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ABSTRACT. In this work, two generalized quantum integral identities are proved by using some pa-
rameters. By utilizing these equalities we present several parameterized quantum inequalities for
convex mappings. These quantum inequalities generalize many of the important inequalities that
exist in the literature, such as quantum trapezoid inequalities, quantum Simpson’s inequalities and
quantum Newton’s inequalities. We also give some new midpoint type inequalities as special cases.
The results in this work naturally generalize the results for the Riemann integral.

1. INTRODUCTION

Thomas Simpson’s has developed crucial methods for the numerical integration and estimation of
definite integrals considered as Simpson’s rule during (1710-1761). Nevertheless, a similar approxi-
mation was used by J. Kepler almost one hundred years earlier, so it is also known as Kepler’s rule.
Simpson’s rule includes the three-point Newton-Cotes quadrature rule, so estimation based on three
steps quadratic kernel is sometimes called Newton-type results. 1) Simpson’s quadrature formula
(Simpson’s 1/3 rule
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)
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2) Simpson’s second formula or Newton-Cotes quadrature formula (Simpson’s 3/8 rule)

w2 - 2 2
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There are a large number of estimations related to these quadrature rules in the literature, one of them
is the following estimation known as Simpson’s inequality:

Theorem 1. Suppose that F : [k1, k2] — R is a four times continuously differentiable mapping on
(k1,K2), and let |ff(4)||oo = sup |.7-"(4) (:c)| < oo. Then, one has the inequality

zE(K1,K2
1 f(ﬂ1)+f(ﬁg) K1 + K2 1 /'K2 1
- | == 42F — F(x)dr| < ——
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In the recent era, Simpson’s type of inequalities has been emphasized by many authors for numerous
types of functions. Convexity is useful and potent for solving different problems that appear within
various branches of applied and pure mathematics. For an instance, Dragomir demonstrated novel
Simpson’s type consequences and their applications to quadratic formulas in numerical integration
in [13]. Furthermore, Alomari [4] has presented Simpson’s type of inequalities for s-convex functions.
The refinements of Simpson’s type of inequalities depended on convexity have been visualized by
Sarikaya et al. in [31]. For the further studies of this area, one can consult [15,19,30].

On the other side, in the domain of g-analysis, many works are being carried out initiating from Euler
in order to attain adeptness in mathematics that constructs quantum computing ¢-calculus considered
as a relationship between physics and mathematics. In different areas of mathematics, it has numerous
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applications such as combinatorics, number theory, basic hypergeometric functions, orthogonal poly-
nomials, and other sciences, mechanics, the theory of relativity, and quantum theory [16-18, 20, 22].
Apparently, Euler invented this important mathematics branch. He used the ¢ parameter in Newton’s
work on infinite series. Later, in a methodical manner, the g-calculus that knew without limits calculus
was firstly given by Jackson [16,20]. In 1966, Al-Salam [5] introduced a g-analogue of the g-fractional
integral and ¢-Riemann-Liouville fractional. Since then, the related research has gradually increased.
In particular, In 2013, Tariboon introduced ., D,-difference operator [6]. In 2020, Bermudo et al.
introduced the notion of "2 D, derivative and integral [8].

Many well-known integral inequalities such as Holder inequality, Hermite-Hadamard inequality,
Simpson’s inequality, Newton’s inequality, Ostrowski inequality, Gruss inequality and other integral
inequalities have been studied in the setup of g-calculus using the concept of classical convexity. For
more results in this direction, we refer to [1,2,6,7,10-12,18,21,23-29,32, 35, 36].

2. PRELIMINARIES OF ¢-CALCULUS AND SOME INEQUALITIES

In this section, we first present some known definitions and related inequalities in g-calculus. Set
the following notation(see, [22]):

n—1
[n], = =>d" qe(0,1).
k=0

Jackson [20] defined the g-integral of a given function F from 0 to ks as follows:

(2.1) /.7-'(:6) dgr = (1—q) K2 Z q"F (koq"), where 0 < ¢ <1
n=0

provided that the sum converges absolutely. Moreover, he defined the g-integral of a given function
over the interval [k, k2] as follows:

K[}'(m) dgz —O/f(x) dqx O/]-'(m) dgz .

