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Summary

In this paper, we derive an Euler-Maruyama (EM) method for a class of multi-term
fractional stochastic nonlinear differential equations, and prove its strong conver-
gence. The strong convergence order of this EM method ismin{𝛼𝑚−0.5, 𝛼𝑚−𝛼𝑚−1},
where {𝛼𝑖}𝑚𝑖=1 is the order of Caputo fractional derivative satisfying that 1 > 𝛼𝑚 >
𝛼𝑚−1 > ⋯ > 𝛼2 > 𝛼1 > 0, 𝛼𝑚 > 0.5, and 𝛼𝑚 + 𝛼𝑚−1 > 1. Then, a fast implementa-
tion of this proposed EM method is also presented based on the sum-of-exponentials
approximation technique. Finally, some numerical experiments are given to verify
the theoretical results and computational efficiency of our EM method.
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1 INTRODUCTION

In recent twenty years, fractional differential equations have attracted a large number of scholars’ increasing interest due to
their wide applications in disciplines such as mechanics, physics, electrical engineering and control theory, see1,2 for examples.
Among them, multi-term fractional models are known as the potential mathematical tools to describe the complex systems and
phenomena caused by different anomalous relaxations. Therefore, many works focus on the theory and modelling of multi-term
fractional differential equations, such as the fractional Bagley-Torvik equations3,4 and Basset equations5. Meanwhile, lots of
numerical methods for above multi-term fractional differential equations have been developed. For examples, Edwards in 2002
presented a numerical method for a class of linear fractional differential equations with initial value conditions, and this method
was applied to numerically solve Basset equations6. Kukla in 2020 used the Mittag-Leffler function to obtain another numerical
method for solving the initial value problem of Basset equations7.

As is known that almost all of the mathematical models are influenced by noisy factors. Thus, researchers in various fields
pay more attention to a novel model that is fractional stochastic differential equations (FSDEs)8,9. Obviously, it is very difficult
or even impossible to analytically solve FSDEs, so people often focus on constructing numerical methods to solve this problem.
For examples, Zhang in10 proposed an Euler method for numerically solving stochastic Volterra equations with singular kernels.
Doan et al. in11 proposed an Euler-Maruyama (EM) method for a kind of single-term fractional stochastic differential equations
driven by a multiplicative white noise with the fractional order 𝛼 ∈ (0.5, 1). Anh et al. in12 presented a variation of constant
formula to solve a Caputo stochastic fractional differential equation. Additionally, there also exist many works of variable-order
FSDEs, see13,14 for examples. Zheng et al. in13 analysed a nonlinear variable-order FSDE, and proved the well-posedness of this
equation. Yang et al. in14 studied the strong convergence of an EM scheme to a variable-order FSDE driven by a multiplicative
white noise.
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Herein, we in this paper will construct and analyze an EM method for the following multi-term FSDEs with the initial value
condition 𝑋(0) = 𝜂,

𝑚
∑

𝑖=1

𝐶
0 𝐷

𝛼𝑖
𝑡 𝑋(𝑡) = 𝑓 (𝑡, 𝑋(𝑡)) + 𝑔(𝑡, 𝑋(𝑡))

𝑑𝑊𝑡

𝑑𝑡
, 0 < 𝑡 ≤ 𝑇 , (1)

where 𝐶
0 𝐷

𝛼𝑖
𝑡 𝑋(𝑡), (𝑖 = 1, 2,⋯ , 𝑚) are the Caputo fractional derivatives with 1 > 𝛼𝑚 > 𝛼𝑚−1 > ⋯ > 𝛼2 > 𝛼1 > 0, 𝛼𝑚 > 0.5,

𝛼𝑚 + 𝛼𝑚−1 > 1, and its definition is

𝐶
0 𝐷

𝛼𝑖
𝑡 𝑋(𝑡) = 1

Γ(1 − 𝛼𝑖)

𝑡

∫
0

(𝑡 − 𝑠)−𝛼𝑖𝑋′(𝑠)𝑑𝑠,

where 𝑋 ∶ [0, 𝑇 ] → ℝ𝑑 with the positive integer 𝑑, 𝑓, 𝑔 ∶ [0, 𝑇 ] × ℝ𝑑 → ℝ𝑑 , here ℝ𝑑 is the 𝑑-dimensional Euclidean space.
(𝑊𝑡)𝑡∈[0,∞) denotes a one dimensional independent standard Winner process on an underlying complete filtered probability
space (Ω, , 𝔽 = {𝑡}𝑡∈[0,∞),ℙ). And then the strong convergence of the proposed EM method is proved. Furthermore, it is
worth mentioning that the above result of strong convergence can be extended to the EM method for more general multi-term
FSDEs with vector-valued noise. Additionally, due to the nonlocal property of Riemann-Liouville fractional integral operator,
the computational cost of the proposed EM method is very expensive for the small step size. Thus, a fast implementation of the
proposed EM method is also discussed by using the sum-of-exponentials (SOE) approximation for the weakly singular kernel
in the Riemann-Liouville fractional integral.

The rest of this paper is organized as follows: in Section 2, some preliminaries are provided, and then the EM method is
derived. In Section 3, the related numerical theoretical results and the strong convergence of the presented EM method are
obtained and proved. Then, the main result of Section 3 is extended to more general case in Section 4. And also in Section 4,
the fast implementation of the EM method is presented. In Section 5, some numerical experiments are given to illustrate the
effectiveness of the EM method and verify the theoretical results. Finally, some concluding remarks are given.

2 PRELIMINARIES AND THE DERIVATION OF EM METHOD

2.1 Preliminaries
For each 𝑡 ∈ [0,∞), let 𝔛𝑡 = 𝕃2(Ω,𝑡,ℙ) denote the space of all 𝑡 -measurable, mean square integrable functions 𝑓 =
(𝑓1,⋯ , 𝑓𝑑)𝑇 ∶ Ω → ℝ𝑑 with the following standard norm

‖𝑓‖𝑚𝑠 =
√

∑

1≤𝑖≤𝑑
𝔼(|𝑓𝑖|2).

To equivalently transform Eq. (1) into its integral form, the following Riemann-Liouville fractional integral will be used,

𝐽 𝛼𝑓 (𝑡) = 1
Γ(𝛼)

𝑡

∫
0

(𝑡 − 𝑠)𝛼−1𝑓 (𝑠)𝑑𝑠, (2)

where 𝛼 > 0. It is easy to check that 𝐽 𝛼𝑓 (𝑡) → 𝑓 (𝑡) as 𝛼 → 0, thus define 𝐽 0𝑓 (𝑡) = 𝑓 (𝑡).
Now let us turn to Eq. (1). To guarantee Eq. (1) with the initial condition exists a unique solution, the following necessary

assumptions are required:
(H1) Lipschitz continuity in ℝ𝑑 of the drift and diffusion: There exists a constant 𝐿 > 0 such that for all 𝑥, 𝑦 ∈ ℝ𝑑 , 𝑡 ∈ [0, 𝑇 ],

‖𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)‖ ∨ ‖𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖,

where ‖ ⋅ ‖ is the standard 𝑑-dimensional Euclidean norm.
(H2) Lipschitz continuity in [0, 𝑇 ] of the drift and diffusion: There exists a constant 𝐿1 > 0 such that for all 𝑥 ∈ ℝ𝑑 , 𝑡, 𝑠 ∈ [0, 𝑇 ]

‖𝑓 (𝑡, 𝑥) − 𝑓 (𝑠, 𝑥)‖ ∨ ‖𝑔(𝑡, 𝑥) − 𝑔(𝑠, 𝑥)‖ ≤ 𝐿1|𝑡 − 𝑠|.

