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Abstract

This work brings a one-dimensional logistic harvesting model with Allee effect to the
time-varying framework. This new framework is more sober than the autonomous version
of the system because it; the framework, permits all environment-dependent coefficients
to depend on time. Based on these coefficients, we derive sets of conditions that drive
population to “mathematical” extinction. More precisely, we investigate various local and
global stability notions including uniform stability, attractivity, asymptotic stability and
the (uniform) exponential stability.

Keywords: time-varying system, extinction, attractivity, asymptotic stability, Allee ef-
fect, harvest model

1 Introduction

Logistic growth models have been extensively used to describe mathematically many phe-
nomena in a wide spectrum of applicability in biology, economy and ecology. To improve
the realism of the aforementioned models, several issues should be subject to further re-
search. To begin with, it is important to comprehend the long-term behavior and stability
results of the population [12, 14, 15]. In addition, all coefficients; including the carry-
ing capacity and the growth rate, have to be regarded as functions of time because they
depend on environmental fluctuations. This idea has been initially explored by [5, 9].
Thereafter, many researchers have used oscillating carrying capacities to describe seasonal
changes; e.g. [11, 19] and references therein. Lastly, special attention has to be paid to the
harvesting strategies because they may sharply affect the long-term behavior of the pop-
ulation [3, 4, 10, 20]. The relative-rate harvesting occurs when the number of population
caught per time is proportional to the total population size; whereas the constant-rate
harvesting occurs when the number of population is caught at a constant rate per unit
time independently of the size of the population [6, 13].

Among of the most influential dynamical behaviors of populations with logistic equa-
tions is the Allee effect which is phenomenon characterized by reduced per capita popu-
lation growth rate at low population sizes [1, 7, 20, 21]. This phenomenon is nonlinear,
caused by various biological factors and is associated with the increase of population
extinction risk [7, 8]. In this paper, we generalize the typical autonomous population
growth models in the presence of Allee effect and relative/constant-rate harvesting into the



nonautonomous cases: Ṅ (t) = g(t,N(t))− λ(t)N(t) and Ṅ (t) = g(t,N(t))− λ(t); where

g(t,N(t)) = r (t)N (t)
(

1− N(t)
K(t)

)
(N (t)− L (t)), t ≥ t0, population density N(t), time-

varying capacity K ∈ C0 (R,R), Allee threshold L ∈ C0 (R,R), harvest term µ ∈ C0 (R,R)
and a function r ∈ C0 (R,R) that is related to the intrinsic growth rate.

The purpose of this study is to perform analysis concerning the stability of the two sys-
tems under study. In particular, we study several types of stabilities including positivity of
solutions, (global) origin attractivity, (global) asymptotic stability and (global/uniform)
exponential stability. The paper is organized as follows. Section 2 provides some back-
ground results that are used throughout the paper. Sets of sufficient conditions for the
of the system in the presence of relative-rate harvesting and constant-rate harvesting are
derived respectively in Sections 3 and 4.

2 Background results

We present the some results from the literature that are needed in the paper. The next
theorem gives conditions for the attractivity of systems with vanishing perturbations.

Theorem 2.1. [16, Theorem 2.1] Consider the differential equation

u̇ (t) = e (t)− q (t)β (u (t)) , (1)

where t ≥ t0, state u ∈ R, a strictly increasing function β ∈ C0 (R,R) that satisfies β (0) =
0, and continuous real-valued functions e, q ∈ C0 (R,R+). We assume that q (t) > 0 for

all t ≥ t0,
∫∞
t0
q (t) dt = ∞, limt→∞

e(t)
q(t) = L ∈ [0,∞) and L ∈ Range {β}. Then for

each nonnegative initial condition u(t0) ≥ 0 and each solution u(t) with maximal interval
of existence [t0, ω) where ω ∈ (t0,∞], one has ω = ∞, ‖u‖∞ < ∞ and limt→∞ u (t) =
β−1 (L).

In the next theorem, sufficient conditions are derived for the asymptotic stability of
systems with unbounded perturbations.

Theorem 2.2. [17, Theorem 6.2] Consider the class of systems (2)–(3):

ẋ(t) = f
(
t, x(t)

)
, t ≥ t0, (2)

x(t0) = x0, (3)

where t ≥ t0, solution x(t) in Rm, and a well-defined function f : [t0,∞) × Rm → Rm
such that f (t, 0) = 0 for all t ≥ t0. Assume that the system (2)–(3) satisfies Carathéodory
conditions (and hence it has an absolutely continuous Carathéodory solution [2, Section
1.1]). Suppose that

1. there exist positive constants α > 0, β > 0 such that α < β and (−1)α = −1, contin-
uous functions R1 ∈ C0 (R,R), R2 ∈ C0 (R,R) such that R1(t) > 0, R2(t) > 0 for all
t > t0, and a Lebesgue measurable function h : R→ R satisfying

∫∞
t0
R1 (t)h (t) dt =

∞ and limt→∞
R2(t)
R1(t)

=∞.
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2. limt→∞ Λ (t) = 0, where the function Λ is defined almost everywhere on (t0,∞) as

Λ (t) =
R1 (t) Ṙ2 (t)− Ṙ1 (t)R2 (t)

h (t) (R1 (t))
2β−α−1

β−α (R2 (t))
β−2α+1

β−α

.

