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Abstract

In this paper, the nonlinear Schrödinger-type equation

−(∇+ iA)2u+ u+ λ
[
Iα ∗

(
K|u|2

)]
Ku = a

f(|u|)
|u|

u in R3

is considered in the presence of magnetic field, where A ∈ C1(R3,R3), α ∈ (0, 3), Iα

denotes the Riesz potential, K ∈ Lp(R3, (0,∞)) for some p ∈ (6/(1 + α),∞], a ∈
Lq(R3, [0,∞)) \ {0} for some q ∈ (3/2,∞], and f ∈ C(R, [0,∞)) is assumed to be

asymptotically linear at infinity. Under suitable assumptions regarding A, K, a, and

f , variational methods are used to establish the existence of ground-state solutions of

the above equation for sufficiently small values of the parameter λ.
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1 Introduction

The aim of this paper is to study the existence of ground-state solutions of the nolinear

Schrödinger-type equation

−(∇+ iA)2u+ u+ λ
[
Iα ∗

(
K|u|2

)]
Ku = a

f(|u|)
|u|

u in R3, (1.1)

where A ∈ C1(R3,R3), λ is a positive parameter, α ∈ (0, 3), and Iα is the Riesz potential

given by

Iα(x) =
Γ((3− α)/2)

2απ3/2Γ(α/2)|x|3−α
, x ∈ R3,

where Γ denotes the Gamma function. Here, the operator (∇+ iA)2, known in the literature

as the magnetic Schrödinger operator, is defined by

−(∇+ iA)2u = −∆u− 2iA · ∇u− iu divA+ |A|2u.
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The main reason for studying Eq. (1.1) is the fact that if u is a solution of it with λ = 0,

then Ψ(x, t) = u(x)e−iEt/~ is a solution of the time-dependent Schrödinger equation:

i~
∂Ψ

∂t
= −(∇+ iA(x))2Ψ + Ψ− g(x, |Ψ|2)Ψ (1.2)

with g(x, t) = a(x)f(
√
t)/
√
t, where ~ is Planck’s constant and i is the imaginary unit.

Equation (1.2) appears in quantum mechanics to describe the dynamics of a particle in a

nonrelativistic setting and also arises in different physical theories, e.g., the description of

Bose-Einstein condensates and nonlinear optics.

In recent years, the nonlinear Schrödinger equation

−∆u+ u = h(x, u) in R3 (1.3)

with no magnetic field has attracted increasing attention, and many results have been es-

tablished regarding the existence, multiplicity, and qualitative properties of its solutions;

for examples, see [3, 9, 10] and the references therein. Equation (1.1) with A = 0, α = 2,

and K ∈ L2(R3, [0,∞))\{0} is analogous to the nonautonomous Schrödinger-Poisson sys-

tem. Recently asymptotically linear problems in the whole space were studied under various

assumptions and potentials. Using results from critical-point theory, van Heerden in [13]

proved the existence of multiple solutions of a Schrödinger equation with an asymptotically

linear term. Using variational techniques, Wang et al. in [14] proved the existence of a

positive solution of a nonlinear Schrödinger-type equation with asymptotically linear nonlin-

earity. For other interesting results related to problems with an asymptotically linear term,

see [6, 7, 11, 12, 17].

Herein, we investigate the case of A 6= 0. To date, much consideration has been given

to magnetic Schrödinger-type equation (for examples, see [1, 2, 4, 5, 16]), but to the best

of our knowledge, scant consideration has been given to Schrödinger-type equations with a

magnetic field and an asymptotically linear term. Inspired by the studies mentioned above,

we focus on the existence of ground-state solutions for a magnetic Schrödinger equation with

an asymptotically linear term and with K, a, f satisfying the following assumptions.

Assumpation (K): K ∈ Lp(R3, (0,∞)) for some p ∈ (6/(1 + α),∞]. If p = ∞, then also

assume that

K∞ := lim
r→∞
|K|∞,Bc

r
= 0,

where Br = {x ∈ R3 : |x| < r} for r > 0.