(H3) Linear growth bound: There exists a constant 𝐾 > 0 such that for all 𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ ℝ𝑑

‖𝑓 (𝑡, 𝑥)‖ ∨ ‖𝑔(𝑡, 𝑥)‖ ≤ 𝐾(1 + ‖𝑥‖).
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2.2 Derivation of EM Method for multi-term FSDEs
Now let us left multiply the Riemann-Liouville fractional integral operator 𝐽 𝛼𝑚 defined by (2) on both sides of Eq. (1), that is,

𝐽 𝛼𝑚(
𝑚
∑

𝑖=1

𝐂
𝟎𝐃

𝛂𝐢
𝐭 𝑋(𝑡)) = 𝐽 𝛼𝑚 𝑓 (𝑡, 𝑋(𝑡)) + 𝐽 𝛼𝑚 𝑔(𝑡, 𝑋(𝑡))

𝑑𝑊𝑡

𝑑𝑡
. (3)

According to the property (see15 for example) of Riemann-Liouville fractional integral and Caputo fractional derivative, it yields

𝐽 𝛼𝑚(𝐂𝟎𝐃
𝛂𝐢
𝐭 𝑋(𝑡)) = 𝐽 𝛼𝑚−𝛼𝑖[𝑋(𝑡) −𝑋(0)], 𝑖 = 1, 2,⋯ , 𝑚,

which together with (3) implies that
𝑚
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1𝑋(𝑠)𝑑𝑠 =
𝑚
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

𝑋(0)

+ 1
Γ(𝛼𝑚)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−1𝑓 (𝑠,𝑋(𝑠))𝑑𝑠

+ 1
Γ(𝛼𝑚)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−1𝑔(𝑠,𝑋(𝑠))𝑑𝑊𝑠

by using the following equality

𝐽 𝛼𝑚−𝛼𝑖𝑋(0) = 𝑡𝛼𝑚−𝛼𝑖
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

𝑋(0), 𝑖 = 1, 2,⋯ , 𝑚.

For each 𝜂 ∈ 𝔛0, a 𝔽 -adapted process 𝑋(𝑡) is called a solution of (1) on the interval [0, 𝑇 ] if the following equality holds for
𝑡 ∈ [0, 𝑇 ]

𝑋(𝑡) = 𝜂
𝑚
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

−
𝑚−1
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1𝑋(𝑠)𝑑𝑠

+

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−1

Γ(𝛼𝑚)
𝑓 (𝑠,𝑋(𝑠))𝑑𝑠 +

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−1

Γ(𝛼𝑚)
𝑔(𝑠,𝑋(𝑠))𝑑𝑊𝑠. (4)

We are now in a position to derive the EM method for Eq. (1) based on its equivalent integral form Eq. (4). That is, for each
𝑛 ∈ ℕ∗, where ℕ∗ denotes the set of positive integer numbers, the EM approximate solution 𝑋(𝑛)(𝑡) is defined by 𝑋(𝑛)(0) = 𝜂
and for 𝑡 ∈ (0, 𝑇 ],

𝑋(𝑛)(𝑡) = 𝜂
𝑚
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

−
𝑚−1
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠

+ 1
Γ(𝛼𝑚)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−1𝑓 (𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))𝑑𝑠

+ 1
Γ(𝛼𝑚)

𝑡

∫
0

(𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))𝛼𝑚−1𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑊𝑠, (5)

where 𝜏𝑛(𝑠) =
𝑘𝑇
𝑛

and 𝜌𝑛(𝑠) =
(𝑘+1)𝑇

𝑛
for 𝑠 ∈ ( 𝑘𝑇

𝑛
, (𝑘+1)𝑇

𝑛
]. It is clear that the above EM method can be performed step by step

on each interval ( 𝑘𝑇
𝑛
, (𝑘+1)𝑇

𝑛
], 𝑘 = 0, 1,⋯ , 𝑛 − 1.
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3 STRONG CONVERGENCE OF THE PROPOSED EM METHOD

Before going to present the strong convergence of the proposed EM method, some preparatory lemmas are needed. Firstly, we
will prove that sup

0≤𝑡≤𝑇
‖𝑋(𝑛)(𝑡)‖𝑚𝑠 is bounded.

Lemma 1. For all 𝑥𝑖 ∈ ℝ𝑑 , 𝑖 = 1, 2,⋯ , 𝑛, we have that

‖

𝑛
∑

𝑖=1
𝑥𝑖‖

2 ≤ 𝑛
𝑛
∑

𝑖=1
‖𝑥𝑖‖

2.

The proof of Lemma 1 can easily be obtained by the property of norm.

Lemma 2. Let

𝐶0 = 𝐸𝛼𝑚−𝛼𝑚−1((
8𝑄1𝐾2(𝑇 + 1)

Γ2(𝛼𝑚)
+

4𝑄(𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

)𝑡𝛼𝑚−𝛼𝑚−1Γ(𝛼𝑚 − 𝛼𝑚−1)),

𝐶1 = 4‖𝜂‖2𝑚𝑠

( 𝑚
∑

𝑖=1

𝑇 𝛼𝑚−𝛼𝑖

Γ(𝛼𝑚 − 𝛼𝑖 + 1)

)2

+
8𝑄1𝐾2(𝑇 𝛼𝑚−𝛼𝑚−1+1 + 𝑇 𝛼𝑚−𝛼𝑚−1)

(𝛼𝑚 − 𝛼𝑚−1)Γ2(𝛼𝑚)
⋅ 𝐶0, (6)

where 𝐸𝛾 (⋅) in 𝐶0 denotes the Mittag-Leffler function defined as

𝐸𝛾 (𝑧) =
∞
∑

𝑘=0

𝑧𝑘

Γ(𝛾𝑘 + 1)
, 𝛾 > 0,

𝑄 = max{1, 𝑇 𝛼𝑚+𝛼𝑚−1−2𝛼1}, 𝑄1 = max{1, 𝑇 𝛼𝑚+𝛼𝑚−1−1}, and 𝑚1 = min{Γ(𝛼𝑚 − 𝛼𝑚−1),⋯ ,Γ(𝛼𝑚 − 𝛼1)}. Then, for all 𝑛 ∈ ℕ∗, we
have

sup
0≤𝑡≤𝑇

‖𝑋(𝑛)(𝑡)‖2𝑚𝑠 ≤ 𝐶1.

Proof. From (5) and Lemma 1, it is deduced that

𝔼(‖𝑋(𝑛)(𝑡)‖2) ≤ 4𝔼‖𝜂
𝑚
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

‖

2

+4𝔼‖
𝑚−1
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠‖2

+ 4
Γ2(𝛼𝑚)

𝔼(‖

𝑡

∫
0

𝑓 (𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))
(𝑡 − 𝑠)1−𝛼𝑚

𝑑𝑠‖2)

+ 4
Γ2(𝛼𝑚)

𝔼(‖

𝑡

∫
0

𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))
(𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))1−𝛼𝑚

𝑑𝑊𝑠‖
2).
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Using Lemma 1 and Hölder inequality, we obtain

𝔼‖
𝑚−1
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠‖2

≤ (𝑚 − 1)
𝑚−1
∑

𝑖=1
𝔼‖ 1

Γ(𝛼𝑚 − 𝛼𝑖)

𝑡

∫
0

(𝑡 − 𝑠)
𝛼𝑚−𝛼𝑖−1

2 (𝑡 − 𝑠)
𝛼𝑚−𝛼𝑖−1

2 𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠‖2

≤ (𝑚 − 1)
𝑚2

1(𝛼𝑚 − 𝛼𝑚−1)

𝑚−1
∑

𝑖=1
𝑡𝛼𝑚−𝛼𝑖

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1𝔼‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2𝑑𝑠

≤ (𝑚 − 1)
𝑚2

1(𝛼𝑚 − 𝛼𝑚−1)

𝑚−1
∑

𝑖=1
𝑡𝛼𝑚−𝛼𝑖

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑚−1−1(𝑡 − 𝑠)𝛼𝑚−1−𝛼𝑖𝔼‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2𝑑𝑠

≤ (𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

max{1, 𝑇 𝛼𝑚+𝛼𝑚−1−2𝛼1}

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑚−1−1𝔼‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2𝑑𝑠

where 𝑚1 = min{Γ(𝛼𝑚 − 𝛼𝑚−1),⋯ ,Γ(𝛼𝑚 − 𝛼1)}. For convenience, let 𝑄 = max{1, 𝑇 𝛼𝑚+𝛼𝑚−1−2𝛼1}, then using Hölder inequality
and Itô’s isometry, we can get

‖𝑋(𝑛)(𝑡)‖2𝑚𝑠 ≤ 4‖𝜂
𝑚
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

‖

2
𝑚𝑠

+
4𝑄(𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

𝑡

∫
0

𝔼‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2

(𝑡 − 𝑠)1+𝛼𝑚−1−𝛼𝑚
𝑑𝑠

+ 4𝑡
Γ2(𝛼𝑚)

𝑡

∫
0

𝔼‖𝑓 (𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))‖2

(𝑡 − 𝑠)2−2𝛼𝑚
𝑑𝑠

+ 4
Γ2(𝛼𝑚)