3. for every solution x (t) of (2)–(3) with maximal interval of existence [t0, ω), there
exist positive constants c1, c2, δ, σ and a Lyapunov function V ∈ C1 (R× Rm,R+),
satisfying

c1 |X|σ ≤ V (t,X) ≤ c2 |X|σ ,∀t ∈ R, ∀X ∈ Rm, (4)

∂V (t,X)

∂t

∣∣∣∣
X=x(t)

+
∂V (t,X)

∂X

∣∣∣∣
X=x(t)

· f (t, x (t))

≤
(
−R1 (t)V α (t, x (t)) +R2 (t)V β (t, x (t))

)
h (t) , (5)

for almost all t ∈ (t0, ω) that satisfy V (t, x (t)) < δ.

Then, there exists a positive constant c > 0 such that for every |x0| < c, we have ω =∞.
Moreover, the origin x = 0 is uniformly stable and is asymptotically stable.

3 Stability of the system in the presence of relative-

rate harvesting

We derive sufficient conditions for the positivity, the uniform stability, the asymptotic sta-
bility and the (uniform) exponential stability of the system with a relative-rate harvesting:

Ṅ (t) = r (t)N (t)

(
1− N (t)

K(t)

)
(N (t)− L (t))− λ (t)N (t) , t ≥ t0 ∈ R. (6)

Due to the continuity of the right-hand side of the differential equations (6), a continuously
differentiable solution exists and is defined on a maximal intervals of the form [t0, ω) where
t0 < ω ≤ ∞ [2, Section 1.1]. The origin N = 0 is an equilibrium point. Moreover, the
system (6) can be rewritten as

Ṅ (t) = − (r (t)L (t) + λ (t))N (t) + r (t)

(
1 +

L (t)

K(t)

)
N2 (t)− r (t)

K(t)
N3 (t) ,∀t ∈ [t0, ω).

(7)
In this section, we assume that K (t) 6= 0 for every t ≥ t0. The next lemma studies the
positivity of solutions.

Lemma 3.1. Assume that all time-varying coefficients of N , N2 and N3 in (7) are
nonnegatives for all t ≥ t0. Then for each strictly positive initial value, the positivity of
the solution N(t) is guaranteed; i.e. N(t) ≥ 0 for every t ≥ t0.

Proof. Let N(t0) > 0. To prove the positivity of solution, assume that there exists t1 ∈
(t0, ω) such that N(t1) < 0. Thus, the continuity of the solution N(t) and the Intermediate
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Value Theorem ensure that the set S = {t ∈ (t0, t1) : N(t) = 0} is nonempty. Let t2 =
supS. One can easily show that t2 ∈ S so that N(t2) = 0 and that N(t) < 0 for all
t ∈ (t2, t1). Therefore, we deduce by (7) that Ṅ (t) ≥ 0 for all t ∈ (t2, t1). This means
that N is increasing on (t2, t1) which contradicts the facts that N(t1) < 0 and N(t2) = 0.
This proves the positivity of solution.

Define the functions Q ∈ C0 (R,R) and E ∈ C0 (R,R) for every t ≥ t0 as

Q (t) = 2 (L (t) r (t) + λ (t)) ,

E (t) =
2 |r (t)| |K (t) + L (t)|

|K (t)|
.

One can consider the Lyapunov function V = N2 and the differential equation (7) to
obtain for all t ∈ (t0, ω) that

V̇ (t) = 2Ṅ (t)N (t) ,

= −Q (t)V (t) + 2r (t)

(
1 +

L (t)

K (t)

)
N3 (t)− 2r (t)

K(t)
V 2 (t) . (8)

3.1 Stability conditions when Q (·) > 0

The differential equation (8) gives

V̇ (t) ≤ −Q (t)V (t) + 2

∣∣∣∣r (t)

(
1 +

L (t)

K (t)

)∣∣∣∣ |N (t)|3

≤ −Q (t)V (t) + E (t)V
3
2 (t) for all t ∈ (t0, ω) that satisfy

r (t)

K(t)
≥ 0. (9)

Looking to the inequality (9), one can consider E(t) as a perturbation when r(·)
K(·) ≥ 0.

Results (i) and (ii) of the Theorem 3.1 study respectively the stability of the system (6)

for the cases limt→∞
E(t)
Q(t) = ∞ and limt→∞

E(t)
Q(t) = 0 in which the term E(t) is treated as

an unbounded and a vanishing perturbations.

Theorem 3.1. If Q (t) > 0 for each t ≥ t0 and
∫∞
t0
Q (t) dt = ∞, then we have the

following detached results.

(i) if limt→∞

(
E(t)
Q(t)

)
=∞, r(t)

K(t) ≥ 0, E (t) > 0,∀t ≥ t0 and both functions Q and E are

locally absolutely continuous with

lim
t→∞

Q (t) Ė (t)− Q̇ (t)E (t)

Q2 (t) E (t)
= 0, (10)

then N = 0 is uniformly stable and is asymptotically stable.

