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Abstract

In studying the stability of Bénard problem we usually have to solve a variational
problem to determine the critical Rayleigh number for linear or nonlinear stability. To
solve the variational problem one usually transform it to an eigenvalue problem which is
called Euler-Lagrange equations. An operator related to the Euler-Lagrange equations
is usually referred to as Euler-Lagrange operator whose spectrum is investigated in this
paper. We have shown that the operator possesses only the point spectrum consisting
of real number, which forms a countable set. Moreover, it is found that the spectrum
of the Euler-Lagrange operator depends on the thickness of the fluid layer.

KEY WORDS: Bénard problem, Oberbeck-Boussinesq equations, variational problem,
Euler-Lagrange operator, spectrum.

1 Introduction

Bénard problem refers to a fluid layer heated from below. It is not only a well known sta-
bility problem in fluid mechanics but also a standard situation in geophysical applications.
From the perspective of mechanics, the main research object of the problem is the onset of
convection and the transform from laminar fluid flow to turbulence. This problem has many
extensions, such as: rotating Bénard problem[1-3], Bénard problem with magnetic field[4, 5]
and Bénard problem for double diffusive convection in porous medium[6, 7], etc.

There are a lot of papers dealing with Bénard problem theoretically as well as experi-
mentally[1]. The study of this problem is basically carried out under two kinds of boundary
conditions. One is rigid boundaries, and the other is stress-free boundaries. The former is
closer to practical applications, while the latter is more convenient for theoretical research.
This paper has selected the case of the stress-free boundary conditions for our consideration.
Most theoretical research considering this problem is to investigate its linear and nonlinear
stability mathematically. For the linear stability one can refer to the celebrated monograph
of Chandrasekhar[8], as for the nonlinear stability one can refer to [2-7] and the references

1Correspondence concerning this article should be addressed to xulx@mail.buct.edu.cn. This work was
supported by National Natural Science Foundation Project (21627813).
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therein. In the stability analysis of this problem we usually have to solve a variational prob-
lem by means of solving the corresponding Euler-Lagrange equations. In many situations,
such as Bénard system with rotation or magnetic field, the Euler-Lagrange equation can be
solved analytically for the stress boundaries, but not for the rigid boundaries.

In this paper we will study the spectrum of an operator derived from the Euler-Lagrange
equations. For this reason, the operator is called Euler-Lagrange operator which is found
to be connected with a compact operator. The compact operator is also a Hilbert Schmidt
operator. The spectrum of Euler-Lagrange operator is closely related to the existence of so-
lution of the variational problem. Unfortunately, this spectrum problem is rarely discussed
in papers.

The paper is organized as follows: Section 2 contains the perturbation equations, bound-
ary conditions, and the poloidal-toroidal decomposition of a solenoidal vector field. Section
3 deduces a variational problem. The calculation of the spectrum of the Euler-Lagrange
operator and the related proofs are carried out in section 4.

2 Perturbation equations and boundary conditions

We consider an infinite horizontal layer R2 × (−1, 1) which is filled with an incompressible
fluid and heated from bottom. Then, the nondimensionalized perturbation equations for the
motionless basic state are given by Oberbeck-Boussinesq equations as follows[9,10]:

(1)


∂tu = ∆u+

√
Rθk −∇p− u · ∇u,

∇ · u = 0,

pr∂tθ = ∆θ +
√
Ru · k − pru · ∇θ.

where R is Rayleigh number, pr is Prandtl number, ∆ is three-dimensional Laplacian and
k = (0, 0, 1)T is a unit vector being vertical to the fluid layer. u = (u, v, w), θ, p are, velocity,
temperature and pressure field, respectively. u, θ and p are assumed to be periodic in x, y
with periodic cell P = (− π

l1
, π
l1
)× (− π

l2
, π
l2
).

