+a)—6],Br

6/(3+0) > (3+2)/6

6/(3+a), . (6/(3+a)
+| K| | 12p/[p(3+a) —6]

p, B¢ 12p/[p(3+a)— ]‘Un ul

< 038.

Second, consider the case that p = co. By the HLS inequality, assumption (K), and local

compact imbedding theorems, we have that for sufficiently large r» > 0,
‘/ (Lo * (K|un|?)] K|un|” — Re/ [Io = (K|un|?)] Ku,u
R3 R3
— ‘Re/ [[a * (K]unP)} K (\un\z — unﬂ)
R3

(3+a)/6
< O Kunllg 510 (/B (K Jun | [, —a]) /) +/ (B |t | 12, —2])°/ 3+a>)
(3+a)/6
< Cl|K|OO|un|%2/(3+a) (/B (K|Un||ﬂn — ﬂ|)6/(3+04) + / (K|un||ﬂn _ ﬂ|>6/(3+a))
a 6/(3+« 6/(3+a)
< G (1K1 000 i — w3000 i,
(3+a)/6
6/(3+a)| |6/(3+a) 6/(3+a)
RIS 585 0 o — wl3A5E50))
< C’387
and the proof is complete. O]

Finally, we give the proof of Theorem 1.1.
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Proof of Theorem 1.1. Assume that {u,} C H4(R3 C) is a sequence satisfying Eq. (3.3).
Then by Lemma 3.5, the sequence {u,} is bounded in H}(R3 C). We then may assume
that, up to a subsequence, u,, — u in H}(R3 C) for some v € H}(R? C). Since I4(u,) — ¢
and ¢ > 0, it follows that liminf, . ||u,|4 > 0. Applying Lemma 3.4 with u, = 1 for all n,
we obtain that u # 0. It follows from Lemma 3.6 that w is a nonzero critical point of 4.

Let us define the set of nonzero critical points of 14, namely
Ka={ue HyR?C)\ {0} : I;(u) = 0},

and
m = inf{ls(u):u € Ka}.

Then K4 is nonempty and m > —oo. Furthermore, we have that for all u € Ky,

0= lfalf+ % [ [Fos (K1) K1l = [ af(ub)lul > el = [ as(u)l

Now, choosing € € (0,1) such that f, < (1 — ¢)S,, it follows from Eq. (3.1) that for
u e H(R? C),

[Lartablul < [ a[(=)Sulul+ Cuful®] < (1 = )l + lalCord .
Therefore, we have that for all u € K4,
6/q 6/q
0> [fulld — (1 = e)llull? — lalCore® flul . (3.9)

Since u # 0 for u € K4, it follows from Eq. (3.9) that

q'/(6—2q")

£

||UHA> <| |O 6/q’) >O, UGICA
aq 676

Hence any limit point of a sequence in K4 is different from zero.

We claim that I is bounded from below on K4. In fact, assume that {u,} C K4 is
such that I4(u,) — m as n — oo. Then it follows from Lemmas 3.5 and 3.4 that {u,}
is bounded in H}(R3, C) and has a weakly convergent subsequence, still denoted by {u,},
that converges weakly to ug € H4(R3 C) and ug # 0. Thus, I4 is bounded from below
on K4 and m > —oo. Furthermore, it follows from Lemma 3.6 that u,, — wug and then
Iy (ug) = 0, Ia(ug) = m. O
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