𝑡

∫
0

𝔼‖𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))‖2

(𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))2−2𝛼𝑚
𝑑𝑠.
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Let 𝑄1 = max{1, 𝑇 𝛼𝑚+𝛼𝑚−1−1}, this together with the fact that |𝜌𝑛(𝑡) − 𝜏𝑛(𝑠)| ≥ |𝑡 − 𝑠| and the linear growth condition (H3)
implies that

‖𝑋(𝑛)(𝑡)‖2𝑚𝑠 ≤ 4‖𝜂
𝑚
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

‖

2
𝑚𝑠

+
4𝑄(𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

𝑡

∫
0

𝔼‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2

(𝑡 − 𝑠)1+𝛼𝑚−1−𝛼𝑚
𝑑𝑠

+
8𝑄1𝑡
Γ2(𝛼𝑚)

𝑡

∫
0

𝐾2

(𝑡 − 𝑠)1+𝛼𝑚−1−𝛼𝑚
𝑑𝑠 +

8𝑄1𝑡𝐾2

Γ2(𝛼𝑚)

𝑡

∫
0

𝔼‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2

(𝑡 − 𝑠)1+𝛼𝑚−1−𝛼𝑚
𝑑𝑠

+
8𝑄1

Γ2(𝛼𝑚)

𝑡

∫
0

𝐾2

(𝑡 − 𝑠)1+𝛼𝑚−1−𝛼𝑚
𝑑𝑠 +

8𝑄1𝐾2

Γ2(𝛼𝑚)

𝑡

∫
0

𝔼‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2

(𝑡 − 𝑠)1+𝛼𝑚−1−𝛼𝑚
𝑑𝑠

≤ 4‖𝜂
𝑚
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

‖

2
𝑚𝑠 +

8𝑄1𝐾2(𝑡𝛼𝑚−𝛼𝑚−1+1 + 𝑡𝛼𝑚−𝛼𝑚−1)
(𝛼𝑚 − 𝛼𝑚−1)Γ2(𝛼𝑚)

+(
8𝑄1𝐾2(𝑡 + 1)

Γ2(𝛼𝑚)
+

4𝑄(𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

)

𝑡

∫
0

𝔼‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2

(𝑡 − 𝑠)1+𝛼𝑚−1−𝛼𝑚
𝑑𝑠.

Let 𝑚𝑡 = sup
0≤𝑠≤𝑡

‖𝑋(𝑛)(𝑠)‖2𝑚𝑠, using the generalized Gronwall’s inequality16, we arrive at

𝑚𝑡 ≤ (4‖𝜂
𝑚
∑

𝑖=1

𝑇 𝛼𝑚−𝛼𝑖

Γ(𝛼𝑚 − 𝛼𝑖 + 1)
‖

2
𝑚𝑠 +

8𝑄1𝐾2(𝑇 𝛼𝑚−𝛼𝑚−1+1 + 𝑇 𝛼𝑚−𝛼𝑚−1)
(𝛼𝑚 − 𝛼𝑚−1)Γ2(𝛼𝑚)

)

⋅𝐸𝛼𝑚−𝛼𝑚−1((
8𝑄1𝐾2(𝑇 + 1)

Γ2(𝛼𝑚)
+

4𝑄(𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

)𝑡𝛼𝑚−𝛼𝑚−1Γ(𝛼𝑚 − 𝛼𝑚−1)).

This completes the proof. □

The following lemma concerns the generalized continuity of EM solution with respect to the variable 𝑡 ∈ [0, 𝑇 ].
Lemma 3. Let

𝐶2 = 6(
(𝑚 − 1)2(‖𝜂‖2𝑚𝑠 + 4𝑄2𝐶1)

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)2

+
2𝐾2(1 + 𝐶1)(𝑇 + 2)
(2𝛼𝑚 − 1)Γ2(𝛼𝑚)

), 𝐶3 =
12𝐾2(1 + 𝐶1)
(2𝛼𝑚 − 1)Γ2(𝛼𝑚)

𝑇 2𝛼𝑚−1, (7)

where 𝐶1 is defined in (6) and 𝑄2 = max{1, 𝑇 𝛼𝑚−1−𝛼1}. Then, for all 𝑛 ∈ ℕ∗ and 𝑡, 𝑡 ∈ [0, 𝑇 ], we have

‖𝑋(𝑛)(𝑡) −𝑋(𝑛)(𝑡)‖2𝑚𝑠 ≤ 𝐶2|𝑡 − 𝑡|2𝛼𝑚−2𝛼𝑚−1 +
𝐶3

𝑛2𝛼𝑚−1
.
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Proof. For any 𝑡, 𝑡 ∈ [0, 𝑇 ] with 𝑡 > 𝑡. By (5), it is clear that

𝑋(𝑛)(𝑡) −𝑋(𝑛)(𝑡)

= 𝜂
𝑚−1
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖 − 𝑡𝛼𝑚−𝛼𝑖
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

−
𝑚−1
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

𝑡

∫
𝑡

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠

+
𝑚−1
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

𝑡

∫
0

((𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1 − (𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1)𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠

+ 1
Γ(𝛼𝑚)

𝑡

∫
0

((𝑡 − 𝑠)𝛼𝑚−1 − (𝑡 − 𝑠)𝛼𝑚−1)𝑓 (𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))𝑑𝑠

+ 1
Γ(𝛼𝑚)

𝑡

∫
𝑡

(𝑡 − 𝑠)𝛼𝑚−1𝑓 (𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))𝑑𝑠

+ 1
Γ(𝛼𝑚)

𝑡

∫
0

((𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))𝛼𝑚−1 − (𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))𝛼𝑚−1)𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))𝑑𝑊𝑠

+ 1
Γ(𝛼𝑚)

𝑡

∫
𝑡

(𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))𝛼𝑚−1𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))𝑑𝑊𝑠.

By using Lemma 1, we have
1
6
‖𝑋(𝑛)(𝑡) −𝑋(𝑛)(𝑡)‖2𝑚𝑠

≤ 𝔼‖𝜂
𝑚−1
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖 − 𝑡𝛼𝑚−𝛼𝑖
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

‖

2

+𝔼‖
𝑚−1
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

𝑡

∫
0

((𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1 − (𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1)𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠

−
𝑚−1
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

𝑡

∫
𝑡

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠‖2

+𝔼‖ 1
Γ(𝛼𝑚)

𝑡

∫
0

((𝑡 − 𝑠)𝛼𝑚−1 − (𝑡 − 𝑠)𝛼𝑚−1)𝑓 (𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))𝑑𝑠‖2

+𝔼‖ 1
Γ(𝛼𝑚)

𝑡

∫
𝑡

(𝑡 − 𝑠)𝛼𝑚−1𝑓 (𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))𝑑𝑠‖2

+𝔼‖ 1
Γ(𝛼𝑚)

𝑡

∫
0

((𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))𝛼𝑚−1 − (𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))𝛼𝑚−1)𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))𝑑𝑊𝑠‖
2

+𝔼‖ 1
Γ(𝛼𝑚)

𝑡

∫
𝑡

(𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))𝛼𝑚−1𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))𝑑𝑊𝑠‖
2.
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Let 𝑄2 = max{1, 𝑇 𝛼𝑚−1−𝛼1}, the second term of the right-hand side can be deduced as

𝔼‖
𝑚−1
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

[

𝑡

∫
0

((𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1 − (𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1)𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠

−

𝑡

∫
𝑡

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠]‖2

≤
𝑚−1
∑

𝑖=1

(𝑚 − 1)
Γ2(𝛼𝑚 − 𝛼𝑖)

𝔼‖

𝑡

∫
0

((𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1 − (𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1)𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠

−

𝑡

∫
𝑡

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠‖2

≤
𝑚−1
∑

𝑖=1

2(𝑚 − 1)
Γ2(𝛼𝑚 − 𝛼𝑖)

𝔼(‖

𝑡

∫
0

((𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1 − (𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1)
1
2
⋅2𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠‖2

+‖

𝑡

∫
𝑡

(𝑡 − 𝑠)
𝛼𝑚−𝛼𝑖−1

2 (𝑡 − 𝑠)
𝛼𝑚−𝛼𝑖−1

2 𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠‖2)

≤
𝑚−1
∑

𝑖=1

2(𝑚 − 1)(𝑡 − 𝑡)𝛼𝑚−𝛼𝑖
(𝛼𝑚 − 𝛼𝑖)Γ2(𝛼𝑚 − 𝛼𝑖)