The boundary conditions are stress free and given by

∂zu = ∂zv = w = θ = 0 at z = ±1(2)

In order to eliminate the pressure in the momentum conservation equation we apply the
poloidal-toroidal-mean flow decomposition to an arbitrary solenoidal vector field[9]

u = curlcurlφk + curlψk + f(3)

= δφ+ εψ + f .

where δ· = curlcurl.k = (∂xz·, ∂yz·,−∆2·)T , ε· = curl.k = (∂y·,−∂x·, 0 )T , ∆2 = ∂2x + ∂2y .
f = (f1, f2, f3)

T is called mean flow depending only on z and its third component is con-
stant. With the boundary of (2) we obtain f3 = 0. Here .T refers to transposition. For a
given vector V = (V1, V2, V3)

T we denote δ · V = ∂xzV1 + ∂yzV2 + (−∆2)V3.
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Under the decomposition (3) the perturbation equations (1) can be equivalently trans-
formed into the following ones[10]:

(4)



∂t(−∆)(−∆2)φ = −(−∆)2(−∆2)φ+
√
R(−∆2)θ + δ · (u · ∇u)

∂t(−∆2)ψ = −(−∆)(−∆2)ψ + ε · (u · ∇u)

pr∂tθ = −(−∆)θ +
√
R(−∆2)φ+ pru · ∇θ

∂tf1 = −(−∂2z )f1 − 1
|P|

∫
P ũ · ∇ũ1 dxdy

∂tf2 = −(−∂2z )f2 − 1
|P|

∫
P ũ · ∇ũ2 dxdy

where ũ1 and ũ2 refer to the first and second component of ũ = δφ+εψ, respectively. φ, ψ
are uniquely determined if we require them to be periodic in x, y (with the periodic cell P)
and to have vanishing mean value over P , i.e.

∫
P φdxdy =

∫
P ψdxdy = 0.

The corresponding boundary conditions for the new dependent variables are

φ = ∂2zφ = ∂zψ = ∂zf1 = ∂zf2 = θ = 0 at z = ±1.(5)

For the shortness, the system (4) can be written as

(6) J1Φt + J2Φ−
√
RJ3Φ +M(Φ) = 0

where Φ = (φ, ψ, θ, f1, f2)
T . The matrix operators J1, J2, J3 and nonlinear term M(Φ) have

the following form:

J1 =


(−∆)(−∆2) 0 0 0 0

0 −∆2 0 0 0
0 0 prI 0 0
0 0 0 I 0
0 0 0 0 I

 ,

J2 =


∆2(−∆2) 0 0 0 0

0 (−∆)(−∆2) 0 0 0
0 0 −∆ 0 0
0 0 0 −∂2z 0
0 0 0 0 −∂2z

 ,

J3 =


0 0 −∆2 0 0
0 0 0 0 0

−∆2 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

M(Φ) =


−δ · ((δφ+ εψ + f) · ∇(δφ+ εψ + f))
−ε · ((δφ+ εψ + f) · ∇(δφ+ εψ + f))

−pr(δφ+ εψ + f) · ∇θ
1
|P|

∫
P(δφ+ εψ) · ∇(δφ+ εψ)1 dxdy

1
|P|

∫
P(δφ+ εψ) · ∇(δφ+ εψ)2 dxdy

 .
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Where I is a unit operator. The Hilbert space H, in which we are going to study our
problem, is given by

H = HM ×HM ×H×H1
M ×H1

M

where HM , H, H1
M are defined as follows

HM = W ((−1, 1), L2
M(P)),

H =W ((−1, 1), L2(P)),

H1
M = {f |f ∈ L2(−1, 1),

∫ 1

−1
f(z) dz = 0}.

Here, L2
M(P) contains the elements of L2(P) with vanishing mean value over P . W ((−1, 1), L2(P))

consists of the mapping h : (−1, 1) → L2(P) with h ∈ L2((−1, 1), L2(P)). For both H and
H1

M , the inner product are, respectively, given by

< f, g >=

∫
Ω

f · ḡ dxdydz,Ω = P × (−1, 1)

< f, g >= |P|
∫ 1

−1

f · ḡ dz.

With ∥·∥ we denote the corresponding norm to the inner product. It is easy to show that

matrix operators J1 and J2 are strictly positive definite selfadjoint. Therefore, J
1
2
1 and J

1
2
2

are well defined.