Definition 1. [33] We consider the mapping F : [k1, ko] — R is continuous. Then, the g, -derivative
of F at x € [k, ka] is defined by the the following expression

F () = Flgr+(1—q) k1)
(1—-q)(z—r) ’
Since F : [k1, k2] — R is a continuous function, we can define
w1 DgF (k1) = lim ., DyF (z) .
T—K1

(2.2) e DgF (z) = T F# K.

We can say that the function F is q, -differentiable on [k1, k2] if «, DgF (x) exists for allx € [k1, ko).

If we take k1 = 0 in (2.2), then we have oDyF (z) = DyF (z) , where D,F (x) is a known g¢-

derivative of F at x € [0, k2] in (see, [22]) given by

F(x) - F (gx)
(1-q)=

Definition 2. [8] We consider the mapping F : [k1, k2] — R is continuous. Then, the ¢"*2-derivative

of F at x € [k, ka| is defined by

D,F(z) = , T #0.

_ Flez+ (1 —q)re) — F ()

(1—q) (k2 — )
Definition 3. [33/ We consider the mapping F : [k1, k2] — R is continuous. Then, the q, -definite
integral on [k1, ko] is defined by

(2.3) "2 Do F () , T F Ka.

K2

1
/}'(x) wdgr = (1—q) (kg — K1) Zq"]-"q ko + (1 —¢") k1) = (k2 — K1 /.7-' (1 =7) k1 + The) dgT .
n=0 0
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In [6,26], the authors proved quantum Hermite-Hadamard type inequalities and their estimations
by using the notions of ¢, -derivative and g, -integral.

On the other hand, in [8], Bermudo et al. gave the following definition and obtained the related
Hermite-Hadamard type inequalities:

Definition 4. [8] We consider the mapping F : [k1,k2] — R is continuous. Then, the ¢"2-definite
integral on [k1, k2] is defined by

1
/]:(x) dyr = (1—q) (ke — K1) Zq"}' (@"k1+ (1 —q") k2) = (k2 — K1) /}" (Th1+ (1 —7)Ka) dgT .
n=0 0

Theorem 2. [8] Let F : [k1,k2] — R be a convex function on [k1,k2] and 0 < q < 1. Then,
q"2-Hermite-Hadamard inequalities are given as follows:

K1+ qKo 1 b s F (k1) + qF (ka)
(2.4) f( 2], ) < p— /f(x) dgx < 2], .

In [9], Budak proved the left and right bounds of the inequality (2.4).

The present paper aims to generalize the results proved in [9,10,14] and obtain some new inequal-
ities of Simpson’s type, Newton’s type, midpoint type, and trapezoidal type for differentiable convex
functions.

3. CRUCIAL IDENTITIES
We deal with the three identities which are necessary to obtain our main results in this section.

Let’s start with the following useful Lemma.

Lemma 1. If F : [k1,k2] C R — R is a ¢"-differentiable function on (k1,k2) such that "> DgF is
continuous and integrable on [k1, k2|, then we have the following identity:

1 m2
1 ~2
(3.1) P L F(z) "dgx

_ {ﬁf(ng)ju(1—a)f(ﬁl)+(a_ﬁ)f<m;wﬂ

1
2

= (kg — K1) [/0 (gm — B) "*D¢F (11 + (1 — T) ko) dgT
1
+/l (gr — ) " DyF (Tr1 + (1 — T) ka) qu]

where ¢ € (0,1).