(

𝑡

∫
0

((𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1 − (𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1)‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2𝑚𝑠𝑑𝑠

+

𝑡

∫
𝑡

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2𝑚𝑠𝑑𝑠)

≤
2𝑄2(𝑚 − 1)2(𝑡 − 𝑡)𝛼𝑚−𝛼𝑚−1

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

(

𝑡

∫
0

((𝑡 − 𝑠)𝛼𝑚−𝛼𝑚−1−1 − (𝑡 − 𝑠)𝛼𝑚−𝛼𝑚−1−1)‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2𝑚𝑠𝑑𝑠

+

𝑡

∫
𝑡

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑚−1−1‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2𝑚𝑠𝑑𝑠),
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By using Hölder inequality and Itô’s isometry, we have that
1
6
‖𝑋(𝑛)(𝑡) −𝑋(𝑛)(𝑡)‖2𝑚𝑠

≤ 𝔼‖𝜂
𝑚−1
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖 − 𝑡𝛼𝑚−𝛼𝑖
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

‖

2

+
2𝑄2(𝑚 − 1)2(𝑡 − 𝑡)𝛼𝑚−𝛼𝑚−1

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

𝑡

∫
0

((𝑡 − 𝑠)𝛼𝑚−𝛼𝑚−1−1 − (𝑡 − 𝑠)𝛼𝑚−𝛼𝑚−1−1)‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2𝑚𝑠𝑑𝑠

+
2𝑄2(𝑚 − 1)2(𝑡 − 𝑡)𝛼𝑚−𝛼𝑚−1

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

𝑡

∫
𝑡

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑚−1−1‖𝑋(𝑛)(𝜏𝑛(𝑠))‖2𝑚𝑠𝑑𝑠

+ 𝑡
Γ2(𝛼𝑚)

𝑡

∫
0

((𝑡 − 𝑠)𝛼𝑚−1 − (𝑡 − 𝑠)𝛼𝑚−1)2‖𝑓 (𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))‖2𝑚𝑠𝑑𝑠

+ 𝑡 − 𝑡
Γ2(𝛼𝑚)

𝑡

∫
𝑡

(𝑡 − 𝑠)2𝛼𝑚−2‖𝑓 (𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))‖2𝑚𝑠𝑑𝑠

+ 1
Γ2(𝛼𝑚)

𝑡

∫
0

((𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))𝛼𝑚−1 − (𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))𝛼𝑚−1)2‖𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))‖2𝑚𝑠𝑑𝑠

+ 1
Γ2(𝛼𝑚)

𝑡

∫
𝑡

((𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))2𝛼𝑚−2‖𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))‖2𝑚𝑠𝑑𝑠.

This together with Lemma 2 and the following two inequalities

( 1
(𝑡 − 𝑠)1−𝛼𝑚

− 1
(𝑡 − 𝑠)1−𝛼𝑚

)2 < 1
(𝑡 − 𝑠)2−2𝛼𝑚

− 1
(𝑡 − 𝑠)2−2𝛼𝑚

,

and
1

(𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))2−2𝛼𝑚
− 1

(𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))2−2𝛼𝑚
≤ 1

(𝜌𝑛(𝑡) − 𝑠)2−2𝛼𝑚
− 1

(𝜌𝑛(𝑡) − 𝑠)2−2𝛼𝑚
,

implies that
1
6
‖𝑋(𝑛)(𝑡) −𝑋(𝑛)(𝑡)‖2𝑚𝑠

≤ (𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)2

‖𝜂‖2𝑚𝑠(𝑡 − 𝑡)2𝛼𝑚−2𝛼𝑚−1

+
2𝑄2(𝑚 − 1)2𝐶1

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)2

(𝑡 − 𝑡)𝛼𝑚−𝛼𝑚−1(2(𝑡 − 𝑡)𝛼𝑚−𝛼𝑚−1 + 𝑡𝛼𝑚−𝛼𝑚−1 − 𝑡𝛼𝑚−𝛼𝑚−1)

+
2𝐾2𝑡(1 + 𝐶1)

(2𝛼𝑚 − 1)Γ2(𝛼𝑚)
((𝑡 − 𝑡)2𝛼𝑚−1 + 𝑡2𝛼𝑚−1 − 𝑡2𝛼𝑚−1)

+
2𝐾2(𝑡 − 𝑡)(1 + 𝐶1)
(2𝛼𝑚 − 1)Γ2(𝛼𝑚)

(𝑡 − 𝑡)2𝛼𝑚−1

+
2𝐾2(1 + 𝐶1)

(2𝛼𝑚 − 1)Γ2(𝛼𝑚)
(𝑡 − 𝑡)2𝛼𝑚−1

+
2𝐾2(1 + 𝐶1)

(2𝛼𝑚 − 1)Γ2(𝛼𝑚)
((𝜌𝑛(𝑡) − 𝑡)2𝛼𝑚−1 − (𝜌𝑛(𝑡) − 𝑡)2𝛼𝑚−1). (8)

Noting 0 < 2𝛼𝑚 − 1 < 1, and using the inequality |𝑥 + 𝑦|2𝛼𝑚−1 ≤ |𝑥|2𝛼𝑚−1 + |𝑦|2𝛼𝑚−1, we obtain that

(𝜌𝑛(𝑡) − 𝑡)2𝛼𝑚−1 − (𝜌𝑛(𝑡) − 𝑡)2𝛼𝑚−1 ≤ (𝜌𝑛(𝑡) − 𝜌𝑛(𝑡))2𝛼𝑚−1.
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According to the definition of 𝜌𝑛(⋅) in (5), it holds 𝜌𝑛(𝑡) − 𝜌𝑛(𝑡) ≤ 𝑡 − 𝑡 + 𝑇
𝑛

. Thus,

(𝜌𝑛(𝑡) − 𝜌𝑛(𝑡))2𝛼𝑚−1

2𝛼𝑚 − 1
≤

(𝑡 − 𝑡)2𝛼𝑚−1 +
(

𝑇
𝑛

)2𝛼𝑚−1

2𝛼𝑚 − 1
.

This together with (8) implies that
1
6
‖𝑋(𝑛)(𝑡) −𝑋(𝑛)(𝑡)‖2𝑚𝑠

≤
(𝑚 − 1)2(4𝑄2𝐶1 + ‖𝜂‖2𝑚𝑠)

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)2

(𝑡 − 𝑡)2𝛼𝑚−2𝛼𝑚−1 +
2𝐾2(1 + 𝐶1)

(2𝛼𝑚 − 1)Γ2(𝛼𝑚)
(𝑡 + 2)(𝑡 − 𝑡)2𝛼𝑚−1

+
2𝐾2(1 + 𝐶1)

(2𝛼𝑚 − 1)Γ2(𝛼𝑚)
⋅
𝑇 2𝛼𝑚−1

𝑛2𝛼𝑚−1

≤ (
(𝑚 − 1)2(‖𝜂‖2𝑚𝑠 + 4𝑄2𝐶1)

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)2

+
2𝐾2(1 + 𝐶1)

(2𝛼𝑚 − 1)Γ2(𝛼𝑚)
(𝑇 + 2))(𝑡 − 𝑡)2𝛼𝑚−2𝛼𝑚−1

+
2𝐾2(1 + 𝐶1)

(2𝛼𝑚 − 1)Γ2(𝛼𝑚)
⋅
𝑇 2𝛼𝑚−1

𝑛2𝛼𝑚−1
.