3 A variational problem in linear stability analysis

By the method of linearized stability one neglects the nonlinear term M(Φ) and study
the following equation

(7) J1Φt + J2Φ−
√
RJ3Φ = 0.

We investigate the solution of this equation of the form Φ(x, y, z, t) = Ψeσt with Ψ =
Ψ(x, y, z) and obtain an eigenvalue problem:

(8) σJ1Ψ = −J2Ψ+
√
RJ3Ψ

where Ψ = (φ̂, ψ̂, θ̂, f̂1, f̂2)
T which satisfy the following boundary conditions

φ̂ = ∂2z φ̂ = ∂zψ̂ = ∂zf̂1 = ∂zf̂2 = θ̂ = 0 at z = ±1.(9)

In related Hilbert space φ̂, ψ̂ and θ̂ can be expanded in Fourier series:

φ̂(x, y, z) = 1√
|P|

∑
k∈Z2−{0}

ak(z)e
i(l1k1x+l2k2y)

ψ̂(x, y, z) = 1√
|P|

∑
k∈Z2−{0}

bk(z)e
i(l1k1x+l2k2y)

θ̂(x, y, z) = 1√
|P|

∑
k∈Z2

ck(z)e
i(l1k1x+l2k2y).

with k = (k1, k2)
T
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By denoting λ0 = sup{Reσ} we have
λ0 = sup{Reσ} > 0, basic flow is linearly unstable ,

λ0 = sup{Reσ} < 0, basic flow is linearly stable,

λ0 = sup{Reσ} = 0, basic flow is marginally stable.

The value λ0 depends obviously on Rayleigh number R. The smallest Rayleigh number
corresponding to λ0 = 0 is critical Rayleigh number Rc which gives bound for linear stability.

Using boundary condition (9) and taking inner product to both sides of (8) with Ψ yield

(10) σ∥J
1
2
1 Ψ∥2 = −∥J

1
2
2 Ψ∥2 +

√
R < J3Ψ,Ψ >

where Ψ is eigenvector belonging to the eigenvalue σ, and

∥J
1
2
1 Ψ∥2 = ∥∇2∇φ̂∥2 + ∥∇2ψ̂∥2 + pr∥θ̂∥2 + ∥f̂1∥2 + ∥f̂2∥2,

∥J
1
2
2 Ψ∥2 = ∥∇2∆φ̂∥2 + ∥∇2∇ψ̂∥2 + ∥∇θ̂∥2 + ∥∂zf̂1∥2 + ∥∂zf̂2∥2,

< J3Ψ,Ψ >=< −∆2θ̂, φ̂ > + < −∆2φ̂, θ̂ >= 2Re < −∆2θ̂, φ̂ > .

Setting σ = Reσ + i(Imσ) and putting it into (10), by comparing imaginary part of both
sides of resulting equations we obtain Imσ = 0, suggesting that the eigenvalue problem (10)
has only real eigenvalues.

Since the eigenvalue σ is real, suppose that Ψ is an eigenvector corresponding to σ, then
its conjugate function Ψ is also an eigenvector to the same eigenvalue σ. Therefore, real
functions 1

2
(Ψ + Ψ) and 1

2i
(Ψ−Ψ) is also eigenvectors to the same eigenvalue σ, if they are

non-zero functions. Since both 1
2
(Ψ+Ψ) and 1

2i
(Ψ−Ψ) can not be vanishing simultaneously.

It follows that it is enough to consider the equation (10) in real Hilbert space. This leads to

σ = Reσ = −∥J
1
2
2 Ψ∥2

∥J
1
2
1 Ψ∥2

(1−
√
R < J3Ψ,Ψ >

∥J
1
2
2 Ψ∥2

).