Proof. By the Definition 2, we see that

Fgr1+ (1 —qr)K2) — F(th1 + (1 — 7) K2)
(1—q) (k2 —rK1)T '

(32) Kquf (Tﬁl + (1 — T) FLQ) =
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After applying the fundamental properties of quantum integrals, we deduce that
1 1

(3.3) /0E (gr — B) ™ D¢F (k1 + (1 —7) K2) dgT —I—/l (T — @) " DyF (11 + (1 — T) Ka) dyT

1

= /§ (= B) " DyF (tk1 4+ (1 — 7) ka) qu—i—/O (gT — @) " DyF (161 + (1 — 7) Ka) dyT

= (a-8 .7:qu€1+ (1—q7)Ka) — .7‘-(Tl$1+(1—7)/{2)dT
(1-q) (ke —K1)T a
]:(qTf‘flJr(l*qT)Hz)*]:(Tm+(1—7)/@2)
+q (1= ) (r2 — 1) dgT
.7: (g1 + (1 —qr) K2) — F (k1 + (1 — 7) K2)

—a 0=q) (ra—r)7 dgT.

From Deﬁmtlon 4, we conclude that

.7-" (g7k1+ (1 —q7) Kk2) — F (th1 + (1 — 7) K2)

(3.4) (1—q) (s —r1) 7 dgt
+1 > qn qn
— Lz;)j:( K1+<1— )Hz)—7;)7<2ﬁ1+(1—2)l€2)]
1 K1+ K
- Ko — K1 [F(H2)_f< 2 2)]’
Y F(qrry 4 (1= q7) ko) — F (161 + (1 — 7) Ka2)
(39 () (ra )7 o
= L F ) - F )
and
1f(qufl+(17q7-)l€2)7?(7’51“”(1*7’)/{2)
B T a7 r
- . p Z ¢F (@t (=) k2) = D 0" F(¢"m+ (1 - q") H2)]
L = n=0
= 5215 *an}"qm+(1—q K2) Zq"fqm+(1—q)fig)]
! L n=0
= i *an]:QIﬂJr(l—q)ng)—f}" K1) anfqﬂl+(1q)ﬁg)]
k2 k1 _qn 0 n=0
! — ~2 m—l K
- e i L @ e ).

We can obtain the required identity (3.1) by putting the computed integrals (3.4)-(3.6) in (3.3).

Remark 1. If we assume = = and o= g in Lemma 1, then we obtain [10, Lemma 2].

Remark 2. In Lemma 1, by takmg the limit ¢ — 1=, we have [14, Lemma 2.1 for m = 1].

Remark 3. In Lemma 1, if we choose = a = ﬁ, then we obtain the following identity
q
1 2
(3.7) ) Lol _ | @
[2]11 R — K1 K1

which is proved by Budak in [9, Lemma 1].
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Corollary 1. In Lemma 1, if we choose 5 =0 and o = 1, then we obtain the following new identity

! F(x) Hquxf(mJ””)

Ko — K1 2

= (kg — K1) [/02 qr 2Dy F (Tk1 + (1 — T) ko) dgT —|—/l (qr = 1) DyF (161 + (1 — 7) k2) qu] .

2

Lemma 2. If F : [k1,k2] C R — R is a ¢"2-differentiable function on (k1,k2) such that "2 D,F is
continuous and integrable on [k1, k2|, then we have the following identity:

1 ~2 .
P /K1 F(z) "dyz

~pF e+ @-mF (B2 ) - F (B ) s - F )

(3.8)
= (kg — K1) [/03 (gr — B) " DgF (th1 + (1 — T) ka) dgT
Jr/j (g — @) " DF (1h1 + (1 — 7) ko) dgT

1
*/ (a7 —7) "D F (k1 + (1 = 7) K2) df]

where ¢ € (0,1).