This proof is completed. □
Theorem 1. (Strong convergence of the EM method for multi-term Caputo SFDEs)
Let 𝜅 = min{𝛼𝑚 − 0.5, 𝛼𝑚 − 𝛼𝑚−1}. Then, there exists a constant 𝐶 depending only on 𝑇 , 𝐿,𝐿1, 𝛼𝑖, 𝐾 such that

sup
0≤𝑡≤𝑇

‖𝑋(𝑛)(𝑡) −𝑋(𝑡)‖2𝑚𝑠 ≤
𝐶
𝑛2𝜅

. (9)

Proof. For a fixed 𝜂 ∈ 𝔛0. From (4) and (5), it deduces that

𝑋(𝑛)(𝑡) −𝑋(𝑡)

=
𝑚−1
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1(𝑋(𝑠) −𝑋(𝑛)(𝜏𝑛(𝑠)))𝑑𝑠

+ 1
Γ(𝛼𝑚)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−1(𝑓 (𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠))) − 𝑓 (𝑠,𝑋(𝑠)))𝑑𝑠

+ 1
Γ(𝛼𝑚)

𝑡

∫
0

𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠))) − 𝑔(𝑠,𝑋(𝑠))
(𝑡 − 𝑠)1−𝛼𝑚

𝑑𝑊𝑠

+ 1
Γ(𝛼𝑚)

𝑡

∫
0

(
𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))
(𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))1−𝛼𝑚

−
𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))

(𝑡 − 𝑠)1−𝛼𝑚
)𝑑𝑊𝑠.
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By Lemma 1, Hölder inequality and Itô’s isometry, we have
1
4
‖𝑋(𝑛)(𝑡) −𝑋(𝑡)‖2𝑚𝑠

≤ 𝑄(𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑚−1−1‖𝑋(𝑠) −𝑋(𝑛)(𝜏𝑛(𝑠))‖2𝑚𝑠𝑑𝑠

+ 𝑡
Γ2(𝛼𝑚)

𝑡

∫
0

‖𝑓 (𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠))) − 𝑓 (𝑠,𝑋(𝑠))‖2𝑚𝑠
(𝑡 − 𝑠)2−2𝛼𝑚

𝑑𝑠

+ 1
Γ2(𝛼𝑚)

𝑡

∫
0

(
‖𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))‖𝑚𝑠

(𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))1−𝛼𝑚
−

‖𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))‖𝑚𝑠
(𝑡 − 𝑠)1−𝛼𝑚

)2𝑑𝑠

+ 1
Γ2(𝛼𝑚)

𝑡

∫
0

‖𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠))) − 𝑔(𝑠,𝑋(𝑠))‖2𝑚𝑠
(𝑡 − 𝑠)2−2𝛼𝑚

𝑑𝑠. (10)

Moreover, based on (H1) and (H2), it is easily obtained that

‖𝑓 (𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠))) − 𝑓 (𝑠,𝑋(𝑠))‖2𝑚𝑠
≤ 2𝐿2

‖𝑋(𝑛)(𝜏𝑛(𝑠)) −𝑋(𝑠)‖2𝑚𝑠 + 2𝐿2
1|𝜏𝑛(𝑠) − 𝑠|2, (11)

and

‖𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠))) − 𝑔(𝑠,𝑋(𝑠))‖2𝑚𝑠
≤ 2𝐿2

‖𝑋(𝑛)(𝜏𝑛(𝑠)) −𝑋(𝑠)‖2𝑚𝑠 + 2𝐿2
1|𝜏𝑛(𝑠) − 𝑠|2. (12)

By (H3), Lemma 1, and the following inequality

( 1
(𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))1−𝛼𝑚

− 1
(𝑡 − 𝑠)1−𝛼𝑚

)2 ≤ 1
(𝑡 − 𝑠)2−2𝛼𝑚

− 1
(𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))2−2𝛼𝑚

≤ 1
(𝑡 − 𝑠)2−2𝛼𝑚

− 1
( 2𝑇

𝑛
+ 𝑡 − 𝑠)2−2𝛼𝑚

,

we have
𝑡

∫
0

(
‖𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))‖𝑚𝑠

(𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))1−𝛼𝑚
−

‖𝑔(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))‖𝑚𝑠
(𝑡 − 𝑠)1−𝛼𝑚

)2𝑑𝑠

≤ 2𝐾2(1 + 𝐶1)

𝑡

∫
0

( 1
(𝑡 − 𝑠)2−2𝛼𝑚

− 1
( 2𝑇

𝑛
+ 𝑡 − 𝑠)2−2𝛼𝑚

)𝑑𝑠

≤
2𝐾2(1 + 𝐶1)(2𝑇 )2𝛼𝑚−1

2𝛼𝑚 − 1
1

𝑛2𝛼𝑚−1
.

This together with (10)-(12) implies that

‖𝑋(𝑛)(𝑡) −𝑋(𝑡)‖2𝑚𝑠

≤ 4𝑄(𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑚−1−1‖𝑋(𝑠) −𝑋(𝑛)(𝜏𝑛(𝑠))‖2𝑚𝑠𝑑𝑠

+
8𝐿2(𝑡 + 1)
Γ2(𝛼𝑚)

𝑡

∫
0

‖𝑋(𝑛)(𝜏𝑛(𝑠)) −𝑋(𝑠)‖2𝑚𝑠
(𝑡 − 𝑠)2−2𝛼𝑚

𝑑𝑠 +
8𝐿2

1𝑡
Γ2(𝛼𝑚)

𝑡

∫
0

|𝜏𝑛(𝑠) − 𝑠|2

(𝑡 − 𝑠)2−2𝛼𝑚
𝑑𝑠

+
8𝐿2

1

Γ2(𝛼𝑚)

𝑡

∫
0

|𝜏𝑛(𝑠) − 𝑠|2

(𝑡 − 𝑠)2−2𝛼𝑚
𝑑𝑠 +

8𝐾2(1 + 𝐶1)(2𝑇 )2𝛼𝑚−1

(2𝛼𝑚 − 1)Γ2(𝛼𝑚)
1

𝑛2𝛼𝑚−1
. (13)
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By the definition of 𝜏𝑛(⋅) in (5), we have |𝜏𝑛(𝑠) − 𝑠| ≤ 𝑇
𝑛

for any 𝑠 ∈ [0, 𝑇 ]. Hence, a direct computation yields that

8𝐿2
1𝑡

Γ2(𝛼𝑚)

𝑡

∫
0

|𝜏𝑛(𝑠) − 𝑠|2

(𝑡 − 𝑠)2−2𝛼𝑚
𝑑𝑠 +

8𝐿2
1

Γ2(𝛼𝑚)

𝑡

∫
0

|𝜏𝑛(𝑠) − 𝑠|2

(𝑡 − 𝑠)2−2𝛼𝑚
𝑑𝑠

≤
8𝐿2

1𝑇
2𝛼𝑚+1(𝑇 + 1)

(2𝛼𝑚 − 1)Γ2(𝛼𝑚)
⋅
1
𝑛2

. (14)

On the other hand, by virtue of Lemma 2, we have

‖𝑋(𝑛)(𝜏𝑛(𝑠)) −𝑋(𝑠)‖2𝑚𝑠
≤ 2‖𝑋(𝑛)(𝜏𝑛(𝑠)) −𝑋(𝑛)(𝑠)‖2𝑚𝑠 + 2‖𝑋(𝑛)(𝑠) −𝑋(𝑠)‖2𝑚𝑠

≤ 2𝐶2|𝜏𝑛(𝑠) − 𝑠|2𝛼𝑚−2𝛼𝑚−1 +
2𝐶3

𝑛2𝛼𝑚−1
+ 2‖𝑋(𝑛)(𝑠) −𝑋(𝑠)‖2𝑚𝑠

≤
2𝑇 2𝛼𝑚−2𝛼𝑚−1𝐶2

𝑛2𝛼𝑚−2𝛼𝑚−1
+

2𝐶3

𝑛2𝛼𝑚−1
+ 2‖𝑋(𝑛)(𝑠) −𝑋(𝑠)‖2𝑚𝑠,

where 𝐶2 and 𝐶3 are defined in (7). This together with (13) and (14) gives that

sup
0≤𝑠≤𝑡

‖𝑋(𝑛)(𝑠) −𝑋(𝑠)‖2𝑚𝑠

≤ (
8𝑄(𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

+
16𝐿2(𝑇 + 1)

Γ2(𝛼𝑚)
)

𝑡

∫
0

𝑠𝑢𝑝0≤𝑟≤𝑠‖𝑋(𝑠) −𝑋(𝑛)(𝑠)‖2𝑚𝑠
(𝑡 − 𝑠)1+𝛼𝑚−1−𝛼𝑚

𝑑𝑠

+𝐷1
1
𝑛2

+𝐷2
1

𝑛2𝛼𝑚−1
+𝐷3

1
𝑛2𝛼𝑚−2𝛼𝑚−1

,

where

𝐷1 =
8𝐿2

1𝑇
2𝛼𝑚+1(𝑇 + 1)

(2𝛼𝑚 − 1)Γ2(𝛼𝑚)
,

𝐷2 = (
8𝑄(𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

+
16𝐿2(𝑇 + 1)

Γ2(𝛼𝑚)
)
𝐶3𝑇 𝛼𝑚−𝛼𝑚−1

𝛼𝑚 − 𝛼𝑚−1
+

22𝛼𝑚+2𝐾2(1 + 𝐶1)𝑇 2𝛼𝑚−1

(2𝛼𝑚 − 1)Γ2(𝛼𝑚)
,

𝐷3 = (
8𝑄(𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

+
16𝐿2(𝑇 + 1)

Γ2(𝛼𝑚)
)
𝐶2𝑇 3𝛼𝑚−3𝛼𝑚−1

𝛼𝑚 − 𝛼𝑚−1
.