We denote

1√
Rc

= sup
H−{0}

< J3Ψ,Ψ >

∥J
1
2
2 Ψ∥2

(11)

= sup
H−{0}

2 < −∆2θ̂, φ̂ >

∥∇2∆φ̂∥2 + ∥∇2∇ψ̂∥2 + ∥∇θ̂∥2 + ∥∂zf̂1∥2 + ∥∂zf̂2∥2
.

where

H =
{
φ̂, ψ̂, θ̂, f̂1, f̂2

∣∣∣{φ̂, ψ̂} ⊂ HM , θ̂ ∈ H, {f̂1, f̂2} ⊂ H1
M , φ̂, ψ̂, θ̂, f̂1, f̂2 satisfy

boundary conditions (9)with l1, l2 ∈ [0,+∞) and l21 + l22 ̸= 0} .
It should be emphasized that a steady basic flow is said to be stable if it is stable with

respect to all possible perturbations. This implies that the supremum in (11) is taken for
any l1, l2 ∈ [0,+∞) and l21k

2
1 + l22k

2
2 ̸= 0. The case of l1 ̸= 0 and l2 = 0 indicates that the
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perturbation is two-dimensional, depending only on t, x and z. Similar understanding for
the case of l1 = 0 and l2 ̸= 0.

It is obvious that the variational problem (11) is actually equivalent to

(12)
1√
Rc

= sup
H−{0}

2 < −∆2θ̂, φ̂ >

∥∇2∆φ̂∥2 + ∥∇θ̂∥2
.

Here we have set ψ̂ = f̂1 = f̂2 = 0. If R < Rc, we have λ0 < 0, which implies that the steady
basic flow is linearly stable. If R > Rc, we have λ0 > 0, which implies that there is at least
one positive eigenvalue. In this case, the steady basic flow is linearly unstable.

If the nonlinear stability of the motionless state of the Bénard problem is studied by

considering the kinetic energy E(t) = ∥J
1
2
1 Ψ∥2 as an energy functional. It is easy to find

that the critical stability bound RE is also determined by the variational problem (12)(i.e.
RE = Rc), and the motionless state is globally and exponentially stable for R < EE.

4 Spectrum of Euler-Lagrange operator

Consider the variational problem (12). We shall replace 1√
Rc

with parameter µ, then the
Euler-Lagrange equation corresponding to the variational problem is given by

(13)

{
µ(−∆)2(−∆2)φ̂ = (−∆2)θ̂

µ(−∆)θ̂ = (−∆2)φ̂

This is an eigenvalue problem, where µ ∈ C is the eigenvalue parameter and the boundary
conditions are given in (9). C denotes the set of complex numbers.

With the denotation of

A =

(
∆2(−∆2) 0

0 −∆

)
, B =

(
0 −∆2

−∆2 0

)
.

the equations (13) are written in the form of (µA−B)Φ̂ = 0, with Φ̂ = (φ̂, θ̂)T . The matrix
operator µA−B is generally referred to as Euler-Lagrange operator and will be represented
by Ê(Ĥ, µ), that is Ê(Ĥ, µ) = µA−B with Ĥ = HM ×HM . The set

ρ(Ê(Ĥ, µ)) = {µ ∈ C|µA−B is injective and (µA−B)−1 a is bounded operator in Ĥ}

is called resolvent set of the operator Ê(Ĥ, µ). The complementary set σ(Ê(Ĥ, µ)) = C \
ρ(Ê(Ĥ, µ)) is the spectrum of Ê(Ĥ, µ).

For the eigenvalue problem we have the following lemma.

Lemma 4.1 Assuming l1 and l2 is given with l21 + l22 ̸= 0. Then the eigenvalues of the
eigenvalue problem (13) form a countable set whose elements are given by

µ± = ± (l1
2k1

2 + l2
2k2

2)
1
2

(n
2π2

4
+ l1

2k1
2 + l2

2k2
2)

3
2

, n = 1, 2, · · · , (k1, k2)T ∈ Z2 − {0},
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where l1
2k1

2 + l2
2k2

2 ̸= 0, i.e. {µ±} ⊂ σ(Ê(Ĥ, µ)). The corresponding eigenvectors are then
given by

Φ̂± =

(
φ̂

θ̂

)
=

(
C
D±

)
sin

nπ

2
(z + 1) ei(k1l1x+k2l2y)(14)

where D± = C

(n
2π2

4
+l1

2k1
2+l2

2k2
2)µ±

, C is any non-zero constant.

Proof. Since µ = 0 can not be an eigenvalue. By taking operator (−∆2)
−1 to first

equation of (13), then applying (−∆) to the resulting equation, after using second equation
of (13) to eliminate θ̂ we get

(15) µ2(−∆)3φ̂ = (−∆2)φ̂.