(ii) if limt→∞

(
E(t)
Q(t)

)
= 0 and r(t)

K(t) ≥ 0 for all t ≥ t0, then there exists some c > 0 such

that for each initial value N(t0) ∈ R with |N(t0)| < c, the solution N(t) of (6) is
continuable on [t0,∞) and N = 0 is locally attractive. If further we have K (t) =
−L (t) for all t ≥ t0, then the solution N(t) is global and the origin is uniformly stable
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and is globally asymptotically stable. Moreover, if there exist constants: c1 > 0 (that
is independent of t0) and c2 ≥ 0 (that may depend on t0) satisfying

∫ t
t0
Q (τ) dτ ≥

c1 (t− t0) + c2, ∀t ≥ t0, then the N = 0 is globally exponentially stable. Moreover, if
c2 is independent of t0, then N = 0 is globally uniformly exponentially stable.

(iii) if limt→∞

(
E(t)
Q(t)

)
= 0 and limt→∞

(
r(t)

Q(t)K(t)

)
= 0, then for all initial condition

N(t0) ∈ R with |N(t0)| < c for some c > 0, the solution N(t) of (6) is globally
defined on [t0,∞) and N = 0 is locally attractive.

Proof. We prove each case separately.

Proof of Result (i).
We aim to use Theorem 2.2 to prove this case. Since V = N2, the inequality (4) is satisfied
with c1 = 1, c2 = 1 and σ = 2. On the other hand, by (9) we conclude that the inequality
(5) is satisfied with α = 1, β = 1.5, R1(t) = Q(t), R2(t) = E(t) and h(t) = 1 for all t ≥ t0.
Observe that α < β, (−1)α = −1 and

∫∞
t0
R1 (t)h (t) dt = ∞ because

∫∞
t0
Q (t) dt = ∞.

Furthermore, we have limt→∞
R2(t)
R1(t)

=∞ because limt→∞
E(t)
Q(t) =∞. Simple computations

along with the fact that (10) yield limt→∞ Λ (t) = 0 where Λ in defined in Theorem 2.2.
All conditions of Theorem 2.2 are satisfied. Thus, there exists some c > 0 such that for all
|N(t0)| < c, one has ω =∞. Furthermore, N = 0 is uniformly stable and is asymptotically
stable.

Proof of Result (ii).

Suppose that limt→∞

(
E(t)
Q(t)

)
= 0 and r(t)

K(t) ≥ 0 for all t ≥ t0. Without loss of generality,

assume that E is not uniformly zero so that 0 <
∥∥∥EQ∥∥∥∞ < ∞. Pick a positive number δ

with δ <
∥∥∥EQ∥∥∥−2∞ . Thus, 1√

δ
>
∥∥∥EQ∥∥∥∞ ≥ E(t)

Q(t) for all t > t0 so that

E(t)δ
3
2

Q(t)
< δ,∀t > t0. (11)

On the other hand, we obtain by (9) that

V̇ (t) ≤ −Q (t)V (t) + E (t) δ
3
2 for all t ∈ (t0, ω) that satisfy V (t) < δ. (12)

Thus, we conclude by (11) that

V̇ (t) ≤ 0 for all t ∈ (t0, ω) that satisfy
E(t)δ

3
2

Q(t)
< V (t) < δ. (13)

We need to prove that for all V (t0) < δ, we have V (t) < δ for all t ∈ [t0, ω). To this
end, we use a proof technique similar to the proof of [18, Proposition 3.2]. We consider

the cases V (t0) <
E(t0)δ

3
2

Q(t0)
and E(t0)δ

3
2

Q(t0)
≤ V (t0) < δ. For the first case, assume that there

exists t1 ∈ (t0, ω) such that V (t1) ≥ δ. Thus, the continuity of the function E, Q and

the Intermediate Value Theorem ensure that the set S1 =

{
t ∈ [t0, t1] : V (t) = E(t)δ

3
2

Q(t)

}
is

5



nonempty (this can be easily shown by contradiction). Let t2 = supS1. It can be shown
that t2 ∈ S1 and t2 < t1. By the definition of t2, we have

V (t) >
E(t)δ

3
2

Q(t)
for all t ∈ (t2, t1]. (14)

The inequality (11) along with the assumption V (t1) ≥ δ imply that the set S2 =
{t ∈ [t2, t1] : V (t) = δ} is nonempty. Let t3 = inf S2. We have t3 ∈ S2 and t2 < t3 ≤ t1.
Furthermore, we deduce by (14) that

E(t)δ
3
2

Q(t)
< V (t) < δ for all t ∈ (t2, t3).

Thus, by the inequality (13), we get V̇ (t) ≤ 0 on the interval t ∈ (t2, t3) which means that
the Lyapunov function V (t) is nonincreasing on (t2, t3). This implies that V (t2) > V (t3)
which contradicts the facts that t2 ∈ S1, t3 ∈ S2 and (11). This proves the claim so that

when V (t0) <
E(t0)δ

3
2

Q(t0)
, we have V (t) < δ for all t > t0.

Similarly, for the second case E(t0)δ
3
2

Q(t0)
≤ V (t0) < δ, assume the existence of some t4 ∈ (t0, ω)

such that V (t4) ≥ δ. Consider the set S3 =

{
t ∈ [t0, t4] : V (t) = E(t0)δ

3
2

Q(t0)

}
. If S3 is

nonempty, then set t4 = supS3 so that t4 ∈ S3. Let t5 = inf {t ∈ [t4, t1] : V (t) = δ}. We

have V (t5) = δ and E(t0)δ
3
2

Q(t0)
< V (t) < δ for each t ∈ (t4, t5) and thus (13) implies that V

is nonincreasing on (t4, t5) which contradicts the definitions of t4 and t5. If S3 is empty,

then we have E(t0)δ
3
2

Q(t0)
< V (t) < δ for all t ∈ (t0, t6) where t6 = inf {t ∈ [t0, t1] : V (t) = δ}.