Assumpation (a): a ∈ Lq(R3,R+) and a 6= 0 for some q ∈ (3/2,∞], where R+ = [0,∞).

If q =∞, then also assume that

a∞ := lim
r→∞
|a|∞,Bc

r
= 0.

Let

Sa := inf

{
‖u‖2

A : u ∈ H1
A(R3,C),

∫
R3

a|u|2 = 1

}
,
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where H1
A(R3,C), defined in Section 2, is a Hilbert space and can be imbedded into Lq(R3,C)

for each q ∈ [2, 6]. By the imbedding, we know that S, Sa > 0.

Assumpation (f1): f ∈ C(R,R+), f(t) = 0 for t 6 0, and limt→0+ f(t)/t = f0 ∈ R+

satisfying f0 < Sa.

Assumpation (f2): limt→∞ f(t)/t = f∞ ∈ (0,∞) satisfies f∞ > Sa.

Under the above assumptions, we have the following results.

Theorem 1.1. If assumptions (K), (a), (f1), and (f2) hold, then for sufficient small λ > 0,

Eq. (1.1) has a ground-state solution in H1
A(R3,C).

Remark 1.2. In Theorem 1.1, we say that u is a solution of Eq. (1.1) if∫
R3

(
∇Au · ∇Av + uv

)
+ λ

∫
R3

[
Iα ∗

(
K|u|2

)]
Kuv −

∫
R3

a
f(|u|)
|u|

uv = 0

for any v ∈ H1
A(R3,C).

Remark 1.3. It is easy to find some functionsK, a, and f that satisfy the above assumpations.

Letting µ > 0 and

f(t) =

{
µt2

1+t
, t > 0,

0, t 6 0,

assumpations (f1) and (f2) hold for sufficiently large µ. Letting

K(x) = a(x) =
1

1 + |x|2
, x ∈ R3,

it is easy to see that K∞ = a∞ = 0.

The outline of this paper is as follows. In Section 2, we introduce some notations and

preliminary ideas. In Section 3, we establish the mountain-pass geometry structure and

prove some useful lemmas and Theorem 1.1.

2 Variational setting and preliminaries

This section is devoted mainly to establishing some preliminary ideas. Let us denote ∇Au :=

∇u+ iAu and consider the real Hilbert space

H1
A(R3,C) := {u ∈ L2(R3,C) : ∇Au ∈ L2(R3,C3)}

with the inner product and the corresponding norm defined by

(u, v)A = Re

∫
R3

(
∇Au · ∇Av + uv

)
, ‖u‖2

A =

∫
R3

(
|∇Au|2 + |u|2

)
, u, v ∈ H1

A(R3,C).

If u ∈ H1
A(R3,C), then |u| ∈ H1(R3) and

|∇|u|(x)| 6 |∇u(x) + iA(x)u(x)|, a.e. x ∈ R3. (2.1)
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Inequality (2.1) is known as the diamagnetic inequality; see [8, Theorem 7.21]. The main

idea behind proving Eq. (2.1) is given by

|∇|u|| =
∣∣∣∣Re

(
u

|u|
∇u
)∣∣∣∣ =

∣∣∣∣Re

[
(∇u+ iAu)

u

|u|

]∣∣∣∣ .
The diamagnetic inequality leads to the continuous imbedding

H1
A(R3,C) ↪→ Lq(R3,C)

for any given q ∈ [2, 6]. Hence, for each q ∈ [2, 6], there exists γq > 0 such that

|u|q 6 γq‖u‖A, u ∈ H1
A(R3,C),

where | · |q denotes the norm on Lq(R3,C).

Herein, we use the following notations:

• terms Ci for i ∈ N := {1, 2, . . . } denote various positive constants, which may vary

from line to line;

• Br = {x ∈ R3 : |x| < r} denotes an open ball in R3 with its center at the origin and

radius r > 0.