Proof. After applying the fundamental properties of quantum integrals, we deduce that

; |

1
+/ (qm —7) " DyF (11 + (1 — 7) k2) dgT

(gr — B) " DyF (k1 + (1 — 7) ka) dgT + [3 (gm — @) "*DyF (161 + (1 — 7) Ka) dyT

3

=

ol

W=
ol

= / (= B) "*DyF (Th1 4+ (1 — 7) ko) dgT Jr/ (v —a) MDyF (thk1+ (1 —T) ko) dgT
0 0

1
+/ (gr — ) " DyF (tk1 + (1 — T) ko) dgT
0

If the same steps in the proof of Lemma 1 are applied for the rest of this proof, we can obtain the
desired identity (3.8). O

Remark 4. By assuming 3 = %, o= %, and v = % in Lemma 2, we obtain [10, Lemma 5J.

Remark 5. If we take B =a =7 = ﬁ, in Lemma 2, then we recapture the identity (3.7).

Corollary 2. If we take the limit ¢ — 1~ in Lemma 2, then we obtain the following new identity

1 2
/ F(z)dx
R — K1 K1

-+ @- (B2 40 f(z"“”“?) (1= ) F ()

3
= (k2 — K1) l/o

—l—/ (T—7)f’(7/$1+(1—7)/£2)d71 )

Wl

(r=B)F (t61+ (1 —7) ka dT+/ (1—a)F (k1 + (1 — 7) ko) dT

2

3

Now, we calculate the integrals in the following lemma which will be used in our next section.
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Lemma 3. The subsequent quantum integrals are true:

882+ B
% 4[2];] - 2 q > 2ﬁa
(3.9) En = / g7 — BldgT =
0 B
5_4[31117 q§2ﬁ7
@ 3
2 4[2[11; q<aq,
! 8a’+5
(3.10) 512:/1 lgT7 — a| d,7m = ZTZ‘I—%&, a < q < 2aq,
2
3¢ _ a 2
], 2 q > za,
2p° 8
é W""g[g]q 3 q>367
(3.11) 13 =/ g — BldqT =
0 B
3 g[g]qa qggﬁv
a 3a
3 3[§}qv 7<%
3
2
(3.12) 514:/1 g — ald,T = 18;‘[72]*;5‘1—(1, 3 < g < 3a,
3
spr, — 50 4> 3o
5
% - 9[2(17 q<7,
! 1872413 5 3
(3.13) 515:/2 lgT — | dgT = ’Z;[qu*%a y<qg<F,
3
5 3
9[21 -3 q> %,
233 Jé;
1 o, T e, e 4> 26,
(3.14) =1 :/ Tlgr — BldyT =
0 B
mfg[g]qa qg257
%
(3.15) =2 = [ W-nlr-pld,
0
= En1 -5
88°+B+ B 2p°
T, 2o, EE 172
B B+
2~ 4[2]3 + s[g,]qv q < 2B,
1
(3.16) B3 = / Tlgr — aldyT =
1
2
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(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

—_
=
i

4

1
/ (1—=7)lgr — a|d,T =

2

= =12 —Z3
3(atq) 7
5~ @, sl q<a,
— 8a245¢—5a _ 3a _ 99 248
= 42], 2 3[3], 2], B, a<qg<2a,
3latq) o _ _T7q
42], 2 7 8@’ q > 2a,
283 ¢« B
1 21, 13l, + a7, o, ¢ > 30,
Tlqr — Bl dyT =
B _ _4a
92, — 273],° q <38,
1
— 3
=6 = / (1—7’)|q7—_ﬁ‘dq7—:
0
= EHi3—Es
185°4B+q _ B _ _q_ _ _28°
o2, 5~ o, T El,E, 1725
B B+
5~ opl, + A, q <28,
7 3
S, T T, g< i,
%
2a° 5 3
Tlgm — a|dyT = [z]jg}q - g[ﬁq + S[g]q’ 5 < q < 3a,
7
27[g]q - 3[3](17 q > 3a,
2
3
= / (1—7)lgr — aldyr
5
= Z14 — 27
+ 7 3
3~ 3, t q< 3,
= 180%45g4+5a g _2a° 3a
= 921, S PR ) S P < q < 3a,
+ 7
5[2}6:, —5- 27[3}(1’ q > 3a,
5y 19q
oRl,  27[E[’ <7
1
29° 13 35 3
/27‘|q7—*7|dq7': m*ﬁ+27[?ﬁq, ’YSQS%,
3
19 5 3y
27[3% ﬁ7 q> %,
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1
(3.23) Ei0 = /2 (L =7)lgm —~ldgT
3