We have V (t6) = δ. Moreover, V is nonincreasing on (t0, t6) which contradicts the facts
that V (t6) = δ and V (t0) < δ. This ends the proof of the second case. As a result, the
prior two cases along with (12) lead to

if V (t0) < δ we have V̇ (t) ≤ −Q (t)V (t) + E (t) δ
3
2 for all t ∈ (t0, ω).

Thus, the facts that limt→∞

(
E(t)
Q(t)

)
= 0, Q (t) > 0,∀t ≥ t0 and

∫∞
t0
Q (t) dt = ∞ ensure

that by a comparison principle, one can well see all conditions of Theorem 2.1 are satisfied
with β is the identity function, L = 0, q (t) = Q (t) and e (t) = δ

3
2E (t) for all t ≥ t0.

Thus, when |N(t0)| < c =
√
δ, we have ω =∞, ‖V ‖∞ <∞ and limt→∞ V (t) = 0 so that

‖N‖∞ <∞ and limt→∞N (t) = 0 which proves the local attractivity.

Suppose that
∫∞
t0
Q (t) dt = ∞ and K (t) = −L (t) so that E(t) = 0 for all t ≥ t0. Then

we deduce by (9) that V̇ (t) ≤ −Q (t)V (t) for all t ∈ (t0, ω). Thus, by the comparison
principle, all conditions of Theorem 2.1 are satisfied for each N(t0) ∈ R with β is the
identity function, L = 0, q (t) = Q (t) and e (t) = 0 for each t ≥ t0. Therefore, ω = ∞
and N = 0 is globally attractive. Furthermore, we have V̇ ≤ 0 on (t0,∞) and hence
V (t) ≤ V (t0) so that |N (t)| ≤ |N (t0)| for all t ∈ (t0,∞). Hence, the origin is uniformly
stable and is globally asymptotically stable. Additionally, one can use [22, Theorem 1]
to conclude that if there exist constants: c1 > 0 (that is independent of t0) and c2 ≥ 0
(that may depend on t0) satisfying

∫ t
t0
Q (τ) dτ ≥ c1 (t− t0) + c2,∀t ≥ t0, then the N = 0

is globally exponentially stable. Moreover, if c2 is independent of t0, then the origin is
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globally uniformly exponentially stable.

Proof of Result (iii).

Without loss of generality, assume that ε :=
∥∥∥E(t)
Q(t) + 2

∣∣∣ r(t)
Q(t)K(t)

∣∣∣∥∥∥
∞
> 0. Let 0 < δ <

min
(
1, ε−2

)
. We have(

E (t)

Q (t)
+ 2

∣∣∣∣ r (t)

Q (t)K(t)

∣∣∣∣) δ 3
2 ≤ εδ

3
2 < δ, ∀t ∈ [t0,∞). (15)

We deduce by (8) that V̇ (t) ≤ −Q (t)V (t) +E (t)V
3
2 (t) + 2

∣∣∣ r(t)K(t)

∣∣∣V 2 (t) for all t ∈ (t0, ω)

so that

V̇ (t) ≤ −Q (t)V (t) + E (t) δ
3
2 + 2

∣∣∣∣ r (t)

K(t)

∣∣∣∣ δ2, for all t ∈ (t0, ω) that satisfy V (t) < δ,

and hence the fact that δ < 1 gives

V̇ (t) ≤ −Q (t)V (t) +

(
E (t) + 2

∣∣∣∣ r (t)

K(t)

∣∣∣∣) δ 3
2 , for all t ∈ (t0, ω) that satisfy V (t) < δ.

(16)
Thus, we get by (15) that

V̇ (t) ≤ 0, for all t ∈ (t0, ω) that satisfy

(
E (t)

Q (t)
+ 2

∣∣∣∣ r (t)

Q (t)K(t)

∣∣∣∣) δ 3
2 < V (t) < δ.

As we have done in the proof of Result (ii), one can show that for all V (t0) < δ we
have V (t) < δ for each t ∈ (t0, ω) so that ‖N‖∞ < ∞ and ω = ∞. Thus, (16) gives

V̇ (t) ≤ −Q (t)V (t) +
(
E (t) + 2

∣∣∣ r(t)K(t)

∣∣∣) δ 3
2 for all t ≥ t0. As a result, a comparison

principle along with Theorem 2.1 give limt→∞ V (t) = 0 and limt→∞N (t) = 0 whenever
|N(t0)| < c =

√
δ which ensures the local attractivity.

Simulations. Consider the initial time t0 = 0 and the initial condition N(0) = 1. For
every t ≥ t0, let r (t) = λ (t) = L (t) = et and K (t) = e−t. Note that E (t) = 2et

(
1 + e2t

)
,

K(t) > 0, L(t) > 0, r(t) > 0 and r(t)
K(t) ≥ 0 for all t ≥ t0.