Lemma 2.1. Suppose that assumpations (K), (a), (f1), and (f2) hold. The energy functional

IA : H1
A(R3,C)→ R associated with Eq. (1.1), namely

IA(u) =
1

2
‖u‖2

A +
λ

4

∫
R3

[
Iα ∗

(
K|u|2

)]
K|u|2 −

∫
R3

aF (|u|), u ∈ H1
A(R3,C), (2.2)

is of class C1, where F (t) =
∫ t

0
f(s)ds for t ∈ R and its derivative is given by

〈I ′A(u), v〉 = (u, v)A + λRe

∫
R3

[
Iα ∗

(
K|u|2

)]
Kuv − Re

∫
R3

a
f(|u|)
|u|

uv, u, v ∈ H1
A(R3,C),

where we define zf(|z|)/|z| := 0 as z = 0.

Proof. By the definition of H1
A(R3,C) and assumpations (K), (a), (f1), and (f2), it is easy to

show that IA is well defined in H1
A(R3,C).

Let φ(u) =
∫
R3 aF (|u|) for u ∈ H1

A(R3,C). Then for u, v ∈ H1
A(R3,C), t ∈ R \ {0}, we

have that
1

t
[φ(u+ tv)− φ(u)] =

∫
R3

1

t
a[F (|u+ tv|)− F (|u|)].

Using the mean-value theorem, there exists θ ∈ (0, 1) such that

1

t
[F (|u+ tv|)− F (|u|)] =

1

t
[f(|u|+ θ(|u+ tv| − |u|))](|u+ tv| − |u|).

For t ∈ R with |t| ∈ (0, 1), it thus follows from assumpations (f1) and (f2) that∣∣∣∣1t [F (|u+ tv|)− F (|u|)]
∣∣∣∣ 6 C(|u|+ |v|)|v|.
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By Lebesgue’s dominated convergence theorem, we have that

lim
t→0

1

t
[φ(u+ tv)− φ(u)] = Re

∫
R3

a
f(|u|)
|u|

uv.

Similarly, let ψ(u) =
∫
R3 [Iα ∗ (K|u|2)]K|u|2 for u ∈ H1

A(R3,C). Then it follows that for

u, v ∈ H1
A(R3,C), t ∈ R with |t| ∈ (0, 1),

1

t
[ψ(u+ tv)− ψ(u)]

=

∫
R3

1

t

{[
Iα ∗

(
K|u+ tv|2

)]
K|u+ tv|2 −

[
Iα ∗

(
K|u|2

)]
K|u|2

}
=

∫
R3

1

t

[
Iα ∗

(
K|u+ tv|2

)]
K(|u+ tv|2 − |u|2) +

∫
R3

1

t

[
Iα ∗

(
K(|u+ tv|2 − |u|2)

)]
K|u|2

=

∫
R3

[
Iα ∗

(
K|u+ tv|2

)]
K
(
2Re(uv) + t|v|2

)
+

∫
R3

[
Iα ∗

(
K
(
2Re(uv) + t|v|2

))]
K|u|2

6 2
[
Iα ∗

(
K(|u|2 + |v|2)

)]
K
(
2|u||v|+ |v|2

)
+

∫
R3

[
Iα ∗

(
K(2|u||v|+ |v|2)

)]
K|u|2.

Since

lim
t→0

{[
Iα ∗

(
K|u+ tv|2

)]
K
(
2Re(uv) + t|v|2

)
+
[
Iα ∗

(
K
(
2Re(uv) + t|v|2

))]
K|u|2

}
= 4Re

[
Iα ∗ (K|u|2)

]
Kuv,

by the Hardy-Littlewood-Sobolev (HLS) inequality, and Lebesgue’s dominated convergence

theorem, we have that

lim
t→0

1

t
[ψ(u+ tv)− ψ(u)] = 4Re

∫
R3

[
Iα ∗ (K|u|2)

]
Kuv.