= Hip— 9

v _ 5(g+v) 19¢
3 7 o, + 73], ° <
- 18v%+13¢+13y _ 5y _ 35¢  _ _2%8 3y
= . 3 23 er,Bl, 7 <9< 5,
5(¢+y) _ vy _ _19q 3y
o], — 3 278, 7> 5

Proof. Case I: Let g > 28.
By the definition g-integral, we have

(1
_

Il
\‘
Q3
=)
3
|
=
IS

S
3

Il
o\
\]
—~
=
[
Q
a
jSH

i~}

\]
_|_
—
\]
—~
(=)
\]

[
=
N—
o8
_
\]

Case II: Let g < 20.
From definition ¢-integral, we get

=- [ g pla / RS PR R
=1 = T|qT — T = T —qT T= — = ——
o o T4, 8B,
This gives the proof of the equality (3.14). In similar way, we can prove the others. O

4. SIMPSON’S TYPE INEQUALITIES FOR QUANTUM INTEGRALS

An extension of quantum Simpson’s inequalities for quantum differentiable convex functions using
the quantum integrals are given in this section.

Theorem 3. We assume that the given conditions of Lemma 1 hold. If the mapping |*> DyF| is convex
on [K1, ka|, then the following Simpson’s type inequality holds:

1
K2 — K1
< (k2 = R) (B 4 Bs) [ D F (k1) + (B2 + Ea) | Do F (r2)]]

(4.1)

| @) - BF (k) + (1= ) () + (o= 97 (M52 )|

where 21-24 are given in (8.14)-(3.17), respectively.
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Proof. By the Lemma 1 and the convexity of |“2D,F|, we conclude that
1 2

Ro — Ry K1

f@)me—PFMﬂ+u—aﬂWm%““‘@f<m;Kﬂ”

< (k2 —£1) [/ lgT = Bl Dy F (Th1 + (1 = 7) K2)| dgT
0
1
+/1 lg7 — | "2 Dy F (11 + (1 — T) Ka)| dgT
1 1
< (ke — K1) [|“2Dq}'(/~@1)| {/ T|qm — Bl dyT —|—/ T lgT — @] qu}
0 3
1 1
+ 172D, F (ko)] {/ (I—1)|qr — Bl dgT —l—/ (1 —=7)|gT — af qu}l
0 3
= (k2 — K1) [(E1 + E3) | DoF (k1)| + (B2 + Ea) | Dy F (k2)]]
which is the desired conclusion. g

Remark 6. By taking the limit ¢ — 1~ in Theorem 3, we have [14, Theorem 2.1 for s =m = 1].

Remark 7. If we assume 8 = a = ﬁ in Theorem 3, then we obtain the following trapezoidal type
q
iequality
1 2
R
[2]11 K2 K1 K1
7 ([3}(1 + 36]) q° (1 +3¢% + 2q3)

< (k2 = K1) | "2 DgF (k1) + "2 Do F (k2)|

3 1
31, [21, 31, 2,
which is established by Budak in [9, Theorem 3].