Applying the generalized Gronwall’s inequality, we can arrive at

sup
0≤𝑠≤𝑡

‖𝑋(𝑛)(𝑠) −𝑋(𝑠)‖2𝑚𝑠

≤ (
𝐷1

𝑛2
+

𝐷2

𝑛2𝛼𝑚−1
+

𝐷3

𝑛2𝛼𝑚−2𝛼𝑚−1
)

⋅𝐸𝛼𝑚−𝛼𝑚−1((
8𝑄(𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

+
16𝐿2(𝑇 + 1)

Γ2(𝛼𝑚)
)𝑇 𝛼𝑚−𝛼𝑚−1Γ(𝛼𝑚 − 𝛼𝑚−1)).

Hence, Inequality (9) can be obtained by denoting

𝐶 = (
3
∑

𝑖=1
𝐷𝑖)𝐸𝛼𝑚−𝛼𝑚−1((

8𝑄(𝑚 − 1)2

𝑚2
1(𝛼𝑚 − 𝛼𝑚−1)

+
16𝐿2(𝑇 + 1)

Γ2(𝛼𝑚)
)𝑇 𝛼𝑚−𝛼𝑚−1Γ(𝛼𝑚 − 𝛼𝑚−1)).

The proof is completed. □

4 EXTENSION AND FAST IMPLEMENTATION OF THE EM METHOD

The proposed EM method can be easily extended to the following multi-term FSDEs with vector-valued noise and initial value
condition 𝑋(0) = 𝜂,

𝑚
∑

𝑖=1

𝐶
0 𝐷

𝛼𝑖
𝑡 𝑋(𝑡) = 𝑓 (𝑡, 𝑋(𝑡)) +

𝑟
∑

𝑖=1
𝑔𝑖(𝑡, 𝑋(𝑡))

𝑑𝑊 𝑖
𝑡

𝑑𝑡
, 0 < 𝑡 ≤ 𝑇 ,
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where 1 > 𝛼𝑚 > 𝛼𝑚−1 > ⋯ > 𝛼2 > 𝛼1 > 0, 𝛼𝑚 > 0.5, 𝛼𝑚 + 𝛼𝑚−1 > 1, the functions 𝑓 (𝑡, 𝑋(𝑡)) and {𝑔𝑖(𝑡, 𝑋(𝑡))}𝑟𝑖=0 satisfy
the assumptions as in (H1), (H2) and (H3). Then, the EM method for solving the above problem can be described as: for each
𝑛 ∈ ℕ∗ and 𝑡 ∈ (0, 𝑇 ],

𝑋(𝑛)(𝑡) = 𝜂
𝑚
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

−
𝑚−1
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−𝛼𝑖−1𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑠

+ 1
Γ(𝛼𝑚)

𝑡

∫
0

(𝑡 − 𝑠)𝛼𝑚−1𝑓 (𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠)))𝑑𝑠

+ 1
Γ(𝛼𝑚)

𝑟
∑

𝑖=1

𝑡

∫
0

(𝜌𝑛(𝑡) − 𝜏𝑛(𝑠))𝛼𝑚−1𝑔𝑖(𝜏𝑛(𝑠), 𝑋(𝑛)(𝜏𝑛(𝑠))𝑑𝑊 𝑖
𝑠 , (15)

where 𝑋(𝑛)(𝑡) is the numerical solution with 𝑋(𝑛)(0) = 𝜂, 𝜏𝑛(𝑠) = 𝑘𝑇
𝑛

and 𝜌𝑛(𝑠) = (𝑘+1)𝑇
𝑛

for 𝑠 ∈ ( 𝑘𝑇
𝑛
, (𝑘+1)𝑇

𝑛
]. By using the

similar analytical procedures to prove Theorem 1, it can be deduced that the strong convergence order of the above EM method
is also to be min{𝛼𝑚 − 0.5, 𝛼𝑚 − 𝛼𝑚−1}.

Now let us discuss the fast implementation of the EM method (5) based on SOE technique17,18,19. The fast implementation
of (15) is very similar, thus we neglect it. For convenience 𝑛 ∈ ℕ∗, denote 𝜏 = 𝑇

𝑛
and 𝑡𝑘 = 𝑘𝜏 with 𝑘 = 0, 1,⋯ , 𝑛. Consider

Equation (4) at 𝑡 = 𝑡𝑘, where 𝑘 ≥ 2 (if 𝑘 = 1, the EM method (5) is directly applied), that is

𝑋(𝑡𝑘) = 𝜂
𝑚
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖𝑘

Γ(𝛼𝑚 − 𝛼𝑖 + 1)
−

𝑚−1
∑

𝑖=1

𝑡𝑘

∫
0

(𝑡𝑘 − 𝑠)𝛼𝑚−𝛼𝑖−1

Γ(𝛼𝑚 − 𝛼𝑖)
𝑋(𝑠)𝑑𝑠

+

𝑡𝑘

∫
0

(𝑡𝑘 − 𝑠)𝛼𝑚−1

Γ(𝛼𝑚)
𝑓 (𝑠,𝑋(𝑠))𝑑𝑠 +

𝑡𝑘

∫
0

(𝑡𝑘 − 𝑠)𝛼𝑚−1

Γ(𝛼𝑚)
𝑔(𝑠,𝑋(𝑠))𝑑𝑊𝑠

= 𝜂
𝑚
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖𝑘

Γ(𝛼𝑚 − 𝛼𝑖 + 1)
−

𝑚−1
∑

𝑖=1

𝑡𝑘−1

∫
0

(𝑡𝑘 − 𝑠)𝛼𝑚−𝛼𝑖−1

Γ(𝛼𝑚 − 𝛼𝑖)
𝑋(𝑠)𝑑𝑠

+

𝑡𝑘−1

∫
0

(𝑡𝑘 − 𝑠)𝛼𝑚−1

Γ(𝛼𝑚)
𝑓 (𝑠,𝑋(𝑠))𝑑𝑠 +

𝑡𝑘−1

∫
0

(𝑡𝑘 − 𝑠)𝛼𝑚−1

Γ(𝛼𝑚)
𝑔(𝑠,𝑋(𝑠))𝑑𝑊𝑠

−
𝑚−1
∑

𝑖=1

𝑡𝑘

∫
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼𝑚−𝛼𝑖−1

Γ(𝛼𝑚 − 𝛼𝑖)
𝑋(𝑠)𝑑𝑠 +

𝑡𝑘

∫
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼𝑚−1

Γ(𝛼𝑚)
𝑓 (𝑠,𝑋(𝑠))𝑑𝑠

+

𝑡𝑘

∫
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼𝑚−1

Γ(𝛼𝑚)
𝑔(𝑠,𝑋(𝑠))𝑑𝑊𝑠. (16)

For the integrals from 𝑡𝑘−1 to 𝑡𝑘 in (16), we use the same approximations in the EM method (5) to discretize them, namely

𝑚−1
∑

𝑖=1

𝑡𝑘

∫
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼𝑚−𝛼𝑖−1

Γ(𝛼𝑚 − 𝛼𝑖)
𝑋(𝑠)𝑑𝑠 ≈

𝑚−1
∑

𝑖=1

𝜏𝛼𝑚−𝛼𝑖
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

𝑋(𝑡𝑘−1),

𝑡𝑘

∫
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼𝑚−1

Γ(𝛼𝑚)
𝑓 (𝑠,𝑋(𝑠))𝑑𝑠 ≈ 𝜏𝛼𝑚

Γ(𝛼𝑚 + 1)
𝑓 (𝑡𝑘−1, 𝑋(𝑡𝑘−1)),
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and
𝑡𝑘