Assuming un → u in H1
A(R3,C), since

〈I ′A(un)− I ′A(u), v〉

= (un − u, v)A + λRe

∫
R3

{[
Iα ∗ (K|un|2)

]
Kunv −

[
Iα ∗ (K|u|2)

]
Kuv

}
−Re

∫
R3

a

[
f(|un|)
|un|

un −
f(|u|)
|u|

u

]
v, v ∈ H1

A(R3,C),

and given the HLS inequality, the Hölder inequality and the continuity of Nemytskii operator,

we have that ‖I ′A(un)− IA(u)‖ = on(1), and the proof is complete.

Lemma 2.2. Suppose that assumpations (K), (a), (f1), and (f2) hold. Then u is a solution

of Eq. (1.1) if and only if u is a critical point of IA.

Proof. On one hand, if u is a weak solution of Eq. (1.1), then we have that∫
R3

(
∇Au · ∇Av + uv

)
+ λ

∫
R3

[
Iα ∗

(
K|u|2

)]
Kuv −

∫
R3

a
f(|u|)
|u|

uv = 0, v ∈ H1
A(R3,C).
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Therefore,

Re

[∫
R3

(
∇Au · ∇Av + uv

)
+λ

∫
R3

[
Iα ∗

(
K|u|2

)]
Kuv−

∫
R3

a
f(|u|)
|u|

uv

]
= 0, v ∈ H1

A(R3,C),

that is, u is a critical point of IA. On the other hand, if u is a critical point of IA, then we

have that 〈I ′A(u), v〉 = 0 for v ∈ H1
A(R3,C). Hence

〈I ′A(u), iv〉 = Re

[
−i
(∫

R3

(
∇Au · ∇Av + uv

)
+λ

∫
R3

[
Iα ∗

(
K|u|2

)]
Kuv−

∫
R3

a
f(|u|)
|u|

uv

)]
=0.

Therefore, it follows that∫
R3

(
∇Au · ∇Av + uv

)
+ λ

∫
R3

[
Iα ∗

(
K|u|2

)]
Kuv −

∫
R3

a
f(|u|)
|u|

uv = 0, v ∈ H1
A(R3,C).

Combining the above results, we see that the critical points of IA are solutions of Eq. (1.1),

and the proof is complete.

Before concluding this section, we recall the celebrated mountain-pass theorem [15], which

we use herein.

Theorem 2.3. (Mountain-pass theorem) Let E be a real Banach space. Suppose that I ∈
C1(E,R) satisfies

max{I(0), I(e)} < inf
‖u‖=ρ

I(u)

for some ρ > 0 and e ∈ E with ‖e‖ > ρ. Let

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), (2.3)

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of paths joining 0 and e. Then

there exists a sequence {un} ⊂ E such that as n→∞,

I(un)→ c, I ′(un)→ 0.

3 Proofs for Theorem 1.1

We begin this section by presenting Lemmas 3.1 and 3.2 that ensure that the functional IA

has the mountain-pass geometry.

Lemma 3.1. Suppose that assumptions (K), (a), (f1), and (f2) hold. Then there exists ρ > 0

such that inf{IA(u) : u ∈ H1
A(R3,C), ‖u‖A = ρ} > 0.

Proof. Since f0 < Sa from assumpation (f1), there exists ε ∈ (0, 1) such that f0 < (1− ε)Sa.
It follows from assumpations (f1) and (f2) that there exists Cε > 0 such that

f(t) 6 (1− ε)Sa|t|+ Cε|t|6/q
′−1, t ∈ R, (3.1)
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and then

F (t) 6
1

2
(1− ε)Sat2 +

1

6
q′Cε|t|6/q

′
, t ∈ R,

where q′ = q/(q − 1) if q ∈ (3/2,∞); and q′ = 1 if q = ∞. Furthermore, assumpation (a)

gives |a|q <∞. Hence, from the Sobolev inequality, for all u ∈ H1
A(R3,C),∫

R3

aF (|u|) 6 1

2
(1− ε)Sa

∫
R3

a|u|2 +
1

6
q′Cε

∫
R3

a|u|6/q′ 6 1

2
(1− ε)‖u‖2

A + C1Cε‖u‖6/q′

A ,

where C1 = 1
6
q′|a|qγ6/q′

6 . It then follows from Eq. (2.2) that for all u ∈ H1
A(R3,C),

IA(u) >
1

2
‖u‖2

A −
1

2
(1− ε)‖u‖2

A − C1Cε‖u‖6/q′

A =
ε

2
‖u‖2

A − C1Cε‖u‖6/q′

A . (3.2)

Thus, choosing sufficiently small ‖u‖A = ρ > 0, we get the conclusion from the fact that

6/q′ ∈ (2, 6], and the proof is complete.