With boundary conditions φ̂|z=±1 = ∂2z φ̂|z=±1 = θ̂|z=±1 = 0 and equation (13) we obtain
∂2z θ̂|z=±1 = ∂4z φ̂|z=±1 = 0. Combining equation (15) it follows that ∂6z φ̂|z=±1 = 0. Differenti-
ating equation (15) twice with respect to z we have ∂8z φ̂|z=±1 = 0. By further repeating this
process successively we conclude that ∂2nz φ̂|z=±1 = 0 for n = 0, 1, 2, · · · . Therefore, we need
only consider φ̂ of the form:

(16) φ̂ = C sin
nπ

2
(z + 1) ei(k1l1x+k2l2y)

where C is non-zero constant. Putting (16) into (15), we obtain

µ = ± (l1
2k1

2 + l2
2k2

2)
1
2

(n
2π2

4
+ l1

2k1
2 + l2

2k2
2)

3
2

.

Putting (16) into the first equation of (13) we conclude that

θ̂ = D± sin
nπ

2
(z + 1) ei(k1l1x+k2l2y), with D± =

C

(n
2π2

4
+ l1

2k1
2 + l2

2k2
2)µ

.

From this we have completed the proof of this lemma.

Lemma 4.2 Suppose L2(−1, 1) is given in section 2, then the following conclusions
hold.

(1) The set of functions {cos (2n−1)π
2

z}∞n=1 is complete in L2(0, 1), i.e. for any even function

f(z) ∈ L2(−1, 1), f(z) can be expanded in Fourier series of {cos (2n−1)π
2

z}∞n=1.

(2) The set of functions {sin nπ
2
(z + 1)}∞n=1 is complete in L2(−1, 1).

Proof. It is well known that the set of functions {1, cosnπz, sinnπz}∞n=1 is complete in
L2(−1, 1). If f(z) ∈ L2(−1, 1) is even, then the Fourier extension of f(z) reduces to a cose
series:

f(z) =
a0
2

+
∞∑
n=1

an cosnπz

with an = 2
∫ 1

0
f(z) cosnπzdz. Since a function defined in (0, 1) can be extended to the

interval (−1, 1) by defining it to be an even function. This implies that the function set
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{1, cosnπz}∞n=1 is complete in L2(0, 1). If f(z) ∈ L2(0, 1), by setting z = 2t, we obtain a
function F (t) = f(2t), 0 < t < 1

2
. If F (t) is extended to the interval (0, 1) in the way of

F (t) = −F (1− t), 1
2
< t < 1, then from foregoing discussion we find that F (t) has Fourier

extension:

F (t) =
â0
2

+
∞∑
n=1

ân cosnπt,

where ân = 2
∫ 1

0
F (t) cosnπtdt. Note that

(17) ân = 2{
∫ 1

2

0

F (t) cosnπtdt+

∫ 1

1
2

F (t) cosnπtdt}.

Applying the transformation τ = 1− t to the second integral we get∫ 1

1
2

F (t) cosnπtdt = −
∫ 1

1
2

F (1− t) cosnπtdt =

∫ 0

1
2

F (τ) cosnπ(1− τ)dτ

= −(−1)n
∫ 1

2

0

F (τ) cosnπτdτ.

Combining with (17) we see that ân = 0 for even number of n. Putting t =
z

2
back to

F (t) = f(2t) we finally obtain the Fourier extension for f(z) as follows

f(z) =
∞∑
n=1

â2n−1 cos
(2n− 1)π

2
z.

Therefore, the completeness of {cos (2n−1)π
2

z}∞n=1 in L2(0, 1) is proved.
By letting n = 2k − 1 and n = 2k for k = 1, 2, · · · , separately, it follows that

span{sin nπ
2
(z + 1)}∞n=1 = span{sinnπz, cos (2n− 1)π

2
z}∞n=1.

Note that for f(z) ∈ L2(−1, 1) we have

f(z) =
f(z) + f(−z)

2
+
f(z)− f(−z)

2
.