Corollary 3. In Theorem 3, if we choose § = 0 and o = 1, then we obtain the following midpoint

type inequality
K1+ Ko 1 2
F - F ®2q
' < 2 ) K2 — K1 /m () " dyr

g<@—M4M£BMMMfmm+%@ﬁgl“Dfmm}

q

Remark 8. In Theorem 3, if we assume 3 = % and o = % , then Theorem & reduces to [10, Theorem

41

Theorem 4. We assume that the given conditions of Lemma 1 hold. If the mapping |*2D,F|*, p1 > 1
is convex on [K1, ka], then the following Simpson’s type inequality holds:

1 2

R2 — K1 Jg,

(4.3) 5

F(z) ®dgz — |BF (ka) + (1 — a) F (k1) + (. — B) F <I€1 —&—m)} ‘
< (w2 =) {Eilpll (E1 "2 Dy F (k1)["* + Z2 "2 Dy F (/@2)‘1’1)%

1—-L R
FE1p " (B3 |2 DgF (51)|”" + Ea [ Dy F (k2)[") 7

where 211, Z12 and Z1-E4 are given in (3.9), (3.10), and (3.14)-(3.17), respectively.
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Proof. From Lemma 1 and the power mean inequality, we obtain

1 2
Ro — Ry K1

Fa) “dge - [ﬂf(nm<1—a>f<m>+<°“ﬁ>f<m§m>”

1

1 P1

1 -7 1
< (K2 — k1) </0 |QT—5|qu> (/0 |q7—6||”2qu(m1+(1—T)f€2)|p1dq7>

1-+ >
1 P1 1
+ (/ |q7'—a|dq7> (/ lgm — a| |"* Dy F (161 + (1 — 7) k2)|™* qu>
1 1
3 3

oy
By applying the convexity of |*2D,F|"*, we obtain

1
Ko —

= /:f(x) R,z — {m(@wu — Q) F (k1) +(a—ﬁ)f<"1;“2)H

1

1

< (k2 — K1) (/02 |qT—ﬂ|qu>

x (I“qu(m)“ |l =Bl D F ) [ 1= 7) |qT—,8|dqr>
0 0

1

Pr1

1— L

1 P1
+ / lgT — a|dgT
z

1 1 P1
X (I’”qu(m)“[ TIqT—alqu+I”“Qqu(m)\“[ (1-7) IqT—alqu>

2 2

1

1—-= - 1
= (k2 — K1) [511 "ELDGF (51)|7 + E2 |2 D F (k2)[7)
1—-L 1
+E1, " (B3 DgF (51)[" + Ea [ Dy F (k2)|") ]
and the proof is completed. O

Remark 9. If we take the limit ¢ — 1~ in Theorem 4, then we have [14, Theorem 2.3 for s = m = 1].

Remark 10. If we assume = a = ﬁ in Theorem 4, then we obtain the following trapezoidal type
q

1mequality
_ alke—r) (2(2+a+7¢%) T
=g, o
a (13, + 34) a (L+3¢° +20°)

3 + ‘me}—(’@”pl 3
31, 2] 31, (2]

X (1" Dy F (k1)

which is established by Budak in [9, Theorem 4].

Remark 11. If we assume 3 = % and o = % in Theorem 4, then Theorem /4 reduces to [10, Theorem

6/.
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Corollary 4. In Theorem 4, if we choose § = 0 and o = 1, then we obtain the following midpoint
type inequality

1 2 K1 + Ko
de _
F«'z—fil/m F(x) qT }'( > >’

1-L g[8, + Z)\ "
< (ko — K1) (Zlé]q> "2 Dy F (k1)[" Wé]q + "2 D F (12)[" g[Q]q[g]q)

1

21— g\ . o, 68, —7q2, (1 3¢ 6[3,-7q[2, o
*(4[21) (' DoF ) =g, P () (2‘4[2] AT )) |

q

Theorem 5. Assume that the given conditions of Lemma 1 hold. If the mapping |*2D,F|"*, p1 > 1
is convex on [k1, ka], then the following Simpson’s type inequality holds:

1 2

K2 — K1 Jg,

(4.5)

F o) ®dyo - [ﬁf(m) + (1= a) F (k1) + <a‘5)f<m ‘5“2)”

_A (12D F ()P (2 +1) 2D F (k)P \ ™
< (ke — kK1) |Eqd ( 1[2] 1 I 4[2]q 2

q q

=

-

+E]