Lemma 3.2. Suppose that assumpations (K), (a), (f1), and (f2) hold. Then for sufficiently

small λ > 0, there exists e ∈ H1
A(R3,C) with ‖e‖A > ρ such that IA(e) < 0, where ρ is given

by Lemma 3.1.

Proof. It follows from assumpation (f2) that there exists ψ0 ∈ H1
A(R3,C) with ‖ψ0‖A = 1

such that f∞
∫
R3 a|ψ0|2 > 1. Using assumpations (a), (f1), and (f2), we obtain

lim
t→∞

∫
R3

1

t2
aF (t|ψ0|) =

∫
R3

1

2
f∞a|ψ0|2.

Then there exists t0 > ρ such that ∫
R3

1

t20
aF (t0|ψ0|) >

1

2
.

Finally, choosing sufficiently small λ0 > 0 such that

1

2
+

1

4
λ0t

2
0

∫
R3

[
Iα ∗ (K|ψ0|2)

]
K|ψ0|2 −

∫
R3

1

t20
aF (t0|ψ0|) < 0,

it follows from Eq. (2.2) that for λ ∈ (0, λ0],

IA(t0ψ0) = t20

(
1

2
+

1

4
λt20

∫
R3

[
Iα ∗

(
K|ψ0|2

)]
K|ψ0|2 −

∫
R3

1

t20
aF (t0|ψ0|)

)
< 0.

Let e = t0ψ0, and the proof is complete.

By Lemma 3.1, 3.2, and Theorem 2.3, there is a sequence {un} ⊂ H1
A(R3,C) such that

as n→∞,

IA(un)→ c, I ′A(un)→ 0, (3.3)

where c is defined in Eq. (2.3) and c > 0.
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For r > 0, we define

Sa,r = inf

{
‖u‖2

A : u ∈ H1
A(R3,C),

∫
Bc

r

a|u|2 = 1

}
= inf

{
‖u‖2

A/

∫
Bc

r

a|u|2 : u ∈ H1
A(R3,C),

∫
Bc

r

a|u|2 6= 0

}
.

Particularly, for the case of a ∈ Lq(R3,R+)\{0} and a(x) = 0, x ∈ Bc
r, we say that Sa,r =∞.

Since Sa,r is nondecreasing for r ∈ (0,∞), it makes sense that

Sa,∞ := lim
r→∞

Sa,r.

Remark 3.3. If q ∈ (3/2,∞), then we can show that Sa,∞ = ∞. Indeed, for each u ∈
H1
A(R3,C)\{0}, by a ∈ Lq(R3,R+) and a 6= 0 for q ∈ (3/2,∞), we have that

∫
Bc

r
a|u|2 6

γ2
2q′|a|q,Bc

r
‖u‖2

A for r > 0. It follows that Sa,r > γ−2
2q′ |a|

−1
q,Bc

r
for |a|q,Bc

r
6= 0, or Sa,r =∞. Thus

limr→∞ Sa,r = ∞, that is, Sa,∞ = ∞. Here, q′ = q/(q − 1), γ2q′ is the imbedding constant

from H1
A(R3,C) to L2q′(R3,C). Moreover, if a ∈ L∞(R3,R+) and a∞ = 0, then for any

u ∈ H1
A(R3,C)\{0}, we have that

∫
Bc

r
a|u|2 6 |a|∞,Bc

r
γ2

2‖u‖2
A. Hence Sa,∞ =∞.