For the case λ(t) = e2t, we have Q(t) = 4e2t > 0,∀t ≥ 0 so that
∫∞
t0
Q (t) dt = ∞ and

limt→∞

(
E(t)
Q(t)

)
= ∞. The solution N(t) is nonnegative because of Lemma 3.1. Both

functions Q and E are differentiable and thus locally absolutely continuous. Moreover,
observe that E (t) > 0,∀t ≥ 0 and (10) is satisfied. Therefore, Result (i) of Theorem 3.1
implies that the origin is uniformly stable and is asymptotically stable.

For the case λ(t) = e4t, we can simply conclude that Q(t) = 2
(
e2t + e4t

)
so that Q(t) >

0, ∀t ≥ 0. Thus, the positivity of the solution N(t) of (6) is guaranteed Lemma 3.1. On the

other hand, since
∫∞
t0
Q (t) dt =∞ and limt→∞

(
E(t)
Q(t)

)
= 0, then we deduce by Result (ii)

of Theorem 3.1 that for each initial value N(t0) ∈ R that belong to some neighborhood
about the origin, the solution N(t) of (6) is global, bounded and the origin is locally
attractive.

Both prior two cases are illustrated in Figure 1 where the attractivity is observed.
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Figure 1: For the cases λ(t) = e4t and λ(t) = e2t, the term E(t) can be respectively considered
as a vanishing and an unbounded perturbations of the model (6). Observe that the positivity
of solutions and the origin attractivity are ensured for both cases.

3.2 Stability conditions when r(·)
K(·) > 0

One deduce by the differential equation (8) that

V̇ (t) ≤ −2r (t)

K(t)
V 2 (t) + E (t)V

3
2 (t) for all t ∈ (t0, ω) that satisfy Q (t) ≥ 0. (17)

Theorem 3.2. Assume that r(t)
K(t) > 0 for each t ≥ t0 and

∫∞
t0

r(t)
K(t)dt = ∞. We have the

following separate results.

(i) if limt→∞ (K (t) + L (t)) = 0 and Q(t) ≥ 0 for all t ≥ t0, then for any initial
condition N(t0) ∈ R, N(t) is global, bounded and N = 0 is globally attractive. If
further we have K (t) = −L (t) for all t ≥ t0, then N = 0 is uniformly stable and is
globally asymptotically stable.

(ii) if limt→∞ (K (t) + L (t)) = 0 and limt→∞

(
K(t)Q(t)
r(t)

)
= 0, then N(t) is global, bounded

and N = 0 is globally attractive.

Proof. We consider each case separately.
Proof of Result (i).

Let δ > max
(
V (t0) , ‖L+K‖2∞

)
so that

δ
3
4

√
|L (t) +K (t)| ≤ δ

3
4 ‖L+K‖

1
2∞ < δ, ∀t ≥ t0. (18)
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We get by (17) that

V̇ (t) ≤ 2r (t)

K(t)

(
−V 2 (t) + |K (t) + L (t)| δ

3
2

)
for all t ∈ (t0, ω) that satisfy V (t) < δ,

(19)
and hence (18) gives

V̇ (t) ≤ 0, for all t ∈ (t0, ω) that satisfy δ
3
4

√
|L (t) +K (t)| < V (t) < δ.

Observe that δ depends on the choice of the initial condition V (t0) with V (t0) < δ for any
initial condition V (t0) ∈ R. Moreover, using the same technique of the proof of Result
(i) of Theorem 3.1, one can use the contradiction technique to prove that V (t) < δ for all
t ∈ (t0, ω) and thus (19) gives

V̇ (t) ≤ −Q0 (t)V 2 (t) + E0 (t) for all t ∈ (t0, ω),

where Q0 (t) = 2r(t)
K(t) and E0 (t) = 2δ

3
2 r(t)
K(t) |K (t) + L (t)|. Since

∫∞
t0

r(t)
K(t)dt = ∞ and

limt→∞ (K (t) + L (t)) = 0, we have limt→∞

(
E0(t)
Q0(t)

)
= 0 and

∫∞
t0
Q0 (t) dt =∞. Therefore,

all conditions of Theorem 2.1 come true with β (τ) = τ2,∀τ ∈ R, L = 0, q (t) = Q0 (t) and
e (t) = E0 (t) for all t ≥ t0. Thus, both V (t) and N(t) are globally defined on [t0,∞) and
are bounded with limt→∞ V (t) = limt→∞N (t) = 0 which proves the global attractivity.
On the other hand, if K (t) = −L (t) for every t ≥ t0, then we have V̇ (t) ≤ −Q0 (t)V 2 (t)
for each t > t0. Thus, the global attractivity is guaranteed by a comparison principle
along with Theorem 2.1. The uniform stability and the global asymptotic stability is also
guaranteed by the fact that V̇ ≤ 0 on (t0,∞).