-

4[2], 4[2]

1
(3 [ Dy ()™, (29 = )] Dy ()| ) "
q

where pyt +rit =1 and

3 1
2 3 r
Ei = / lgr — B dy7, E17 = /1 lgT — a|™ dgT.
0 3

Proof. From Lemma 1 and the Holder inequality, we have

1 2

R2 — R1 Jg,

F(2) “dge - [WWH 1 —a>f<ﬁ1>+(°“5)7<m;@>”

< (ke — K1) (/ lgm — B|" d,ﬂ') </ |2 Dy F (tr1 + (1 — 1) ko) | dqr>
0 0
1 s T
+ (/ lgm — ™ d,ﬂ') (/ |“*D,F (161 + (1 — 7) k2) | dq7'>
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By using the convexity of |*2D,F|"*, we obtain

Y ”"‘dqx_[ﬁf(@)+(1_0‘)}—('€1)+(a—6)}—<w>}’

K2 — R1 K1 2

EN 1

1 = 1 1 o
< (kg — K1) (/2 lgm — 8" qu> <|"””2Dq.7:(/-$1)|p1 /2 TdgT + \”Zqu(ngﬂpl /2 (1-71) d,ﬂ)
0 0 0
1 a1
1 1 1 1 P1
+ (/ lg7 — a|™ dq7> <|“2qu(n1)|p1 / TdyT + |"* D F (k2) [ / (1-7) d,ﬂ)
3 3 3
1
=i (12D F (51)["' | (2g+ 1) "D F (s2)[" \ !
= (k2 — kK1) | 274 ( +
42, 42,
1
= (317D F (k)| (2¢ — 1) "2 D F (ko)™ | ™
= g, ip)
q q
and the proof is completed. O

Remark 12. If we take the limit ¢ — 1= in Theorem 5, then Theorem &5 becomes [14, Theorem 2.2
fors=m=1].

Remark 13. If we assume B = % and o = % in Theorem 5, then Theorem 5 becomes [10, Theorem

5.
5. NEWTON’S TYPE INEQUALITIES FOR QUANTUM INTEGRALS

In this section, a new extension of quantum Newton’s inequalities for quantum differentiable convex
functions is given.

Theorem 6. We assume that the given conditions of Lemma 2 hold. If the mapping |*> DyF| is convex
on [K1, ke|, then the following Newton’s type inequality holds:

1 2
/ F(z) "dsx
K1

K2 — K1

-+ @ (U2 ) -0 F (B ) - F )|

(5.1)

3 3
< (k2 = £1) [(B5 + E7 4 Eo) [ Do F (s1)| + (Z6 + Es + Er0) [ Do F (r2)]]
where Z5-219 are given in (3.18)-(3.23), respectively.

Proof. If we consider Lemma 2 and apply the same method that used in the proof of Theorem 3, then
we can obtain the desired inequality (5.1). O

Corollary 5. If we take the limit ¢ — 1= in Theorem 6, then we obtain the following Newton’s type

inequality
1 2
/ F(x)dx
K1

Ko — K1
-+ @ (U2 ) - F (PR ) - F )|
S (ks — ) (5 + 2 4 25) [ Do (52)| + (85 + 25+ Zio) 12Dy F ()]
where A ,
E;:/OST|T—B|dT=Bg+811—1Z,
si= [ - -par= AL B F
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3 3 5 1
si= [ riralar=% - 240
1
3

o

3 189
3 1802 + 5 + 5« 1 o
Egz/ l-7)r—aldr=————————a——-— —,
1 18 9 3
1 3
— 0 13v 35
= = —~ldr = — — — e
0 /gTT Mdr =5~ 15 Tsr
. /1 (1) d 182 +134+13y 57y 35 3
Elo = —7)|T— T — - .
0=/, 7 18 3 81 3
Remark 14. If we take g = %, a = %, and v = % in Theorem 6, then Theorem 6 reduces to [10,
Theorem 7).
Remark 15. If we assume f=a =y = [i in Theorem 6, then we recapture the inequality (4.2).