Lemma 3.4. Suppose that assumpations (K), (a), (f1), and (f2) hold. Let {µn} ⊂ (0,∞)

with {µn} having a positive lower bound, vn ⇀ v in H1
A(R3,C), and lim infn→∞ ‖vn‖A > 0.

If 〈I ′A(µnvn), vn〉 → 0, then the weak limit v of {vn} is nonzero.

Proof. Since vn ⇀ v in H1
A(R3,C), there exists a subsequence of {vn}, still denoted by {vn},

such that

vn ⇀ v in H1
A(R3,C),

vn → v in L2q′

loc(R3,C),

vn → v a.e. on R3.

By contradiction, suppose that v = 0. It follows from assumpations (f1) and (f2) that f(t)/t

is bounded on (0,∞). Let

l := sup{f(t)/t : t > 0}.

So there exist θ ∈ (0, 1) and sufficiently large r > 0 such that

l/θ < Sa,r.

This yields that for all n,∫
Bc

r

1

µn
af(|µnvn|)|vn| 6 l

∫
Bc

r

a|vn|2 6 θ‖vn‖2
A. (3.4)

According to the compactness of the embedding H1
A(Br,C) ↪→ L2q′(Br,C), it holds that

vn → 0 in L2q′(Br,C). It follows from assumpations (f1) and (f2) that for all n,

0 6
∫
Br

1

µn
af(|µnvn|)|vn| 6 l

∫
Br

a|vn|2 6 l|a|q|vn|22q′,Br
,
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which implies that

lim
n→∞

∫
Br

1

µn
af(|µnvn|)|vn| = 0. (3.5)

Thus, we obtain from (3.4) and (3.5) that

lim sup
n→∞

∫
R3

1

µn
af(|µnvn|)|vn| 6 θ lim sup

n→∞
‖vn‖2

A. (3.6)

On the other hand, it follows that

〈I ′A(µnvn), vn〉/µn = o(1),

that is,

o(1) = ‖vn‖2
A + λ

∫
R3

[
Iα ∗

(
K|µnvn|2

)]
K|vn|2 −

∫
R3

1

µn
af(|µnvn|)|vn|

> ‖vn‖2
A −

∫
R3

1

µn
af(|µnvn|)|vn|,

where here and in what follows o(1) denotes a quantity that goes to zero as n → ∞.

Therefore,

lim sup
n→∞

∫
R3

1

µn
af(|µnvn|)|vn| > lim sup

n→∞
‖vn‖2

A,

which contradicts Eq. (3.6). Thus, v 6= 0, and the proof is complete.

In the following, for u ∈ H1
A(R3,C), let û =

{
u/‖u‖A, u 6= 0,

0, u = 0,

Lemma 3.5. Suppose that assumpations (K), (a), (f1), and (f2) hold. If {un} ⊂ H1
A(R3,C)\

{0} satisfies 〈I ′A(un), ûn〉 → 0, then {un} is bounded in H1
A(R3,C).

Proof. By contradiction, suppose that ‖un‖A → ∞ as n → ∞. Let us denote vn = ûn for

all n. Then {vn} is bounded in H1
A(R3,C) and there exists v ∈ H1

A(R3,C) such that, up to

a subsequence,

vn ⇀ v in H1
A(R3,C),

vn → v in L2q′

loc(R3,C),

vn → v a.e. on R3.

Applying Lemma 3.4 with µn = ‖un‖A, we obtain that v 6= 0.

Since ‖un‖A →∞ as n→∞, it follows that

〈I ′A(un), un〉/‖un‖4
A = o(1),

that is,

o(1) =
1

‖un‖2
A

+ λ

∫
R3

[
Iα ∗

(
K|vn|2

)]
K|vn|2 −

1

‖un‖2
A

∫
R3

a
f(|un|)
|un|

|vn|2.
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Hence, ∫
R3

[
Iα ∗

(
K|vn|2

)]
K|vn|2 = o(1).

From Fatou’s lemma, we obtain that
∫
R3 [Iα ∗ (K|v|2)]K|v|2 = 0, which implies from assump-

tion (K) that v = 0. That is a contradiction, and the proof is complete.