Proof of Result (ii).
We obtain by (8) for all t ∈ (t0, ω) that

V̇ (t) ≤ −2r (t)

K(t)
V 2 (t) +

2r (t)

K (t)
|K (t) + L (t)|V

3
2 (t) + |Q (t)|V (t) . (20)

Pick δ > max

(
1, V (t0) ,

∥∥∥|L+K|+ K|Q|
2r

∥∥∥2
∞

)
which gives

√
δ

3
2

(
|L (t) +K (t)|+ K (t) |Q (t)|

2r (t)

)
≤ δ

3
4

√∥∥∥∥|L+K|+ K |Q|
2r

∥∥∥∥
∞
< δ, ∀t ≥ t0. (21)

On the other hand, (20) leads to

V̇ (t) ≤ −2r (t)

K(t)
V 2 (t) +

2r (t)

K (t)
|K (t) + L (t)| δ

3
2 + |Q (t)| δ,

for all t ∈ (t0, ω) that satisfy V (t) < δ, (22)

and hence (18) gives

V̇ (t) ≤ 0, for all t ∈ (t0, ω) that satisfy√
δ

3
2

(
|L (t) +K (t)|+ K (t) |Q (t)|

2r (t)

)
≤ V (t) < δ,

9



Similar to Result (i), δ depends on the initial value V (t0) and V (t0) < δ for each V (t0) ∈ R.
As result, one can use the contradiction technique to show that V (t) < δ for all t ∈ (t0, ω)
and hence (22) yields

V̇ (t) ≤ −Q1 (t)V 2 (t) + E1 (t) for all t ∈ (t0, ω),

where Q1 (t) = 2r(t)
K(t) and E1 (t) = 2δ

3
2 r(t)
K(t) |K (t) + L (t)| + |Q (t)| δ. Therefore, one can

easily see by a comparison principle that all conditions of all conditions of Theorem 2.1
are satisfied β (τ) = τ2,∀τ ∈ R and L = 0. Hence, the functions V (t) and N(t) are defined
on [t0,∞) and are bounded with limt→∞ V (t) = limt→∞N (t) = 0. This proves the global
attractivity because the above results valid uniformly in N(t0) ∈ R.

4 Stability results for the system in the presence

of constant-rate harvesting

The next theorem studies the positivity, the uniform stability and the asymptotic stability
of the system with a constant-rate harvesting:

Ṅ (t) = r (t)N (t)

(
1− N (t)

K(t)

)
(N (t)− L (t))− λ (t) , t ≥ t0. (23)

We assume that K (t) 6= 0 for all t ≥ t0. Let [t0, ω) be the maximal interval of existence.
One can rewrite (23) into the form

Ṅ (t) = −r (t)L (t)N (t)+r (t)

(
1 +

L (t)

K(t)

)
N2 (t)− r (t)

K(t)
N3 (t)−λ (t) , ∀t ∈ (t0, ω). (24)

4.1 Stability conditions when r (·)L (·) > 0

The next theorem studies the case when r (·)L (·) > 0 and
∫∞
t0
r (t)L (t) dt =∞.

Theorem 4.1. Suppose that r (t)L (t) > 0 for every t ≥ t0 and
∫∞
t0
r (t)L (t) dt =∞. We

have the following detached results.

(i) assume that r(t)
K(t) ≥ 0 for all t ≥ t0 and

lim
t→∞

(
1

L (t)
+

1

K (t)

)
= lim

t→∞

(
λ (t)

r (t)L (t)

)
= 0. (25)

Moreover, suppose that the initial time t0 is large enough to satisfy∥∥∥∥∣∣∣∣ 1L +
1

K

∣∣∣∣+
|λ|
rL

∥∥∥∥
[t0,∞)

< 1. (26)

Then for each initial value N(t0) ∈ R that belong to some neighborhood about the
origin, the solution N(t) of (6) is global and bounded and N = 0 is locally attractive.

10



(ii) assume that

lim
t→∞

(
1

L (t)
+

1

K (t)

)
= lim

t→∞

(
1

K (t)L (t)

)
= lim

t→∞

(
λ (t)

r (t)L (t)

)
= 0. (27)

We further assume that the initial time t0 is large enough to satisfy∥∥∥∥∣∣∣∣ 1L +
1

K

∣∣∣∣+
|λ|
rL

+
1

|KL|

∥∥∥∥
[t0,∞)

< 1. (28)

Then for all initial condition N(t0) ∈ R that belong to some neighborhood about the
origin, N(t) is continuable on [t0,∞) and N = 0 is locally attractive.

Proof. Let Q (t) = 2r(t)L(t) for all t ≥ t0. Let V = N2. For all t ∈ (t0, ω), we get by (24)
that

V̇ (t) = 2Ṅ (t)N (t)

= −2r(t)L(t)V (t) + 2r (t)

(
1 +

L (t)

K (t)

)
N3 (t)− 2r (t)

K(t)
N4 (t) + 2λ (t)N (t)

≤ −2r(t)L(t)V (t) + 2

∣∣∣∣r (t)

(
K (t) + L (t)

K (t)

)∣∣∣∣ |N (t)|3 − 2r (t)

K(t)
N4 (t)

+2 |λ (t)| |N (t)| . (29)

Proof of Result (i).

Since r(t)
K(t) ≥ 0 for all t ≥ t0, we deduce by (29) that

V̇ (t) ≤ −2r(t)L(t)V (t) + 2

∣∣∣∣r (t)

(
1 +

L (t)

K (t)

)∣∣∣∣V 3
2 (t) + 2 |λ (t)|

√
V (t). (30)

As a result when V (t) < 1 we get V̇ (t) ≤ −Q (t)V (t) + E (t) where (for all t ≥ t0):

E (t) = 2

∣∣∣∣r (t) (K (t) + L (t))

K (t)

∣∣∣∣+ 2 |λ (t)| .