Observing that f(z)+f(−z)
2

is an even function. From just proved results we know that
f(z)+f(−z)

2
can be extended in Fourier series with respect to {cos (2n−1)π

2
z}∞n=1. Similar-

ly, f(z)−f(−z)
2

is an odd function and can be extended in Fourier series with respect to
{sinnπz}∞n=1. Therefore, f(z) ∈ L2(−1, 1) can be expended in Fourier series with respect to
{sin nπ

2
(z + 1)}∞n=1. So that the second assertion is also proved.

Since A is a strictly positive definite selfadjoint operator, it allows us to study the spec-
trum of operator L = A− 1

2BA− 1
2 and to prove the following theorem.

Theorem 4.1 Assuming l1 and l2 is given in lemma 4.1. Then the operator L =
A− 1

2BA− 1
2 has µ± as its eigenvalues and the corresponding eigenvectors are given by

{η±} = { A
1
2 Φ̂+

∥A 1
2 Φ̂+∥

,
A

1
2 Φ̂−

∥A 1
2 Φ̂−∥

}.
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The eigenvectors {η±} form a complete orthonormal system in Ĥ.

Proof. Take operator A− 1
2 to (µA − B)Φ̂ = 0 we have µA

1
2 Φ̂ − A− 1

2BΦ̂ = 0. Setting

Ψ̂ = A
1
2 Φ̂ yields A− 1

2BA− 1
2 Ψ̂ = µΨ̂. This indicates that µ is the eigenvalue of the operator

L with corresponding eigenvector Ψ̂ = A
1
2 Φ̂, if µ is the eigenvalue of the Euler-Lagrange

operator Ê(Ĥ, µ) with eigenvector Φ̂. Thus, it is proved that µ± are the eigenvalue of

the operator L with corresponding eigenvector Ψ̂ = A
1
2 Φ̂±. Unitizing them we obtain an

orthonormal system consisting of eigenvectors of L as follows

{ A
1
2 Φ̂+

∥A 1
2 Φ̂+∥

,
A

1
2 Φ̂−

∥A 1
2 Φ̂−∥

}.

In what follows we denote this system by {η±}, with

η+ =
A

1
2 Φ̂+

∥A 1
2 Φ̂+∥

, η− =
A

1
2 Φ̂−

∥A 1
2 Φ̂−∥

we shall prove that {η±} is complete in Ĥ.
Suppose that {η±} is not complete in Ĥ, then there exists a vector Φ̂0 ∈ Ĥ(Φ̂0 ̸= 0)

satisfying Φ̂0 ∈ span{η±}
⊥
. From this it follows that

< Φ̂0, η± >=< A
1
2A− 1

2 Φ̂0, η± >=< A− 1
2 Φ̂0, A

1
2η± >= 0.

If we can prove that

span{A 1
2η±} = Ĥ.(18)

then it turns out that A− 1
2 Φ̂0 = 0, this leads to Φ̂0 = 0. This contradicts the hypothesis, so

that {η±} is complete in Ĥ.
Now we prove (18). From lemma 4.2 and the completeness of system

{ei(k1l1x+k2l2y)}(k1,k2)T∈Z2−{0}

in L2
M(P) we know that ê(n,k) =

√
l1l2
2π

sin nπ
2
(z + 1) ei(k1l1x+k2l2y) is a complete orthonormal

system in HM . From this it follows that{(
ê(n,k)

0

)
,

(
0

ê(m,k′)

)}
k,k′ ∈ Z2 − {0}
n,m ∈ IN

(19)

form a complete orthonormal system in Ĥ.