2,

Theorem 7. We assume that the given conditions of Lemma 2 hold. If the mapping |*2D,F|"*, p1 > 1
is convex on [K1, ka|, then the following Newton’s type inequality holds:

1 m2
/ F(z) "dyx

R2 — K1

-+ @-pr (22 ) —a F (B L - F )|

(5.2)

1—--L 1
(ke = kK1) |13 7" (s "2 Dy F (k)" +Z6 |2 Do F (ko) ") 1

IN

1—-L 1
+E14 " ((57 "2 Dy F (k1)|"* + s |2 Dy F (52)\“)“)

1

1— a1
+E15 " (29 [ Do F (k1) [P + Eno KQqu(’@)'pl)m]

where Z5-219 and Z13-215 are given in (3.18)-(3.23) and (3.11)-(3.13), respectively.

Proof. If we apply the steps used in the proof of Theorem 4 and taking into account Lemma 2, we can
obtain the required inequality (5.2). O

Corollary 6. If we take the limit ¢ — 1~ in Theorem 7, then we obtain the following Newton’s type

imequality
1 2
/ F(z)dx
Ko — K1 K1

-+ @ pF (U2 ) -0 F (B ) - F )|

3 3
1

1- L a1
< (2 rn) [Hu 2 %Dy (k)P4 E %2 Dy F (a)P)
-1 1
I, (257D, F (k)P + 551 Do (ra) ) )
1--L 1
HIL T (S50, ()" + i D, (m)") |

where Z£-27, are defined in Corollary 5 and

-

3 1
H11=/0 |T—/3|d7'=52+9[2]—§7
q

2

5 180 +5
i = |T—Oé|d7':a7+—a,
1 18

3
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18y* +13 5y

1
11,5 = —vldr = .
13 |7 —|dr 18 3

o= @i

Remark 16. If we take f = é, a =
Theorem 9].

, and vy = % in Theorem 7, then Theorem 7 reduces to [10,

Remark 17. If we assume 8 =a =~ = ﬁ in Theorem 7, then we recapture the inequality (4.4).

Theorem 8. We assume that the given conditions of Lemma 2 hold. If the mapping |2 D F|**, p1 > 1
1S conver on [/{1, ko], then the following Newton’s type inequality holds:

/ F(z) "dyx
R2 — K1

57 )+ (0= 7 (522 ) k(- F (PR (=) £ )|

(5.3)

IN
—
=
V]

\
=
—
~
[1
—
[od]

_n<”DfMHW+CM+$WDJW@W>é
o o

q q

_2 (12D F ()P | g DF (k)]
+ﬂ9< 3@, | 3@

q q

1
_FH<MMwan“+< —mmafwaw>“

e 9[2] 9(2]

q q

where pyt 4+ r7t =1 and

1 2 1
3 3 . —_
Si= [ o= dr, 20 = [ e -l der, 2= [t
0 3 3

Proof. If we apply the steps used in the proof of Theorem 5 and taking into account Lemma 2, we can
obtain the required inequality (5.3). O

Remark 18. If we take § = %, a=31 andy= % in Theorem 8, then Theorem 8 becomes [10, Theorem
8].

6. CONCLUSIONS

In this investigation, we gave a new extension of quantum trapezoid, quantum Simpson’s and
quantum Newton’s type estimations for quantum differentiable convex functions using the quantum
integrals. It is also shown that the results given here are the generalizations of the results proved
n [9,10,14]. We also obtained several new inequalities of Simpson’s type, Newton’s type, midpoint
type, and trapezoidal type in the special cases of newly established results. It is an interesting and new
problem that the forthcoming researchers can obtain similar inequalities for convex and co-ordinated
convex functions in their research.
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