Observe that it is assumed that Q(t) > 0 for all t ≥ t0. Moreover, simple computations
and (26) give

E (t)

Q (t)
≤
∥∥∥∥∣∣∣∣ 1L +

1

K

∣∣∣∣+
|λ|
rL

∥∥∥∥
[t0,∞)

< 1, ∀t ≥ t0.

Thus, we have

V̇ (t) ≤ 0, for all t > t0 that satisfy
E (t)

Q (t)
< V (t) < 1.

One can use the contradiction technique to conclude that if V (t0) < 1 we have V (t) < 1

for all t > t0. This gives V̇ (t) ≤ −Q (t)V (t) +E (t). We have limt→∞
E(t)
Q(t) = 0 because of

(25). Thus, all conditions of Theorem 2.1 are satisfied with e (·) = E (·), q (·) = Q (·),
β is the identity function and L = 0. Note that

∫∞
t0
q (t) dt = ∞ because it is as-

sumed that
∫∞
t0
r (t)L (t) dt = ∞. Therefore, each initial value V (t0) < 1, the both

V (t) and N(t) are globally defined on [t0,∞), ‖V ‖∞ < ∞ (and hence ‖N‖∞ < ∞) and

11



limt→∞ V (t) = limt→∞N (t) = 0. This proves that N = 0 is locally attractive.

Proof of Result (ii).
We obtain by (29) that

V̇ (t) ≤ −2r(t)L(t)V (t) + 2

∣∣∣∣r (t)

(
K (t) + L (t)

K (t)

)∣∣∣∣V 3
2 (t) + 2

∣∣∣∣ r (t)

K(t)

∣∣∣∣V 2 (t)

+2 |λ (t)|
√
V (t), for all t ∈ (t0, ω).

Thus, for the case V (t) < 1 we have V̇ (t) ≤ −Q (t)V (t) + E∗ (t) where

E∗ (t) = 2

∣∣∣∣r (t) (K (t) + L (t))

K (t)

∣∣∣∣+ 2 |λ (t)|+ r (t)

|K (t)|L (t)
, ∀t ≥ t0.

We get by (28) that

E∗ (t)

Q (t)
≤
∥∥∥∥∣∣∣∣ 1L +

1

K

∣∣∣∣+
|λ|
rL

+
1

|KL|

∥∥∥∥
[t0,∞)

< 1,∀t ≥ t0.

Therefore, we have V̇ (t) ≤ 0, for all t > t0 that satisfy E∗(t)
Q(t) < V (t) < 1. A contradiction

argument gives that if V (t0) < 1 we get V (t) < 1 for every t > t0 so that V̇ (t) ≤
−Q (t)V (t)+E∗ (t). Note that limt→∞

E∗(t)
Q(t) = 0 because of (27) and that

∫∞
t0
Q (t) dt =∞

because
∫∞
t0
r (t)L (t) dt =∞. All conditions of Theorem 2.1 are satisfied. Thus, for every

initial value V (t0) < 1, both V (t) and N(t) are globally defined on [t0,∞), ‖V ‖∞ < ∞,
‖N‖∞ <∞ and limt→∞ V (t) = limt→∞N (t) = 0. Thus, N = 0 is locally attractive.

Simulations. Consider the initial condition N(t0) = 0.9. For every t ≥ t0, let r (t) = et,
L (t) = 30et and K (t) = t. We have

∫∞
t0
r (t)L (t) dt = ∞, K (t) 6= 0 and r (t)L (t) > 0

for all t ≥ t0 > 0. Moreover, (25) is satisfied.

For the initial time t0 = 0.8, the assumption (26) is not satisfied and thus Theorem 4.1 can
not guarantee the boundedness and/or the attractivity of the solution. In fact, MATLAB
simulations carried out in Figure 2a have clarified that; for the current case, the solution
N(t) escapes to infinity in a finite time.

For the initial time t0 = 2, the assumption (26) is satisfied and thus all Theorem 4.1
ensures the solution is globally defined, bounded and the origin is locally attractivity
when N(t0) ∈ R is small enough as shown in Figure 2b.

4.2 Stability conditions when r(·)
K(·) > 0

The case when r(·)
K(·) > 0 and

∫∞
t0

r(t)
K(t)dt =∞ is considered in Theorem 4.2.

Theorem 4.2. Assume that r(t)
K(t) > 0 for each t ≥ t0 and

∫∞
t0

r(t)
K(t)dt = ∞. We have the

following separate results.

(i) if limt→∞ (K (t) + L (t)) = limt→∞
λ(t)K(t)
r(t) = 0 and r(t)L(t) ≥ 0 for every t ≥ t0,

then for each initial condition N(t0) ∈ R, N(t) is continuable on [t0,∞), bounded
and N = 0 is globally attractive.
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Figure 2: For the figure on the left, the initial time t0 = 0.8 is not large enough to satisfy the
sufficient condition (26) of Theorem 4.1. As a result, no wonder that N(t) escapes to infinity
in a finite time. Unlike the prior case, the initial time t0 = 2 used in the figure on the right
satisfies (26) and thus Theorem 4.1 guarantees the boundedness of N(t) and the attractivity of
the origin.