Lemma 3.6. Suppose that assumptions (K), (a), (f1), and (f2) hold. If un ⇀ u in H1
A(R3,C)

with u 6= 0, and I ′A(un)→ 0, then u is a nonzero critical point of IA and un → u.

Proof. It is sufficient to prove that ‖un‖A → ‖u‖A as n→∞. From I ′A(un)→ 0 and un ⇀ u,

we have that

〈I ′A(un), un〉 =

∫
R3

(
|∇Aun|2 + |un|2

)
+ λ

∫
R3

[
Iα ∗

(
K|un|2

)]
K|un|2 −

∫
R3

af(|un|)|un| = o(1),

〈I ′A(un), u〉

= Re

∫
R3

(
∇Aun · ∇Au+ unu

)
+ λRe

∫
R3

[
Iα ∗

(
K|un|2

)]
Kunu− Re

∫
R3

a
f(|un|)
|un|

unu

= o(1),

and

Re

∫
R3

(
∇Aun · ∇Au+ unu

)
=

∫
R3

(
|∇Au|2 + |u|2

)
+ o(1).

It thus follows that showing that ‖un‖A → ‖u‖A is equivalent to proving that∫
R3

[Iα ∗
(
K|un|2

)
]K|un|2 − Re

∫
R3

[
Iα ∗

(
K|un|2

)]
Kunu = o(1), (3.7)

∫
R3

af(|un|)|un| − Re

∫
R3

a
f(|un|)
|un|

unu = o(1). (3.8)

First, we prove equality (3.8). In fact, by assumpations (f1) and (f2), we have that for r > 0,∣∣∣∣∫
Bc

r

af(|un|)|un| − Re

∫
Bc

r

a
f(|un|)
|un|

unu

∣∣∣∣
6

∫
Bc

r

∣∣∣∣af(|un|)|un| − a
f(|un|)
|un|

unu

∣∣∣∣
=

∫
Bc

r

af(|un|)|un − u|

6 l

∫
Bc

r

a|un||un − u|

6 lS−1
a,r‖un‖A‖un − u‖A 6 CS−1

a,r .

This and the compactness of embedding H1(R3,C) ↪→ L2q′

loc(R3,C) imply Eq. (3.8).
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Now we verify that equality (3.7) holds. First, consider the case that p ∈ (6/(1 +α),∞).

Since un ⇀ u in H1
A(R3,C), it follows that un → u in L

12p/[p(3+α)−6]
loc (R3,C) and then for any

given ε > 0, there exist r > 0 and n0 such that for all n > n0,

|K|p,Bc
r
< ε, |un − u|12p/[p(3+α)−6],Br < ε.

Hence, by the HLS inequality, we have that for all n > n0,∣∣∣∣∫
R3

[
Iα ∗

(
K|un|2

)]
K|un|2 − Re

∫
R3

[
Iα ∗

(
K|un|2

)]
Kunu

∣∣∣∣
=

∣∣∣∣Re

∫
R3

[
Iα ∗

(
K|un|2

)]
K
(
|un|2 − unu

)∣∣∣∣
6

∫
R3

[
Iα ∗

(
K|un|2

)]
K|un||un − u|

6 C1

∣∣K|un|2∣∣6/(3+α)

(∫
Br

(K|un||un − u|)6/(3+α) +

∫
Bc

r

(K|un||un − u|)6/(3+α)

)(3+α)/6

6 C1|K|p|un|212p/[p(3+α)−6]

(∫
Br

(K|un||un − u|)6/(3+α) +

∫
Bc

r

(K|un||un − u|)6/(3+α)

)(3+α)/6

6 C2

(
|K|6/(3+α)

p |un|6/(3+α)
12p/[p(3+α)−6]|un − u|

6/(3+α)
12p/[p(3+α)−6],Br

+|K|6/(3+α)
p,Bc

r
|un|6/(3+α)

12p/[p(3+α)−6]|un − u|
6/(3+α)
12p/[p(3+α)−6]