With

A
1
2η± =

AΦ̂±

∥A 1
2 Φ̂±∥

=
1

∥A 1
2 Φ̂±∥

(
∆2(−∆2)C
(−∆)D±

)
sin

nπ

2
(z + 1) ei(k1l1x+k2l2y)

=
1

∥A 1
2 Φ̂±∥

(
(n

2π2

4
+ l1

2k1
2 + l2

2k2
2)2(l1

2k1
2 + l2

2k2
2)C

(n
2π2

4
+ l1

2k1
2 + l2

2k2
2)D±

)
sin

nπ

2
(z + 1) ei(k1l1x+k2l2y)
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it follows that

A
1
2η+∥A

1
2 Φ̂+∥+ A

1
2η−∥A

1
2 Φ̂−∥

=

(
2(n

2π2

4
+ l1

2k1
2 + l2

2k2
2)2(l1

2k1
2 + l2

2k2
2)C

0

)
sin nπ

2
(z + 1) ei(k1l1x+k2l2y),

= 4(n
2π2

4
+ l1

2k1
2 + l2

2k2
2)2(l1

2k1
2 + l2

2k2
2) Cπ√

l1l2

(
ê(n,k)

0

)
.

A
1
2η+∥A

1
2 Φ̂+∥ − A

1
2η−∥A

1
2 Φ̂−∥

=

(
0

2(n
2π2

4
+ l1

2k1
2 + l2

2k2
2)D+

)
sin nπ

2
(z + 1) ei(k1l1x+k2l2y).

= 4(n
2π2

4
+ l1

2k1
2 + l2

2k2
2) πD+√

l1l2

(
0

ê(n,k)

)
.

(20)

These two equations in (20) imply that the system (19) is equivalent to {A 1
2η+, A

1
2η−}, so

(18) is proved.

Theorem 4.2 Assuming l1 and l2 is given in lemma 4.1. Then L = A− 1
2BA− 1

2 is
not only a compact but also a Hilbert-Schmidt operator and its spectrum is given by

σ(L) = {0} ∪ {µ±}

where {µ±} is given in lemma 4.1. Moreover, we have σ(Ê(Ĥ, µ)) = {µ±}.
Proof. From the proof of the theorem 4.1 we know that the eigenvectors of operator L

form a complete orthonormal system in Ĥ. Combining with the fact that {µ±} constitutes
a null-sequence regarding n2 and k, it follows immediately that L is compact.

Observing that

∑
k∈Z2−{0}
n=1,2,···

∥L(η±)∥2 =
∑

k∈Z2−{0}
n=1,2,···

∥L( A
1
2 Φ̂±

∥A 1
2 Φ̂±∥

)∥2 =
∑

k∈Z2−{0}
n=1,2,···

|µ±|2 < +∞.

With this we conclude that L is a Hilbert-Schmidt operator.

As for the last assertion we need only to pay attention to a fact that

Ê(Ĥ, µ) = A
1
2 (µ− L)A

1
2 .

For µ ∈ ρ(L), (µ− L)−1 is bounded in Ĥ, together with

[Ê(Ĥ, µ)]−1 = A− 1
2 (µ− L)−1A− 1

2

we obtain µ ∈ ρ(Ê(Ĥ, µ)). Thus σ(L) ⊃ σ(Ê(Ĥ, µ)). Note that the operator (−∆2) is only
nonnegative selfadjoint in H, but strictly positive definite selfadjoint in HM . From this it
follows that B−1 exists and is bounded in Ĥ. Hence we have 0 ∈ ρ(Ê(Ĥ, µ)). Combine with
the results in lemma 4.1 we have proved the assertion.
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Remarks: The Euler-Lagrange operator studied in this paper is derived under the
background of considering the fluid layer R2 × (−1, 1). If the fluid layer R2 × (−1

2
, 1
2
) is

considered, one can follow the same process of this paper to show that the spectrum of
the Euler-Lagrange operator of the case R2 × (−1

2
, 1
2
) is a true subset of the spectrum for

R2 × (−1, 1). In fact, one can show that the spectrum for the Euler-Lagrange operator for
the fluid layer R2 × (−1

2
, 1
2
) is

{± (l1
2k1

2 + l2
2k2

2)
1
2

(n2π2 + l1
2k1

2 + l2
2k2

2)
3
2

| n = 1, 2, · · · , (k1, k2)T ∈ Z2 − {0}}.

The results in this manuscript show that the eigenvectors of the eigenvalue problem (13)
constitute a complete orthonormal system of related Hilbert space, this suggests that the
supremum of variational problem can be attained, it is the maximum of the eigenvalues given
in lemma 4.1. Therefore, the supremum of the variational problem (12) is also a maximum.
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