(ii) if limt→∞ (K (t) + L (t)) = limt→∞
λ(t)K(t)
r(t) = limt→∞ L (t)K (t) = 0, then for any

N(t0) ∈ R, N(t) is continuable on [t0,∞) and N = 0 is globally attractive.

Proof. Let Q (t) = 2r(t)
K(t) for all t ≥ t0. We have

∫∞
t0
Q (t) dt = ∞ because it is assumed

that
∫∞
t0

r(t)
K(t)dt =∞.

Proof of Result (i).
Since r(·)L(·) ≥ 0, (24) gives (for all t ∈ (t0, ω))

V̇ (t) ≤ −2r (t)

K(t)
V 2 (t) +

2r (t)

K (t)
|L (t) +K (t)|V

3
2 (t) + 2 |λ (t)|

√
V (t). (31)

Pick δ > max

(
1, V (t0) ,

∥∥∥|K + L|+ |λ|K
r

∥∥∥2
∞

)
. We have

√
|K (t) + L (t)| δ

3
2 +
|λ (t)|K (t)

√
δ

r (t)
≤ δ

3
4

√∥∥∥∥|K + L|+ |λ|K
r

∥∥∥∥
∞
< δ, ∀t ≥ t0. (32)

We have by (31) that

V̇ (t) ≤ −2r (t)

K(t)
V 2 (t) +

2r (t)

K (t)
|L (t) +K (t)| δ

3
2 + 2 |λ (t)|

√
δ

for all t ∈ (t0, ω) that satisfy V (t) < δ. (33)

The prior inequality along with (32) yield

V̇ (t) ≤ 0, for all t ∈ (t0, ω) that satisfy√
|K (t) + L (t)| δ

3
2 +
|λ (t)|K (t)

√
δ

r (t)
< V (t) < δ.
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Since for all N(t0) ∈ R, we have δ > V (t0), one can prove that V (t) < δ for all t ∈ (t0, ω)
for any N(t0) ∈ R and hence (33) yields V̇ (t) ≤ −Q (t)V 2 (t) + E1 (t) for all t ∈ (t0, ω),

where E1 (t) = |K (t) + L (t)| δ
3
2 + |λ(t)|K(t)

√
δ

r(t) . We have limt→∞

(
E1(t)
Q(t)

)
= 0 because it

is assumed that limt→∞ (K (t) + L (t)) = limt→∞
λ(t)K(t)
r(t) = 0. Therefore, a comparison

principle along with Theorem 2.1 ensure that ω =∞ and N = 0 is globally attractive.

Proof of Result (ii).
The system (24) leads to

V̇ (t) ≤ −2r (t)

K(t)
V 2 (t) + 2 |r(t)L(t)|V (t) +

2r (t)

K (t)
|L (t) +K (t)|V

3
2 (t)

+2 |λ (t)|
√
V (t) for all t ∈ (t0, ω). (34)

Let δ > max

(
1, V (t0) ,

∥∥∥|LK|+ |K + L|+ |λ|K
r

∥∥∥2
∞

)
. We obtain

√
|L (t)K (t)| δ + |K (t) + L (t)| δ

3
2 +
|λ (t)|K (t)

√
δ

r (t)
≤

δ
3
4

√∥∥∥∥|LK|+ |K + L|+ |λ|K
r

∥∥∥∥
∞

< δ for all t ≥ t0. (35)

The prior inequality along with (34) imply

V̇ (t) ≤ −2r (t)

K(t)
V 2 (t) +

2r (t)

K (t)
|L (t) +K (t)| δ

3
2 + 2 |λ (t)|

√
δ

for all t ∈ (t0, ω) that satisfy V (t) < δ,

and

V̇ (t) ≤ 0, for all t ∈ (t0, ω) that satisfy√
|L (t)K (t)| δ + |K (t) + L (t)| δ

3
2 +
|λ (t)|K (t)

√
δ

r (t)
< V (t) < δ.

Similar to Case (i), we note that for every N(t0) ∈ R: δ > V (t0). Therefore, it can be
shown that for any N(t0) ∈ R: V (t) < δ for each t ∈ (t0, ω) and V̇ (t) ≤ −Q (t)V 2 (t) +

E2 (t) for all t ∈ (t0, ω), where E2 (t) = |L (t)K (t)| δ + |K (t) + L (t)| δ
3
2 + |λ(t)|K(t)

√
δ

r(t) .

We get limt→∞

(
E2(t)
Q(t)

)
= 0 because all limits limt→∞ (K (t) + L (t)), limt→∞

λ(t)K(t)
r(t) and

limt→∞ L (t)K (t) are equal to zero. Thus, a comparison principle and Theorem 2.1 com-
pletes the proof of the theorem.

5 Conclusion

The stability of a time-varying single-species model with Allee effect and relative/constant-
rate harvesting has been considered. In the presence of relative-rate harvesting, several
sets of sufficient conditions have been derived in Theorems 3.1 and 3.2 for many types of
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local and global stabilities including attractivity, uniform stability, asymptotic stability
and exponential stability. Similarly, Theorems 4.1 and 4.2 have given conditions for the
constant-rate harvesting case to ensure the local/global attractivity. The proposed results
have been confirmed by numerical simulations.
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