)(3+α)/6

6 C3ε.

Second, consider the case that p =∞. By the HLS inequality, assumption (K), and local

compact imbedding theorems, we have that for sufficiently large r > 0,∣∣∣∣∫
R3

[
Iα ∗

(
K|un|2

)]
K|un|2 − Re

∫
R3

[
Iα ∗

(
K|un|2

)]
Kunu

∣∣∣∣
=

∣∣∣∣Re

∫
R3

[
Iα ∗

(
K|un|2

)]
K
(
|un|2 − unu

)∣∣∣∣
6 C1

∣∣K|un|2∣∣6/(3+α)

(∫
Br

(K|un||un − u|)6/(3+α) +

∫
Bc

r

(K|un||un − u|)6/(3+α)

)(3+α)/6

6 C1|K|∞|un|212/(3+α)

(∫
Br

(K|un||un − u|)6/(3+α) +

∫
Bc

r

(K|un||un − u|)6/(3+α)

)(3+α)/6

6 C2

(
|K|6/(3+α)

∞ |un|6/(3+α)
12/(3+α)|un − u|

6/(3+α)
12/(3+α),Br

+|K|6/(3+α)
∞,Bc

r
|un|6/(3+α)

12/(3+α)|un − u|
6/(3+α)
12/(3+α)

)(3+α)/6

6 C3ε,

and the proof is complete.

Finally, we give the proof of Theorem 1.1.
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Proof of Theorem 1.1. Assume that {un} ⊂ H1
A(R3,C) is a sequence satisfying Eq. (3.3).

Then by Lemma 3.5, the sequence {un} is bounded in H1
A(R3,C). We then may assume

that, up to a subsequence, un ⇀ u in H1
A(R3,C) for some u ∈ H1

A(R3,C). Since IA(un)→ c

and c > 0, it follows that lim infn→∞ ‖un‖A > 0. Applying Lemma 3.4 with µn = 1 for all n,

we obtain that u 6= 0. It follows from Lemma 3.6 that u is a nonzero critical point of IA.

Let us define the set of nonzero critical points of IA, namely

KA = {u ∈ H1
A(R3,C) \ {0} : I ′A(u) = 0},

and

m = inf{IA(u) : u ∈ KA}.

Then KA is nonempty and m > −∞. Furthermore, we have that for all u ∈ KA,

0 = ‖u‖2
A + λ

∫
R3

[
Iα ∗

(
K|u|2

)]
K|u|2 −

∫
R3

af(|u|)|u| > ‖u‖2
A −

∫
R3

af(|u|)|u|.

Now, choosing ε ∈ (0, 1) such that f0 < (1 − ε)Sa, it follows from Eq. (3.1) that for

u ∈ H1
A(R3,C),∫
R3

af(|u|)|u| 6
∫
R3

a
[
(1− ε)Sa|u|2 + Cε|u|6/q

′
]
6 (1− ε)‖u‖2

A + |a|qCεγ6/q′

6 ‖u‖6/q′

A .

Therefore, we have that for all u ∈ KA,

0 > ‖u‖2
A − (1− ε)‖u‖2

A − |a|qCεγ
6/q′

6 ‖u‖6/q′

A . (3.9)

Since u 6= 0 for u ∈ KA, it follows from Eq. (3.9) that

‖u‖A >

(
ε

|a|qCεγ6/q′

6

)q′/(6−2q′)

> 0, u ∈ KA.

Hence any limit point of a sequence in KA is different from zero.

We claim that IA is bounded from below on KA. In fact, assume that {un} ⊂ KA is

such that IA(un) → m as n → ∞. Then it follows from Lemmas 3.5 and 3.4 that {un}
is bounded in H1

A(R3,C) and has a weakly convergent subsequence, still denoted by {un},
that converges weakly to u0 ∈ H1

A(R3,C) and u0 6= 0. Thus, IA is bounded from below

on KA and m > −∞. Furthermore, it follows from Lemma 3.6 that un → u0 and then

I ′A(u0) = 0, IA(u0) = m.
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