∫
𝑡𝑘−1

(𝑡𝑘 − 𝑠)𝛼𝑚−1

Γ(𝛼𝑚)
𝑔(𝑠,𝑋(𝑠))𝑑𝑊𝑠 ≈

𝜏𝛼𝑚−1

Γ(𝛼𝑚)
𝑔(𝑡𝑘−1, 𝑋(𝑡𝑘−1))Δ𝑊𝑘,

where Δ𝑊𝑘 = 𝑊 (𝑡𝑘) −𝑊 (𝑡𝑘−1).
For the integrals from 0 to 𝑡𝑘−1 in (16), the SOE approximation technique is used to discretize them. This is the key ingredient

to construct the fast implementation of the EM method (5), that is

𝑚−1
∑

𝑖=1

𝑡𝑘−1

∫
0

(𝑡𝑘 − 𝑠)𝛼𝑚−𝛼𝑖−1

Γ(𝛼𝑚 − 𝛼𝑖)
𝑋(𝑠)𝑑𝑠 ≈

𝑚−1
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

𝑁𝑒𝑥𝑝
∑

𝑗=1
𝜔(𝛼𝑚−𝛼𝑖)
𝑗 𝑈 (𝛼𝑚−𝛼𝑖)

𝑋,𝑗 (𝑡𝑘),

𝑡𝑘−1

∫
0

(𝑡𝑘 − 𝑠)𝛼𝑚−1

Γ(𝛼𝑚)
𝑓 (𝑠,𝑋(𝑠))𝑑𝑠 ≈ 1

Γ(𝛼𝑚)

𝑁𝑒𝑥𝑝
∑

𝑗=1
𝜔(𝛼𝑚)
𝑗 𝑈 (𝛼𝑚)

𝑓,𝑗 (𝑡𝑘),

and
𝑡𝑘−1

∫
0

(𝑡𝑘 − 𝑠)𝛼𝑚−1

Γ(𝛼𝑚)
𝑔(𝑠,𝑋(𝑠))𝑑𝑊𝑠 ≈

1
Γ(𝛼𝑚)

𝑁𝑒𝑥𝑝
∑

𝑗=1
𝜔(𝛼𝑚)
𝑗 𝑈 (𝛼𝑚)

𝑔,𝑗 (𝑡𝑘),

where the summations are evaluated from the following SOE approximations on [𝜏, 𝑇 ]

|𝑡𝛼𝑚−1 −
𝑁𝑒𝑥𝑝
∑

𝑗=1
𝜔(𝛼𝑚)
𝑗 𝑒−𝑠

(𝛼𝑚)
𝑗 𝑡

| ∨ |𝑡𝛼𝑚−𝛼𝑖−1 −
𝑁𝑒𝑥𝑝
∑

𝑗=1
𝜔(𝛼𝑚−𝛼𝑖)
𝑗 𝑒−𝑠

(𝛼𝑚−𝛼𝑖)
𝑗 𝑡

| ≤ 𝜀, 𝑖 = 1,⋯ , 𝑚 − 1,

and

𝑈 (𝛼𝑚−𝛼𝑖)
𝑋,𝑗 (𝑡𝑘) =

𝑡𝑘−1

∫
0

𝑒−(𝑡𝑘−𝑠)𝑠
(𝛼𝑚−𝛼𝑖)
𝑗 𝑋(𝑠)𝑑𝑠, 𝑖 = 1,⋯ , 𝑚 − 1

𝑈 (𝛼𝑚)
𝑓,𝑗 (𝑡𝑘) =

𝑡𝑘−1

∫
0

𝑒−(𝑡𝑘−𝑠)𝑠
(𝛼𝑚)
𝑗 𝑓 (𝑠,𝑋(𝑠))𝑑𝑠,

𝑈 (𝛼𝑚)
𝑔,𝑗 (𝑡𝑘) =

𝑡𝑘−1

∫
0

𝑒−(𝑡𝑘−𝑠)𝑠
(𝛼𝑚)
𝑗 𝑔(𝑠,𝑋(𝑠))𝑑𝑊𝑠.

Where 𝜔(𝛼𝑚−𝛼𝑖)
𝑗 , 𝜔(𝛼𝑚)

𝑗 and 𝑠(𝛼𝑚−𝛼𝑖)𝑗 , 𝑠(𝛼𝑚)𝑗 are the Gaussian weights and nodes, 𝜀 is the uniform absolute error, and 𝑁𝑒𝑥𝑝 is the
number of exponentials.

Now we can compute 𝑈 (𝛼𝑚−𝛼𝑖)
𝑋,𝑗 (𝑡𝑘), 𝑈

(𝛼𝑚)
𝑓,𝑗 (𝑡𝑘), and 𝑈 (𝛼𝑚)

𝑔,𝑗 (𝑡𝑘) for 𝑘 = 2,⋯ , 𝑛 by the following recurrence formulas

𝑈 (𝛼𝑚−𝛼𝑖)
𝑋,𝑗 (𝑡𝑘) ≈ 𝑒−𝜏𝑠

(𝛼𝑚−𝛼𝑖)
𝑗 𝑈 (𝛼𝑚−𝛼𝑖)

𝑋,𝑗 (𝑡𝑘−1) +

𝑡𝑘−1

∫
𝑡𝑘−2

𝑒−(𝑡𝑘−𝑠)𝑠
(𝛼𝑚−𝛼𝑖)
𝑗 𝑋(𝑡𝑘−2)𝑑𝑠,

𝑈 (𝛼𝑚)
𝑓,𝑗 (𝑡𝑘) ≈ 𝑒−𝜏𝑠

(𝛼𝑚)
𝑗 𝑈 (𝛼𝑚)

𝑓,𝑗 (𝑡𝑘−1) +

𝑡𝑘−1

∫
𝑡𝑘−2

𝑒−(𝑡𝑘−𝑠)𝑠
(𝛼𝑚)
𝑗 𝑓 (𝑡𝑘−2, 𝑋(𝑡𝑘−2))𝑑𝑠,

𝑈 (𝛼𝑚)
𝑔,𝑗 (𝑡𝑘) ≈ 𝑒−𝜏𝑠

(𝛼𝑚)
𝑗 𝑈 (𝛼𝑚)

𝑔,𝑗 (𝑡𝑘−1) + 𝑒−2𝜏𝑠
(𝛼𝑚)
𝑗 𝑔(𝑡𝑘−2, 𝑋(𝑡𝑘−2))Δ𝑊𝑘−1,
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with 𝑈 (𝛼𝑚−𝛼𝑖)
𝑋,𝑗 (𝑡1) = 0, 𝑈 (𝛼𝑚)

𝑓,𝑗 (𝑡1) = 0, and 𝑈 (𝛼𝑚)
𝑔,𝑗 (𝑡1) = 0. Thus, the fast implementation of proposed EM method (5) can be

described as

𝑋(𝑛)(𝑡𝑘) = 𝜂
𝑚
∑

𝑖=1

𝑡𝛼𝑚−𝛼𝑖𝑘

Γ(𝛼𝑚 − 𝛼𝑖 + 1)
−

𝑚−1
∑

𝑖=1

1
Γ(𝛼𝑚 − 𝛼𝑖)

𝑁𝑒𝑥𝑝
∑

𝑗=1
𝜔(𝛼𝑚−𝛼𝑖)
𝑗 𝑈 (𝛼𝑚−𝛼𝑖)

𝑋,𝑗 (𝑡𝑘)

+ 1
Γ(𝛼𝑚)

𝑁𝑒𝑥𝑝
∑

𝑗=1
𝜔(𝛼𝑚)
𝑗

(

𝑈 (𝛼𝑚)
𝑓,𝑗 (𝑡𝑘) + 𝑈 (𝛼𝑚)

𝑔,𝑗 (𝑡𝑘)
)

−
𝑚−1
∑

𝑖=1

𝜏𝛼𝑚−𝛼𝑖𝑋(𝑛)(𝑡𝑘−1)
Γ(𝛼𝑚 − 𝛼𝑖 + 1)

+ 𝜏𝛼𝑚
Γ(𝛼𝑚 + 1)

𝑓 (𝑡𝑘−1, 𝑋(𝑛)(𝑡𝑘−1)) +
𝜏𝛼𝑚−1

Γ(𝛼𝑚)
𝑔(𝑡𝑘−1, 𝑋(𝑛)(𝑡𝑘−1))Δ𝑊𝑘.

The above fast method requires 𝑂(𝑛𝑁𝑒𝑥𝑝) computational work whereas the computational cost of direct EM method (5) is
𝑂(𝑛2). Obviously, 𝑁𝑒𝑥𝑝 is greatly less than 𝑛 when the step size 𝜏 becomes small. Thus, the fast method has the more powerful
computational performance than the direct EM method (5).

5 NUMERICAL EXAMPLES

In this section, three numerical examples are given to demonstrate the effectiveness of our EM method and its fast implementation
for solving multi-term FSDEs. All of these computations are performed by using a MATLAB (R2017b) subroutine on a laptop
(Lenovo G50) with the Intel(R) Core(TM) i7-5500U CPU 2.40 GHz and 4G RAM. The computational error is defined as

𝑒𝑛 = max
1≤𝑘≤𝑛

(

1
1000

1000
∑

𝑖=1
‖𝑋(𝑛,𝑖)(𝑡𝑘) −𝑋(2𝑛,𝑖)(𝑡𝑘)‖2

)

1
2

,

where 𝑖 denotes the 𝑖th sample path.
Example 1. Consider the following two-term FSDEs

𝐂
𝟎𝐃

𝛂𝟐
𝐭 𝑋(𝑡) + 𝐂

𝟎𝐃
𝛂𝟏
𝐭 𝑋(𝑡) = 𝑐𝑜𝑠(𝑋(𝑡)) + 𝑠𝑖𝑛(𝑋(𝑡))

𝑑𝑊𝑡

𝑑𝑡
, 0 < 𝑡 ≤ 1,

with initial value 𝑋(0) = 𝜂 = 0.1. For 𝑛 = 128, 256, 512, 1024, we use the proposed EM method and its fast implementation to
compute the errors and convergence orders, see Table 1. Table 1 shows that for two-term FSDEs with different combinations of 𝛼1
and 𝛼2, the convergence orders of the EM method and its fast implementation both approximate to min{𝛼2−0.5, 𝛼2−𝛼1}, which
verifies the convergence result in our Theorem 1. To present the computational costs of EM method and its fast implementation,
the mean CPU times (second) of the two methods with different step sizes are listed in Table 2. We can know from Table 2 that
the computational performance of fast method is greatly more powerful than the EM method, especially for the small step sizes.

TABLE 1 Convergence orders of EM method and its fast implementation for Example 1.

𝑛
𝛼1 = 0.6, 𝛼2 = 0.9 𝛼1 = 0.3, 𝛼2 = 0.9

EM method Fast method EM method Fast method
error order error order error order error order

128 2.320e-2 2.400e-2 2.199e-2 2.198e-2
256 1.922e-2 0.27 1.659e-2 0.53 1.668e-2 0.40 1.667e-2 0.40
512 1.581e-2 0.28 1.201e-2 0.46 1.235e-2 0.43 1.235e-2 0.43
1024 1.289e-2 0.29 9.281e-3 0.37 9.780e-2 0.34 9.780e-3 0.34

In Figures 1 and 2, we firstly use the EM method and its fast implementation to solve Example 1 with two different com-
binations of 𝛼1 and 𝛼2, then plot the means (red lines) of numerical solutions of 1000 sample paths, and randomly select the
numerical solutions (blue lines and black lines) of two different sample paths. From these two figures, it can be found that the
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TABLE 2 Comparisons of mean CPU time (second) of EM method and its fast implementation with different step sizes for
Example 1.

method
𝑛 128 256 512 1024

EM method 34.99 128.76 502.59 2000.42
Fast method 14.93 29.31 57.15 110.11

numerical solutions of EM method are consistent with the numerical solutions of fast EM method, and the values of 𝛼1 and 𝛼2
have remarkable influence on the numerical solutions.
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(b) Solutions of Fast method

FIGURE 1 For 𝑛 = 256, numerical solutions of EM method (a) and fast method (b) when 𝛼1 = 0.6 and 𝛼2 = 0.9 in Example 1.
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(b) Solutions of Fast method

FIGURE 2 For 𝑛 = 256, numerical solutions of EM method (a) and fast method (b) when 𝛼1 = 0.3 and 𝛼2 = 0.9 in Example 1.

Example 2. Consider the following three-term FSDEs
3
∑

𝑖=1

𝐂
𝟎𝐃

𝛂𝐢
𝐭 𝑋(𝑡) = 𝑐𝑜𝑠(𝑋(𝑡)) + 𝑠𝑖𝑛(𝑋(𝑡))

𝑑𝑊𝑡

𝑑𝑡
, 0 < 𝑡 ≤ 1,



J.F. Huang ET AL 17

with initial value 𝑋(0) = 𝜂 = 0.1. Table 3 presents the errors and convergence orders of EM method and its fast implementation
for solving Example 2 with two different combinations of 𝛼1, 𝛼2, and 𝛼3. In Case 1, the values of 𝛼1, 𝛼2, and 𝛼3 are prescribed
as 0.1, 0.4, and 0.9, respectively. The left part of Table 3 tells us that the convergence order of EM method and fast method
approach to 0.4 = min{𝛼3 − 0.5, 𝛼3 − 𝛼2}. In Case 2, the values of 𝛼1, 𝛼2, and 𝛼3 are given as 0.2, 0.55, and 0.95, respectively.
The right part of Table 3 tells us that the convergence order of two methods approach to 0.4 = min{𝛼3 − 0.5, 𝛼3 − 𝛼2}. Thus,
Theorem 1 can be verified. Additionally, to compare the computational cost, for 𝑛 = 1024, the mean CPU times of EM method
and fast method are reported as 1964.48 seconds and 112.56 seconds, respectively.

TABLE 3 Convergence orders of EM method and its fast implementation for Example 2.

𝑛
𝛼1 = 0.1, 𝛼2 = 0.4, 𝛼3 = 0.9 𝛼1 = 0.2, 𝛼2 = 0.55, 𝛼3 = 0.95

EM method Fast method EM method Fast method
error order error order error order error order

128 1.676e-2 1.711e-2 1.648e-2 1.374e-2
256 1.263e-2 0.41 1.275e-2 0.42 1.229e-2 0.42 9.305e-3 0.56
512 9.250e-3 0.44 9.370e-3 0.44 9.161e-3 0.42 6.795e-3 0.45
1024 7.289e-3 0.34 7.426e-3 0.34 6.811e-3 0.43 5.337e-3 0.35

Example 3. Consider the following two-term FSDEs with vector-valued noise
2
∑

𝑖=1

𝐂
𝟎𝐃

𝛂𝐢
𝐭

(

𝑋1(𝑡)
𝑋2(𝑡)

)

=
(

𝑠𝑖𝑛(𝑋1(𝑡))
𝑐𝑜𝑠(2𝑋2(𝑡))

)

+
(

𝑐𝑜𝑠(𝑋1(𝑡)) 𝑐𝑜𝑠(𝑋2(𝑡))
𝑠𝑖𝑛(𝑋2(𝑡)) 𝑠𝑖𝑛(𝑋1(𝑡))

)

(

𝑑𝑊1(𝑡)
𝑑𝑡

𝑑𝑊2(𝑡)
𝑑𝑡

)

for 𝑡 ∈ (0, 1], and the initial value (𝑋1(0), 𝑋2(0))𝑇 = (0, 0)𝑇 . We in Table 4 list the errors and convergence orders of EM method
and its fast implementation for solving Example 3, and can find that the convergence orders are close to min{𝛼2 −0.5, 𝛼2 −𝛼1}.
And when 𝑛 = 256, the mean CPU times of EM method and fast method are 331.09 seconds and 74.37 seconds, respectively.
Obviously, the CPU time of the fast method is extremely less than that’s of the direct EM method.

TABLE 4 Convergence orders of EM method and its fast implementation for Example 3.

𝑛
𝛼1 = 0.3, 𝛼2 = 0.9 𝛼1 = 0.6, 𝛼2 = 0.9

EM method Fast method EM method Fast method
error order error order error order error order

32 2.491e-1 5.017e-1 2.232e-1 4.687e-1
64 1.992e-1 0.32 4.044e-1 0.31 1.586e-1 0.49 3.471e-1 0.43
128 1.522e-1 0.39 3.109e-1 0.38 1.211e-1 0.38 2.669e-1 0.37
256 1.129e-1 0.43 2.400e-1 0.37 1.004e-1 0.27 2.234e-1 0.26

6 CONCLUSION

In this paper, we have constructed the EM method for multi-term FSDEs and strictly established its strong convergence, i.e.,
the strong convergence order is min{𝛼𝑚 −0.5, 𝛼𝑚 − 𝛼𝑚−1}. The EM method and its theoretical results can be extended to multi-
term FSDEs with vector-valued noise. Based on the SOE approximation technique, a fast implementation of this EM method is
also presented. Three numerical examples are given to support our theoretical results, and demonstrate that the computational
performance of the fast method has the overwhelming advantages over the direct EM method.
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